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RESUMEN 

La presente investigación examina y contrasta los marcos de clasificación empleados 

en los datos sísmicos con el objetivo de pronosticar las erupciones en el volcán Cotopaxi, 

uno de los volcanes más activos y peligrosos de Ecuador. La importancia de la investigación 

reside en la necesidad de contar con sistemas predictivos más precisos que las metodolo-

gías convencionales, capaces de mitigar los riesgos sociales, económicos y ambientales 

asociados a los fenómenos volcánicos. El objetivo principal era evaluar la viabilidad de los 

algoritmos de aprendizaje automático para predecir escenarios eruptivos con una precisión 

superior al 70%. La metodología se basó en el marco CRISP-ML (Q), que consistía en com-

prender el problema, preparar datos sísmicos históricos y en tiempo real del IG-EPN y llevar 

a cabo la capacitación y la validación del modelo. Algoritmos como Random Forest, SVM, 

XGBoost y MLP se yuxtapusieron y evaluaron utilizando parámetros de precisión, recupera-

ción, puntuación de F1 y AUC-ROC. Los hallazgos indican que los modelos de aprendizaje 

profundo, en particular las redes neuronales recurrentes, muestran un rendimiento superior 

a la hora de discernir los patrones precursores. Se concluye que la incorporación de la inteli-

gencia artificial en la vulcanología constituye una contribución científica y social fundamental 

para mejorar los sistemas de alerta temprana en Ecuador. 

 

Palabras clave: aprendizaje automático, clasificación, predicción sísmica, Cotopaxi, CRISP-

ML(Q). 
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ABSTRACT 
 

 This research examines and compares the classification frameworks used in seismic 

data with the aim of predicting eruptions at Cotopaxi volcano, one of Ecuador's most active 

and dangerous volcanoes. The importance of the research lies in the need for predictive sys-

tems that are more accurate than conventional methodologies and capable of mitigating the 

social, economic, and environmental risks associated with volcanic phenomena. The main 

objective was to evaluate the feasibility of machine learning algorithms to predict eruptive 

scenarios with an accuracy greater than 70%. The methodology was based on the CRISP-

ML (Q) framework, which consisted of understanding the problem, preparing historical and 

real-time seismic data from the IG-EPN, and carrying out model training and validation. Algo-

rithms such as Random Forest, SVM, XGBoost, and MLP were juxtaposed and evaluated 

using precision, recall, F1 score, and AUC-ROC parameters. The findings indicate that deep 

learning models, particularly recurrent neural networks, show superior performance in dis-

cerning precursor patterns. It is concluded that the incorporation of artificial intelligence in 

volcanology constitutes a fundamental scientific and social contribution to improving early 

warning systems in Ecuador. 

 

Keywords: machine learning, classification, seismic prediction, Cotopaxi, CRISP-ML(Q). 
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CAPITULO 1 

1. INTRODUCCIÓN 
 

El avance tecnológico en microelectrónica, informática, computación y telecomunica-

ciones ha llevado a un crecimiento exponencial en la capacidad de generar y almacenar da-

tos. Esta gran cantidad de datos ha impulsado la necesidad de técnicas que transformen 

grandes volúmenes de información en conocimiento útil, siendo el Descubrimiento de Cono-

cimiento en Bases de Datos (KDD) y el Data Mining técnicas emblemáticas en este sentido 

(Ramos, 2019). En el contexto de la gestión de desastres naturales, específicamente la pre-

dicción de erupciones volcánicas, la sismología volcánica se ha consolidado como una de 

las herramientas más cruciales para el monitoreo y la predicción a corto plazo. Los procesos 

internos de los volcanes generan señales sísmicas variadas que son fundamentales para 

entender la dinámica eruptiva(Perales Palacios et al., 2021). 

La integración de técnicas avanzadas de inteligencia artificial y aprendizaje automá-

tico ha revolucionado el campo de la volcanología predictiva, permitiendo el procesamiento 

de grandes volúmenes de datos sísmicos en tiempo real (Carniel & Guzmán, 2020; Carniel 

& Guzmán, 2025). 

Este proyecto de investigación se orienta al análisis de datos sísmicos mediante téc-

nicas estadísticas y de aprendizaje automático, con el fin de detectar y caracterizar precurso-

res de erupciones volcánicas en Ecuador La propuesta se fundamenta en la creciente nece-

sidad de contar con modelos predictivos que integren señales sismo-volcánicas, tales como 

eventos volcano-tectónicos (VT), de largo periodo (LP), tremores y sismos híbridos, en un 

sistema capaz de reconocer patrones anómalos y anticipar escenarios eruptivos.  

Estudios recientes han demostrado que los modelos de aprendizaje automático pue-

den detectar hasta 7.5 veces más eventos sísmicos que los métodos manuales tradicionales, 
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mejorando significativamente la capacidad de identificar precursores eruptivos (Yukutake et 

al., 2023). 

Este proyecto se define como una investigación aplicada que utilizará técnicas de 

análisis de datos, incluyendo métodos estadísticos y de aprendizaje automático (machine 

learning), para examinar los datos sísmicos históricos y en tiempo real de los volcanes más 

activos de Ecuador. El objetivo es identificar y caracterizar patrones precursores de actividad 

eruptiva. Por ejemplo, la aplicación de redes neuronales y algoritmos de aprendizaje automá-

tico ha permitido reconocer patrones de energía sísmica y caídas de entropía que anteceden 

a erupciones en volcanes como Etna, Kilauea y Augustine (Rey-Devesa, Benítez, et al., 

2023). Además, enfoques innovadores como el aprendizaje por transferencia han demostrado 

ser efectivos para mejorar el pronóstico en volcanes con datos escasos, generalizando cono-

cimiento adquirido de múltiples sistemas volcánicos (Ardid et al., 2025). 

Se analizarán distintos tipos de señales sismo-volcánicas registradas por la red de 

monitoreo del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), institución 

que ha liderado el monitoreo volcánico en Ecuador durante cuatro décadas, enfrentando 

desafíos instrumentales y desarrollando capacidades técnicas para la vigilancia de volcanes 

de alto riesgo como Cotopaxi (Hidalgo et al., 2023).  

De esta manera, se pretende disponer de un modelo que permita alcanzar un nivel 

de exactitud superior al 70% en la predicción de escenarios eruptivos, contribuyendo al 

desarrollo de nuevas aplicaciones tecnológicas orientadas a la gestión de riesgos volcáni-

cos en el país. La implementación operativa de sistemas de monitoreo en tiempo real basa-

dos en machine learning, como los desarrollados para el volcán Axial Seamount, demuestra 

la viabilidad de estos enfoques para sistemas de alerta temprana (Wang et al., 2024). 
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Justificación e importancia del trabajo de investigación 
 

 El Ecuador alberga 35 volcanes potencialmente activos, cuya dinámica representa 

una amenaza latente para la población, la infraestructura y la economía del país (Vaca Molina, 

2024). Estudios recientes han permitido establecer un Índice de Peligrosidad Volcánica (IPV) 

preliminar que clasifica a los principales volcanes en diferentes categorías de riesgo. Sin em-

bargo, este tipo de indicadores se fundamenta principalmente en parámetros históricos y geo-

lógicos, lo que limita su capacidad predictiva frente a la evolución en tiempo real de la activi-

dad sísmica volcánica. 

       Bajo este contexto, se considera necesario complementar el enfoque tradicional 

con técnicas modernas de aprendizaje automático y modelos de clasificación, capaces de 

identificar patrones complejos en los registros sísmicos tectónico-volcánicos y de aportar ma-

yor precisión en la detección temprana de escenarios eruptivos. Modelos generalizados en-

trenados con datos de múltiples volcanes han demostrado capacidad para detectar precurso-

res sísmicos en sistemas volcánicos no incluidos en el conjunto de entrenamiento, superando 

métodos basados únicamente en amplitud promedio (Ardid et al., 2023). La comparación sis-

temática de diferentes algoritmos de clasificación permitirá reconocer cuáles ofrecen mejores 

resultados en términos de exactitud, robustez y reducción de sesgos, aportando bases cien-

tíficas sólidas para el desarrollo de sistemas predictivos confiables. 

Desarrollar este proyecto como aplicación en volcanes de alta peligrosidad permitirá 

generar conocimiento extrapolable a otros escenarios volcánicos, consolidando un aporte 

tanto científico como social en la prevención de desastres naturales en Ecuador. 

El presente proyecto adquiere relevancia por tres razones principales: 

 Riesgo social y humano: La cercanía de los principales volcanes a zonas densa-

mente pobladas convierte la predicción temprana en un factor determinante para sal-

var vidas. La experiencia de erupciones repentinas, como la de Whakaari en 2019, 
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evidencia la necesidad de modelos de alerta basados en datos y no únicamente en 

juicios expertos (Dempsey et al., 2020).  En Ecuador, volcanes como el Cotopaxi, 

Tungurahua y Sangay han demostrado su potencial destructivo a lo largo de la histo-

ria. Un pronóstico más preciso y oportuno de una erupción puede salvar innumera-

bles vidas al permitir evacuaciones preventivas y bien organizadas. Sistemas inte-

grados de alerta temprana que combinan umbrales estadísticos de precursores con 

difusión automatizada de alarmas han demostrado su utilidad en contextos operati-

vos (Spina et al., 2020). 

 Impacto económico: Las erupciones volcánicas tienen repercusiones directas en la 

agricultura, transporte aéreo y turismo. La detección temprana de señales precurso-

ras, como la variación de la entropía de Shannon en registros sísmicos, posibilita re-

ducir pérdidas al activar protocolos preventivos con suficiente antelación (Rey-De-

vesa et al., 2023). Una erupción puede paralizar sectores económicos clave como la 

agricultura, la ganadería, el turismo y la aviación, debido a la caída de ceniza y los 

flujos laháricos. Este proyecto busca mitigar el impacto económico al proporcionar 

información que permita a las industrias y al gobierno prepararse y proteger sus acti-

vos. 

 Avance científico y tecnológico: La evidencia sugiere que muchos procesos erupti-

vos presentan señales precursoras sutiles y de largo plazo que no son detectadas 

por métodos tradicionales. El análisis del nivel sísmico de fondo en Shinmoe-dake, 

Japón, reveló que la preparación eruptiva puede extenderse por meses y ser regis-

trada solo mediante técnicas avanzadas de procesamiento (Ichihara et al., 2023b). 

La implementación de modelos predictivos avanzados basados en datos sísmicos 

posicionaría a Ecuador a la vanguardia de la vulcanología en la región. Además, 

este proyecto contribuirá a un entendimiento más profundo de la dinámica interna de 

los volcanes andinos, generando conocimiento valioso para la comunidad científica 
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internacional, al tiempo de fortalecer las capacidades del IG-EPN, la institución en-

cargada del monitoreo, fundamental para la seguridad nacional. Técnicas innovado-

ras como el emparejamiento de plantillas multiescala han permitido descubrir precur-

sores eruptivos recurrentes en escalas temporales de 1 a 60 días en diversos con-

textos volcánicos (Ardid et al., 2024). 

Problema de investigación 

 El pronóstico temprano de las erupciones volcánicas en Ecuador sigue planteando un 

problema, a pesar de la accesibilidad de la información sísmica histórica y en tiempo real. 

Las técnicas de monitoreo convencionales basadas en parámetros geológicos e históricos 

proporcionan información valiosa; sin embargo, presentan dificultades para pronosticar con 

precisión la incidencia de una erupción. Esta deficiencia complica la ejecución de medidas 

preventivas oportunas, lo que amplifica los riesgos sociales, económicos y ambientales en 

el contexto de fenómenos volcánicos importantes, como los relacionados con el Cotopaxi. 

En consecuencia, existe la necesidad de investigar la utilización de modelos de clasificación 

basados en el aprendizaje automático para discernir los patrones sísmicos precursores y 

evaluar su viabilidad como instrumento predictivo a corto plazo. 

1.1 Alcance 

El estudio se centrará en el volcán Cotopaxi como caso principal, dada su alta peli-

grosidad y la disponibilidad de registros sísmicos históricos y recientes provistos por el Insti-

tuto Geofísico de la Escuela Politécnica Nacional (IG-EPN). Se analizarán tanto periodos de 

calma como fases de reactivación, en especial la crisis eruptiva de 2015, para entrenar y 

validar modelos de clasificación. 

Aunque el énfasis inicial será en Cotopaxi, los resultados serán extrapolables a otros 

volcanes activos del país, como Tungurahua y Reventador, permitiendo diseñar sistemas 

predictivos replicables a nivel regional. 
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Aunque el énfasis inicial será en Cotopaxi, los resultados serán extrapolables a otros 

volcanes activos del país, como Tungurahua y Reventador, permitiendo diseñar sistemas pre-

dictivos replicables a nivel regional. La experiencia exitosa del modelo de pronóstico desarro-

llado para el volcán Copahue en los Andes del Sur, que logró emitir alertas pseudo-prospec-

tivas entre 5 y 75 horas antes de erupciones pequeñas, demuestra la viabilidad de este enfo-

que en contextos andinos similares (Cabrera et al., 2024). 

Componentes del alcance 

1. Volcán de Estudio Principal: Se propone iniciar el análisis con el volcán Cotopaxi, 

debido a su historial eruptivo y al elevado riesgo que representa para áreas estraté-

gicas del país, incluyendo el Distrito Metropolitano de Quito y la ciudad de Lata-

cunga. 

2. Datos para Utilizar: Se utilizarán las bases de datos sísmicos históricos y los datos 

en tiempo real proporcionados y curados por el IG-EPN. Esto incluye catálogos de 

eventos sísmicos clasificados y formas de onda continuas de las estaciones de mo-

nitoreo del Cotopaxi. 

3. Período de Análisis: El estudio abarcará los datos sísmicos recopilados durante los 

periodos de calma y de reactivación del volcán, con especial énfasis en el proceso 

eruptivo de 2015 para entrenar y validar los modelos. 

4. Resultados Esperados: El proyecto se limitará a la creación y validación de un mo-

delo predictivo. La implementación de este modelo en un sistema de alerta temprana 

en tiempo real quedará fuera del alcance de esta fase, pero se sentarán las bases 

para su futuro desarrollo. 

Se ha identificado la relevancia de los volcanes potencialmente activos y el impacto 

de contar con modelos predictivos confiables en el contexto del problema volcánico en 
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Ecuador, Paralelamente, se revisan las fuentes de datos disponibles y se determina su utili-

dad para el entrenamiento de modelos de clasificación.  

Ingeniería de datos (preparación de datos): Se realizará el preprocesamiento nece-

sario para transformar los datos crudos en insumos utilizables por los modelos. Esto incluye 

limpieza de registros, segmentación de eventos sísmicos, extracción de características, ba-

lanceo de clases y construcción del dataset final con las etiquetas de clasificación.  

Ingeniería de modelos de aprendizaje automático: Se diseñan y entrenan diferentes 

algoritmos de clasificación (Random Forest, SVM, XGBoost, LightGBM, CNN, LSTM/GRU), 

ajustando hiperparámetros y evaluando su rendimiento. Esta etapa tiene un carácter experi-

mental y comparativo, ya que se busca determinar qué modelo ofrece mejores métricas de 

precisión, recall, F1-score y AUC-ROC en la predicción de actividad eruptiva. 

Estudios comparativos han demostrado que diferentes arquitecturas (RF, ANN, 

CNN, LSTM) presentan sensibilidades variables al ruido y desempeños relativos distintos 

según las características del conjunto de datos (Mustafa et al., 2022). 

Garantía de calidad para aplicaciones de aprendizaje automático: Se validarán los 

modelos obtenidos bajo un esquema de pruebas, verificando su robustez, ausencia de so-

breajuste y capacidad de generalización. Se emplearán técnicas de validación mismas que 

permitirán seleccionar el mejor modelo de clasificación para el escenario planteado.  

Implementación: Se integrará el modelo con mejor clasificación en una aplicación pi-

loto o prototipo, para que el público objetivo pueda verificar el funcionamiento.  

Monitoreo y Mantenimiento: Después del despliegue se realizarán pruebas necesa-

rias para que el aplicativo prototipo funcione correctamente, donde en caso de presentarse 

fallos puedan realizarse los ajustes necesarios.  
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1.2 Idea a defender 

Con la evaluación de la información sísmica utilizando metodologías de categoriza-

ción y aprendizaje computacional puede discernir los motivos precursores de las erupciones 

y lograr grados de precisión superiores al 70% en la predicción a corto plazo del comporta-

miento eruptivo del volcán Cotopaxi, lo que constituye una alternativa factible para mejorar 

los sistemas de vigilancia volcánica y contribuir a la reducción del riesgo en Ecuador. 

1.3 Objetivos 

1.4 Objetivo general 

Evaluar la factibilidad de modelos de clasificación basado en datos sísmicos para la 

identificación de escenarios de amenazas volcánicas en el volcán Cotopaxi, como apoyo a 

la mitigación del riesgo volcánico en Ecuador. 

1.5 Objetivos específicos 

 Caracterizar estadísticamente la sismicidad de eventos eruptivos históricos del vol-

cán Cotopaxi mediante el análisis de sismicidad, y energía liberada. 

 Comparar diferentes modelos de clasificación aplicados a datos sísmicos, con el fin 

de identificar el modelo más adecuado para la obtener una alerta temprana de esce-

narios de amenazas volcánicas  

 Comprobar el desempeño del modelo de clasificación seleccionado utilizando un 

conjunto de datos de prueba independiente, considerando métricas como precisión, 

sensibilidad, especificidad y tasa de falsas alarmas. 

 

El presente documento se organiza en cinco capítulos. El Capítulo 1 introduce la te-

mática, justifica la investigación y establece los objetivos. El Capítulo 2 realiza una revisión 
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de la literatura relevante, abarcando el estado del arte y el marco teórico sobre sismología 

volcánica, procesamiento de señales, Machine Learning y gestión de riesgos. El Capítulo 3 

detalla la metodología propuesta, siguiendo un enfoque estructurado. El Capítulo 4 presenta 

el análisis y discusión de los resultados obtenidos. Finalmente, el Capítulo 5 expone las 

conclusiones del trabajo y sugiere líneas de investigación futuras. 
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CAPITULO 2 

2. REVISIÓN DE LITERATURA 

2.1 Estado del Arte 
 

 La predicción de erupciones volcánicas ha evolucionado gracias a la integración de 

métodos sismológicos avanzados y técnicas de inteligencia artificial. Tradicionalmente, la 

identificación de precursores se basaba en el análisis manual de catálogos sísmicos y en la 

experiencia de los observatorios locales. Sin embargo, la complejidad y diversidad de los 

procesos volcánicos han impulsado la adopción de enfoques automatizados y basados en 

datos. Las revisiones recientes del campo destacan la transición desde métodos heurísticos 

hacia sistemas predictivos basados en evidencia cuantitativa y aprendizaje de patrones 

(Carniel & Guzmán, 2020). 

Estudios recientes han demostrado la utilidad de aplicar métricas de información 

como la entropía de Shannon, la cual tiende a decrecer horas antes de una erupción. Esta 

metodología fue validada en volcanes como Etna, Kilauea y Mount St. Helens, mostrando 

que los cambios en la entropía, combinados con indicadores de energía y frecuencia, pue-

den anticipar escenarios eruptivos con varias horas de antelación (Rey-Devesa et al., 2023). 

Investigaciones específicas en el Volcán de Colima han confirmado que la disminu-

ción de la entropía de Shannon en señales sísmicas continuas puede preceder explosiones 

con 2 a 6 días de anticipación, consolidando esta métrica como herramienta complementa-

ria para el monitoreo operativo (Rey-Devesa et al., 2023). Herramientas computacionales 

desarrolladas recientemente en Python permiten estimar en tiempo real la entropía de 

Shannon, curtosis, índice de frecuencia y energía sobre registros sísmicos, facilitando el 

análisis de eventos VT, LP y tremores (Gutiérrez et al., 2025). 
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 Asimismo, para Ichihara et al. (2023) la detección de señales precursoras de baja 

amplitud ha cobrado relevancia. Investigaciones en el volcán Shinmoe-dake (Japón) eviden-

ciaron que el análisis del nivel sísmico de fondo (SBL) permite identificar procesos de prepa-

ración eruptiva que se desarrollan a lo largo de meses, incluso cuando no hay señales visi-

bles en la superficie. Este hallazgo sugiere que parte de los “falsos negativos” en la vigilan-

cia volcánica se deben a la falta de metodologías sensibles a estas variaciones.  

 Enfoques basados en ruido sísmico ambiental, incluyendo interferometría y análisis 

de variaciones de velocidad (dv/v), están siendo explorados para detectar cambios precur-

sores a erupciones freáticas, con propuestas de integrar machine learning para mejorar la 

interpretación (Lecocq et al., 2023).  

 Otro avance significativo proviene del uso de aprendizaje automático supervisado y 

no supervisado. En Whakaari (Nueva Zelanda), un modelo de machine learning logró detec-

tar secuencias energéticas que ocurrían entre horas y días antes de erupciones, emitiendo 

alertas tempranas en tiempo real. Este estudio constituye un caso pionero de implementa-

ción práctica de algoritmos predictivos en sistemas de alerta volcánica (Dempsey et al., 

2020). 

 Para Ardid et al. (2023) los enfoques de aprendizaje por transferencia han demos-

trado ser particularmente prometedores para volcanes con datos escasos. Modelos entrena-

dos con registros sísmicos de 24 volcanes diferentes han logrado detectar precursores ge-

nerales y predecir erupciones en volcanes no incluidos en el conjunto de entrenamiento, su-

perando métodos basados únicamente en amplitud promedio.  

El uso de estadística ergódica combinada con transferencia de aprendizaje ha mejo-

rado significativamente el pronóstico a corto plazo mediante generalización entre volcanes 

similares (Ardid et al., 2025). 
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 El análisis de clústeres de tremores ha permitido descubrir patrones que los méto-

dos clásicos pasaban por alto. Durante la erupción del Geldingadalir en 2021, el uso de téc-

nicas de deep learning sobre datos sísmicos continuos permitió identificar secuencias pre-

cursoras tres días antes del inicio de la erupción, así como las fases de transición entre efu-

sión continua de lava y pulsos de fountaining (Mousavi et al., 2023). Redes híbridas que 

combinan scattering y ConvLSTM han demostrado capacidad para detectar comportamiento 

metastable en señales sísmicas polifónicas, con aplicabilidad para transferencia entre dife-

rentes sistemas volcánicos (Bueno et al., 2021). 

 Finalmente, los avances en la clasificación y localización de señales sismo-volcáni-

cas también han fortalecido la predicción. El análisis multicomponente en el Piton de la 

Fournaise (La Reunión) mostró que los enjambres sísmicos migran desde niveles profundos 

hacia zonas someras antes de una erupción, información crucial para estimar la dinámica 

internacional (Journeau et al., 2020). 

 La evidencia internacional también incluye el uso de redes sísmicas locales en la 

vigilancia volcánica. En Bali, (Syahbana et al., 2019) analizaron más de 2.700 eventos vol-

cano-tectónicos previos a la erupción del Agung, diferenciando entre fracturamiento de roca 

y migración de magma, lo que permitió reconstruir la secuencia eruptiva con mayor detalle. 

 Asimismo, Yukutake et al. (2023) mostraron que los modelos de machine learning 

entrenados con catálogos sísmicos pueden detectar hasta 7,5 veces más eventos volcáni-

cos que los métodos manuales. En el Kirishima (Japón), esta técnica permitió identificar hi-

pocentros de enjambres y variaciones de b-values previas a erupciones magmáticas y freá-

ticas. Para, Fenner et al. (2022) el desarrollo de herramientas de detección automática tam-

bién ha beneficiado a volcanes con actividad estromboliana el módulo AWESAM, capaz de 

detectar cientos de miles de eventos en Stromboli, Italia, sin necesidad de grandes catálo-

gos de entrenamiento, alcanzando una precisión del 95% en comparación con registros ma-
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nuales. Métodos de análisis espectral continúo operando en tiempo casi real han sido desa-

rrollados para la red sísmica del Etna, permitiendo detección de anomalías y estimación in-

dicativa de intensidad eruptiva potencial (Ollino, 2022). 

 Finalmente, los avances en modelos de riesgo sísmico y volcánico en contextos ur-

banos complementan estos desarrollos. En Quito, Córdoba et al. (2025) elaboraron un mo-

delo de riesgo probabilista que integra escenarios volcánicos y sísmicos, aportando insumos 

clave para la planificación preventiva en ciudades altamente vulnerables. 

Aplicaciones específicas en la región andina han demostrado la viabilidad de estos 

enfoques. Un pipeline de machine learning aplicado al volcán Copahue integró extracción 

de precursores sísmicos y decisión de alerta, reportando alertas pseudo-prospectivas entre 

5 y 75 horas antes de erupciones pequeñas (Cabrera et al., 2024).  

Diseños híbridos que combinan series temporales y machine learning para predic-

ción eruptiva en volcanes como Merapi ilustran flujos de preprocesamiento y validación 

adaptables a conjuntos de datos ecuatorianos (Mandita et al., 2024). Estudios comparativos 

de diferentes arquitecturas de redes neuronales han evaluado el desempeño de RBFNN, 

ANN, CNN y LSTM para predicción de erupciones, mostrando sensibilidades variables al 

ruido y desempeños relativos distintos según las características del conjunto de datos 

(Shyamala et al., 2022; Mustafa et al., 2022). La aplicación de Random Forests para predic-

ción eruptiva en el Anillo de Fuego del Pacífico ha sido evaluada en grandes conjuntos re-

gionales, discutiendo su eficacia frente a otras técnicas de clasificación (Kaza et al., 2025). 

 

Sistemas operativos de monitoreo en tiempo real 

La implementación de sistemas operativos de monitoreo volcánico ha avanzado sig-

nificativamente. Sistemas integrados de alerta temprana que combinan umbrales estadísticos 

de precursores con difusión automatizada de alarmas a dispositivos móviles ofrecen referen-

cias de arquitectura operativa (Spina et al., 2020). La construcción de catálogos sísmicos 
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etiquetados con machine learning y el despliegue de monitoreo en tiempo real, integrando 

aprendizaje no supervisado para discriminación de señales, han demostrado su utilidad en 

volcanes submarinos como Axial Seamount (Wang et al., 2024). 

Herramientas de inteligencia artificial y machine learning para mejorar sistemas de 

alerta temprana han sido aplicadas exitosamente en Stromboli, incluyendo predicción de in-

tensidad de eventos explosivos basándose en deformación y series temporales locales 

(Longo et al., 2024). Enfoques bayesianos de aprendizaje profundo para detección y clasifi-

cación de transientes en flujo continuo han demostrado capacidad para detectar cambios 

previos a erupciones, mostrando utilidad para monitoreo probabilístico (IEEE, 2022). 

Marco teórico 

2.2 Contexto geodinámico y volcanismo en Ecuador 

 El Ecuador se encuentra en un entorno tectónico complejo, dominado por la sub-

ducción de la placa de Nazca bajo la Sudamericana. Este proceso genera una zona de 

Wadati-Benioff caracterizada por sismicidad intermedia y superficial, así como por un nota-

ble volcanismo en la región andina (Hanu & Vanek, 1987). La variabilidad en la inclinación 

de la losa subducida y la presencia de zonas asísmicas se relacionan directamente con el 

emplazamiento de volcanes activos como Cotopaxi, Tungurahua y Reventador, cuya proxi-

midad a zonas densamente pobladas incrementa la vulnerabilidad social y económica.  

2.3 Volcanes activos en Ecuador 

Ecuador se ubica en un contexto geodinámico complejo, influenciado por la subduc-

ción de la placa de Nazca bajo la Sudamericana. Este proceso da lugar a la formación de 

una zona de Wadati-Benioff y a la presencia de más de 30 volcanes potencialmente activos, 
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entre los que destacan Cotopaxi, Tungurahua, Sangay y Reventador (Chlieh, 2021). La pro-

ximidad de estos sistemas volcánicos a áreas densamente pobladas incrementa la vulnera-

bilidad social y económica del país.  

El monitoreo sistemático de estos volcanes ha sido liderado por el Instituto Geofísico 

de la Escuela Politécnica Nacional (IG-EPN) durante cuatro décadas, enfrentando desafíos 

instrumentales significativos mientras desarrolla capacidades técnicas para la vigilancia de 

volcanes de alto riesgo (Hidalgo et al., 2023). 

Figura 1 

Volcanes del Ecuador 

 

Nota. Adaptado de Instituto Geográfico Militar (2025). 

Tabla 1  

Listado de volcanes Potencialmente activos en el Ecuador  

Ubicación Cantidad Punto A 

Volcanes continentales  7 
Cayambe, Reventador, Guagua Pichincha, Coto-
paxi, Tungurahua, Sangay y Potrerillos- Cha-
cana 

Volcanes de Galápagos 7 
Marchena, Cerro Azul, Fernandina, Santo To-
más Chico, Alcedo, Darwin y Wolf 

Nota. Adaptado de Instituto Geográfico Militar (2025). 
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2.4 Riesgo volcánico y sus implicaciones sociales 

 La actividad volcánica representa una amenaza significativa para la seguridad de 

las comunidades y la infraestructura crítica. Estudios de riesgo en ciudades como Quito han 

integrado escenarios sísmicos y volcánicos, demostrando que la exposición urbana y la con-

centración poblacional amplifican los posibles impactos (Córdoba et al., 2025). Casos inter-

nacionales, como la erupción súbita de Whakaari en 2019, han puesto en evidencia que los 

sistemas de alerta basados solo en criterios heurísticos son insuficientes, dado que muchas 

erupciones ocurren con poca o ninguna señal perceptible en superficie (Dempsey et al., 

2020) 

2.5 Riesgo social y humano de la actividad volcánica 

 La historia eruptiva reciente del Ecuador muestra que fenómenos como la caída de 

ceniza, flujos piroclásticos y lahares generan impactos directos sobre la población, la infra-

estructura crítica y la economía nacional. En este sentido, contar con sistemas predictivos 

confiables permite mitigar pérdidas humanas y materiales. Investigaciones internacionales 

resaltan que las erupciones súbitas, como la de Whakaari en 2019, subrayan la urgencia de 

modelos de alerta más dinámicos y automáticos (Dempsey et al., 2020). 

2.6 Señales precursoras de erupciones volcánicas 

Los precursores volcánicos se manifiestan como anomalías sísmicas, geoquímicas o 

geodésicas que anteceden a una erupción. Entre las más estudiadas se encuentran los 

eventos volcano-tectónicos (VT), los de largo periodo (LP) y los tremores armónicos. La lite-

ratura reciente destaca la utilidad de nuevas métricas en su caracterización. 

En primer lugar, la entropía de Shannon, que decrece de manera sistemática previo 

a erupciones, permitiendo anticipar la transición hacia estados críticos; aplicaciones especí-

ficas han demostrado pronósticos exitosos con 2 a 6 días de anticipación en volcanes como 

Colima (Rey-Devesa et al., 2023). 
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Como segunda característica, el nivel sísmico de fondo (SBL), que ha revelado pro-

cesos eruptivos de lenta evolución no detectables con métodos convencionales, como en el 

caso del Shinmoe-dake en Japón (Ichihara et al., 2023b). 

En tercer lugar, la identificación de enjambres sísmicos migratorios, observados en 

La Reunión, que marcan la intrusión de magma hacia zonas someras antes del inicio erup-

tivo (Journeau et al., 2020). 

Y finalmente, el registro de secuencias prolongadas de sismicidad, como en el 

Agung (Indonesia), donde miles de eventos VT precedieron la erupción de 2017, distin-

guiendo entre fracturamiento de rocas y migración de magma (Syahbana et al., 2019). 

El procesamiento efectivo de señales sísmicas volcánicas requiere una comprensión 

profunda de los pasos clave: filtrado, representación tiempo-frecuencia (TFR), detección de 

eventos y extracción de características. La integración de machine learning en estas etapas 

mejora significativamente la discriminación de señales volcánicas y la vigilancia en tiempo 

real (Khan et al., 2019). 

Enfoques basados en ruido sísmico ambiental, incluyendo interferometría y análisis 

de variaciones de velocidad, están siendo explorados para detectar cambios precursores, con 

propuestas de integrar modelos numéricos y machine learning para interpretación avanzada 

(Lecocq et al., 2023). 

2.7 Modelos automáticos de detección y clasificación 

 La necesidad de procesar grandes volúmenes de datos ha impulsado el desarrollo 

de métodos automáticos de detección: 

 Fenner et al. (2022) desarrollaron el módulo AWESAM, que automatiza la identifica-

ción de eventos en volcanes estrombolianos como Stromboli, alcanzando un 95% de 

precisión sin depender de catálogos extensos. 
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 Yukutake et al. (2023) aplicaron machine learning en el Kirishima (Japón), logrando 

detectar hasta 7,5 veces más eventos que los métodos tradicionales y revelando 

clústeres hipocentrales vinculados a procesos eruptivos. 

 Zali et al. (2024) mostraron que el clustering de tremores con técnicas de deep lear-

ning permite distinguir fases eruptivas y reconocer secuencias precursoras con va-

rios días de antelación. 

 Estos avances evidencian que los algoritmos supervisados y no supervisados (Ran-

dom Forest, SVM, CNN, LSTM/GRU) se están consolidando como herramientas robustas 

para la predicción de erupciones, capaces de superar las limitaciones del análisis manual. 

2.8 Integración de ciencia de datos e inteligencia artificial 

 La predicción de erupciones requiere no solo de la detección de señales anómalas, 

sino también de su integración en modelos predictivos reproducibles y escalables. El uso de 

metodologías como CRISP-ML(Q) ofrece un marco estructurado para proyectos de machine 

learning aplicados a volcanología, asegurando la calidad en las fases de preparación de da-

tos, entrenamiento, validación y despliegue. En este enfoque, la detección temprana se con-

vierte en una tarea de clasificación y predicción probabilística, reduciendo la incertidumbre y 

mejorando la gestión del riesgo volcánico. 

Revisiones comprehensivas de métodos de machine learning aplicables a volcanolo-

gía discuten vectores de características y enfoques para combinación de múltiples tipos de 

datos en observatorios, cubriendo clasificación, reducción de dimensión y aplicaciones a 

geofísica, geodesia y teledetección (Carniel & Guzmán, 2020, 2025). 

2.9 Metodología CRISP-ML(Q) 

El desarrollo de modelos predictivos en vulcanología requiere procesos estandariza-

dos que aseguren calidad, reproducibilidad y escalabilidad. Para este fin, se adopta CRISP-
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ML(Q), una adaptación del modelo clásico CRISP-DM a proyectos de machine learning, re-

comendado en el diseño metodológico del trabajo base. 

Este marco metodológico comprende fases iterativas: comprensión del negocio y de 

los datos, preparación, modelado, validación, implementación y mantenimiento. Su valor 

agregado reside en incorporar criterios de calidad (Q) en todas las fases, garantizando que 

los modelos predictivos no solo alcancen métricas elevadas de precisión, sino que también 

puedan ser auditados y aplicados en escenarios críticos como la predicción de erupciones 

volcánicas. 

2.10 Comprensión del problema 

El objetivo principal es anticipar escenarios eruptivos en volcanes de alto riesgo, 

como Cotopaxi, a partir del análisis de datos sísmicos. Se establecen criterios de éxito me-

dibles, como precisión superior al 70%, baja tasa de falsas alarmas e interpretabilidad de 

resultados. La relevancia de estas condiciones radica en que eventos súbitos, como la erup-

ción de Whakaari en 2019, mostraron la insuficiencia de los sistemas tradicionales de alerta 

(Dempsey et al., 2020). 

2.11 Comprensión y preparación de datos 

Las fuentes de información incluyen catálogos sísmicos clasificados y series conti-

nuas de formas de onda del Cotopaxi. Entre las variables derivadas destacan la entropía de 

Shannon, validada como indicador precursor en Etna, Kilauea y Mount St. Helens (Rey De-

vesa et al., 2023), y el nivel sísmico de fondo (SBL), empleado con éxito en el Shinmoe-

dake (Ichihara et al., 2023b). También se consideran parámetros de migración hipocentral y 

secuencias sísmicas, como las identificadas en Piton de la Fournaise (Journeau et al., 2020) 

y en el Agung (Syahbana et al., 2021). 
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El preprocesamiento incluye limpieza de registros, segmentación de señales, balan-

ceo de clases dado que los eventos eruptivos son poco frecuentes y normalización de varia-

bles. Este enfoque responde a la problemática identificada en estudios japoneses, donde 

los algoritmos detectaron hasta 7,5 veces más eventos que los catálogos manuales (Yuku-

take et al., 2023). 

2.12 Selección e ingeniería de modelos 

Se aplican y comparan diferentes algoritmos de aprendizaje automático: 

 Random Forest y SVM, eficaces en clasificación de eventos VT y LP (Dempsey et 

al., 2020). 

 CNN, apropiadas para la clasificación de formas de onda complejas (mousavi et al., 

2023). 

 LSTM/GRU, útiles en el análisis de series temporales prolongadas (Ichihara et al., 

2023b). 

 XGBoost y LightGBM, por su capacidad de optimizar rendimiento en bases de datos 

de gran escala. 

El sistema AWESAM de Stromboli, que detectó con un 95 % de precisión más de 

290.000 eventos, refuerza la pertinencia de los enfoques automatizados (Fenner et al., 

2022). 

 

2.13 Validación y aseguramiento de calidad 

La evaluación se realizará mediante validación cruzada y conjuntos de prueba inde-

pendientes, empleando métricas como accuracy, recall, F1-score y AUC-ROC. Para aplica-
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ciones críticas, se dará prioridad a la reducción de falsos positivos, ya que una alerta inne-

cesaria puede generar desconfianza en la población y en las autoridades de riesgo (Cór-

doba et al., 2025). 

2.14 Implementación y escalabilidad 

El modelo seleccionado se integrará en un prototipo de sistema de alerta temprana, 

capaz de procesar datos en tiempo real. Su escalabilidad permitirá extrapolarlo a otros vol-

canes activos de la región andina, aprovechando arquitecturas cloud y técnicas de transfe-

rencia de aprendizaje. La experiencia exitosa de implementación operativa en volcanes 

como Axial Seamount demuestra la viabilidad de estos sistemas (Wang et al., 2024). En 

este sentido, la reproducibilidad se garantiza con documentación abierta, control de versio-

nes y almacenamiento transparente de datos y código, siguiendo principios de calidad esta-

blecidos en CRISP-ML(Q). 
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CAPITULO 3 

3. DESARROLLO DEL TRABAJO 

3.1  Proceso ETL 
Se inicia con un proceso de ETL en donde el objetivo es unificar, estandarizar y lim-

piar varios catálogos de sismicidad histórica para generar un proxy homogéneo de magnitu-

des Mw.  Las librerías utilizadas durante esta fase son pandas, numpy, matplotlib, seaborn, 

sys y os. 

Se inicia con la carga de los 3 catálogos distintos para transformarlos en un formato 

común. En el catálogo 1901-2009 se seleccionaron las columnas relevantes y se les asignó 

un nombre estándar, se realiza además una conversión de fecha a formato datetime. En el 

catálogo 2010_2011 se define el tipo_magnitud, se renombre las variables preincipales y se 

añade una etiqueta de origen. Finalmente, el catálogo 2012-2025 selecciona solo las colum-

nas existentes, se convirte la fecha y se estandarizan los nombres.  

Como siguiente paso se genera una magnitud homogénea Mx_Proxy en escala en 

donde se vectoriza todas las magnitudes para convertirlas en aproximaciones a Mw. La con-

versión utilizada fue Mw = [(0.85 x mb) + 1.03] 

Esta conversión se caracteriza por ser empírica, no depende de otras características 

como región, profundidad o tipo de evento; y además se puede introducir incertidumbre para 

magnitudes grandes o pequeñas.   

Posteriormente, se inicia un proceso de limpieza en donde se elimina filas donde fal-

ten datos críticos (Fecha_UTC, Latitud, Longitud), así como también se elimina duplicados 

de sismos. Para ello, utiliza un enfoque de redondeo de coordenadas (4 decimales) antes 

de aplicar drop_duplicates basado en la terna (Fecha, Latitud, Longitud) para identificar y 

retener solo el primer registro del evento. 
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Carga Final: El catálogo final limpio y consolidado se exporta a un archivo CSV 

(1_Sismos_Consolidados.csv).  

 
ANÁLISIS EDA 

Esta fase es de vital importancia ya que el análisis exploratorio de los datos permite 

realizar una visión general de la data además de corregir particularidades como valores nu-

los, duplicados, datos redundantes, sesgos, entre otros. Un análisis completo incluye esta-

dística descriptiva, distribuciones y correlaciones entre variables. En este proyecto se ha 

realizado un análisis completo con la función ydata_profiling  

Visualización en Notebook: El método perfil.to_notebook_iframe() despliega el re-

porte interactivo dentro del entorno del notebook (Colab o Jupyter), facilitando la validación 

inmediata del dataset post-ETL. 

Figura 2 

Reporte interactivo con la funcion ydata_profiling 

 

Nota: El reporte muestra varias pestañas en la esquina superior derecha con el objetivo de 

que el usuario interactúe con la data, se recomienda visualizarlo desde el Notebook.  

Esta etapa es crítica para validar que el proceso ETL previo no introdujo artefactos y 

que el dataset está listo para el Feature Engineering y el modelado. 
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3.2 Clasificación Peligrosidad 

Se ha definido la clasificación de la actividad sísmica en dos categorías: “Potencial 

Peligro” y “Sin Peligro”. De acuerdo con la literatura un sismo representa una amenaza 

cuando se encuentran cerca al volcán y cuando son de magnitud superior a 6. (Volcano 

Foundation, 2021) 

Por lo tanto, es importante definir cuáles son los sismos que se encuentran mayor-

mente relacionados con la actividad volcánica del Cotopaxi. Para ello se define las coorde-

nadas geográficas del volcán (Ubicación focal) y se utiliza una función de distancia con la 

fórmula Haversine Vectorizada para determinar la distancia geodésica entre cada epicentro 

del evento sísmico y las coordenadas del volcán, esta distancia es calculada en kilómetros.   

Un sismo se marca como "Potencial Peligro" si cumple alguno de los siguientes cri-

terios: 

1. Amenaza Local Crítica: Sismos cercanos de radio corto que pueden ocurrir en el edi-

ficio volcánico o fallas aledañas  

2. Amenaza Regional Fuerte: Sismos de radio medio, son sismos fuertes que sacuden 

la estructura. 

3. Gran Evento Lejano: Sismos importantes de subducción de radio amplio. 

Tabla 2 

Criterios para clasificación de categoría  

Tipo Distancia Geodésica Magnitud  

Amenaza Local Crítica Menor a 30 km Mayor a 4.0 
Amenaza Regional Fuerte Menor a 100 km Mayor a 5.5 

Gran Evento Lejano 1 Menor a 250 km Mayor a 7.0 
Gran Evento Lejano 2 Cualquiera Mayor a 8 
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Basados en la lógica descrita anteriormente, se procedió con la generación de una 

columna en donde se aplica la función de clasificación sobre el DataFrame (df.apply(..., 

axis=1)) a la cual se la llamó: Clasificacion_Amenaza. 

Para validar el proceso anterior se imprimió el conteo de valores y un ejemplo de los 

eventos clasificados como "Potencial Peligro"  

Figura 3 

Validación de criterios de peligro 

 

Nota: Se muestran aleatoriamente 5 casos de ejemplo.  

 

El DataFrame se guarda en un archivo llamado 2_Sismos_Clasificados.csv inclu-

yendo a la nueva columna de riesgo. 

Para la visualización geográfica se utilizó la librería FOLIUM el cual permite generar 

un mapa interactivo en donde se graficaron los puntos sísmicos que representan una ame-

naza para la actividad volcánica del Cotopaxi.  

3.3 Balanceo de Clases 

Se vuelve necesario realizar un balanceo de las clases ya que se identifica que 

existe un sesgo marcado en la distribución total de los eventos pues son mucho menor los 

sismos de categoría “Potencial Peligro” en relación a los eventos clasificados como “Sin Pe-

ligro”, por lo tanto, se generan datos sintéticos que son geográficamente plausibles y se 
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añade además ruido a las características. Este paso es necesario ya que permite evitar el 

sobreajuste y soluciona el problema de desbalance de clases.  

Para la generación de datos sintéticos se utilizan las librerías geopandas y shapely, 

los cuales permiten crear una función para extraer las fallas activas del archivo (gem_ac-

tive_faults.geojson). Posteriormente, se proyecta las geometrías a un sistema de coordena-

das planas (UTM 17S) para calcular distancias precisas en metros y finalmente se filtra las 

fallas que se encuentran en un radio de 100km alrededor del Cotopaxi, asegurando que los 

sismos sintéticos se generen en ubicaciones geológicamente relevantes. 

El sismo sintético se ubica aleatoriamente sobre una línea de falla (usando linea_fa-

lla.interpolate). Se añade ruido gaussiano (sigma=0.015) a las coordenadas para simular la 

dispersión real de los epicentros alrededor del plano de falla (zona de ruptura). 

 

A pesar de que sea datos genéricos, es importante que estos sean de alto valor y 

buena calidad para el estudio, por lo tanto, se esquematiza el siguiente flujo a seguir: 

 

Ubicación del Sismo

Asigna el epicentro a 
una falla cercana

Magnitud Inteligente

La magnitud Mw se 
fuerza a cumplir el 
umbral mínimo de 
Potencial Peligro.

Se añade una variación 
aleatoria (exponencial) 
para asegurar la 
etiqueta correcta

Validación Estricta

El sismo sintético solo 
se acepta si cumple 
exactamente la regla de 
clasificación de la Tabla 
2
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Una vez que ya se han generado los datos sintéticos, es necesario consolidarlos con 

los datos reales, para esto se llama a la función de generación solo para la clase minoritaria 

y se concatenan los datos sintéticos con los datos históricos (df_final_balanceado). 

Como resultado se obtiene un dataset balanceado y se guarda en 3_Sismos_Balan-

ceado.csv. 

Como fase final de este proceso se identifica la necesidad de introducir ruido para 

evitar el sobreajuste, esta sección es crítica para preparar el dataset para Machine Lear-

ning. 

Ruido en Características (Mw_Noise, Dist_Noise, Prof_Noise): Se añade ruido gaus-

siano a las variables predictoras (magnitud, distancia, profundidad) para simular la incerti-

dumbre de la medición instrumental (error de localización, error de magnitud), haciendo que 

el modelo aprenda la regla subyacente y no memorice fronteras perfectas. 

Ruido en Etiquetas (Label Noise): Se introduce un error intencional (5% de etiquetas 

invertidas) en la columna Clasificacion_Amenaza, esto obliga al modelo de ML a ser robusto 

y tolerante al error, impidiendo que el Accuracy llegue al 100% (lo cual indicaría un fallo en 

la validación). 

El dataset resultante (df_model) es la versión final y más robusta, lista para el entre-

namiento de un clasificador que debe aprender la frontera de decisión ruidosa entre "Poten-

cial Peligro" y "Sin Peligro". 

 

3.4 Entrenamiento 

El dataset se encuentra listo para ser entrenado por lo que se preparó el ambiente 

de Python importando todas librerías necesarias para los 4 modelos a ser estudiados: SVM, 

MLP, RANDOM FOREST, XGBOOST.  
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Es necesario que se unifique las mismas condiciones para evaluar todos los mode-

los con el objetivo de poder compararlos de manera objetiva, por lo tanto, se realizó:  

Selección de Features  

Se define explícitamente el vector de características (X) utilizando las variables rui-

dosas y ubicación Prof_Noise, Mw_Noise, Dist_Noise, Latitud, y Longitud. 

Codificación de la Variable Objetivo 

Se utiliza LabelEncoder para convertir las etiquetas de texto (Clasificacion_Ame-

naza) a valores numéricos (0 y 1), un requisito para la mayoría de los modelos de ML. Se 

almacenan los nombres de las clases (class_names). 

División Estratificada 

Función: train_test_split. Se utiliza stratify= y_encoded para garantizar que el conjunto de 

entrenamiento y el de prueba contengan la misma proporción de eventos de "Potencial Peli-

gro" [Image of Stratified sampling illustration] (Clase 1), lo cual es crucial para una evalua-

ción imparcial del riesgo. 

Escalado de Características 

Función: StandardScaler. Se aplica escalado a todos los conjuntos (ajustado 

en X_train_scaled), ya que es un requisito de rendimiento obligatorio para modelos basados 

en la distancia (SVM) y en gradientes (MLP). Los modelos basados en árboles (RF, 

XGBoost) también se benefician de la uniformidad. 

Finalmente, se consideran funciones adicionales que permitirán optimizar los entre-

namientos de los modelos: 

Función mostrar_top5_hiperparametros 

Procesa los resultados de GridSearchCV (grid_search.cv_results_), muestra 

las cinco mejores combinaciones de hiperparámetros ordenadas por 
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el mean_test_score (promedio del accuracy en la validación cruzada), esto permite al ana-

lista comprender la configuración de los hiperparámetros que ofrece el mejor rendimiento y 

la variabilidad de ese rendimiento (std_test_score). 

Función graficar_metricas_estandar 

Genera una figura con tres subtramas para la evaluación estándar del clasificador: 

Matriz de Confusión: Visualiza los aciertos y errores (Falsos Negativos y Falsos Positivos) 

en formato heatmap de Seaborn. [Image of Confusion Matrix heatmap example] 

Curva ROC: Muestra el trade-off entre TPR (Verdaderos Positivos) y FPR (Falsos Positi-

vos). El valor AUC (Area Under the Curve) se muestra como una métrica de la capacidad de 

discriminación. 

Curva Precision-Recall: Esencial en problemas con desbalance de clases (como este de 

riesgo sísmico). Evalúa la capacidad del modelo para predecir la clase positiva con alta Pre-

cision a diferentes umbrales de Recall. 

Función graficar_historia_entrenamiento 

Diagnostica el comportamiento del modelo durante el entrenamiento, diferenciando 

entre modelos basados en Épocas y modelos estáticos: 

Modelos Iterativos (MLP, XGBoost): Grafica las curvas de Pérdida (Loss) y/o Accuracy en 

los conjuntos de entrenamiento y validación a través de las Épocas (o iteraciones 

de boosting). Esto es vital para detectar el punto exacto de sobreajuste.  

Modelos Estáticos (RF, SVM): Genera una Curva de Aprendizaje utilizando learning_curve. 

Esta curva muestra si el modelo está sufriendo de bajo sesgo/alta varianza (sobreajuste) o 

si la adición de más datos mejoraría significativamente el rendimiento. 

 

 



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS  30 
 
 
 

 

 

QUITO – ECUADOR | 2024 

3.4.1 Random Forest 

Se inicia este modelo con la búsqueda de hiperparámetros mediante la función 

GridSearch, para ello se define el espacio de búsqueda que está compuesto por los compo-

nentes detallados en la tabla a continuación: 

Tabla 3  

Componentes de Hiperparámetros Random Forest 

Componente Descripción 

n_estimators Número de árboles 
max_depth Profundidad máxima de los árboles 

min_samples_split Nro mínimo de muestras para dividir un nodo 
class_weigth Opción para equilibrar los pesos de las clases 

 
 

La función GridSearch utilizó una validación cruzada cv=3, el objetivo es encontrar la 

mejor combinación que maximice el accuracy. Una vez que se ha encontrado la mejor com-

binación de hiperparámetros se entrena el modelo para la clasificación final.  

 

Se procede a medir el rendimiento del modelo generando un Reporte de Clasifica-

ción en donde constan las métricas Precision, Recall y F-1 Score. Adicionalmente, se ge-

neró la Curva ROC y la Curva de Aprendizaje, esta última es necesaria ya que permite de-

terminar visualmente si existe overfitting o underfitting.   

Finalmente, el mejor modelo es almacenado y posteriormente se graba en un diccio-

nario para la comparativa final.  

 

3.5.2 XGBoost 

Se inicializa este modelo con la optimización de los hiperparámetros mediante Grid 

Search y se realiza un diagnóstico detallado del entrenamiento utilizando las curvas de histo-

ria (pérdida/error por epoch). 
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Se define el parámetro de búsqueda con los componentes detallados en la tabla a 

continuación:  

Tabla 4  

Componentes de Hiperparámetros XGBoost 

Componente Descripción 

n_estimators Número de iteraciones (boosting) 
max_depth Profundidad del árbol 

learning_rate Velocidad de aprendizaje del algoritmo 
subsample Fracción de datos a muestrear para cada árbol 

 

En este algoritmo es necesario realizar el re-entrenamiento con Curvas de Historia 

para poder graficar la evolución del rendimiento (curva de pérdida), el mejor modelo 

(best_xgb) se re-entrena utilizando el parámetro eval_set. 

Eval_set: Permite a XGBoost calcular la logloss (pérdida) y el error (1 - accuracy) en 

tiempo real tanto en el conjunto de entrenamiento como en el de prueba en 

cada epoch de boosting. 

Con este modelo se puede medir el rendimiento con el reporte de Clasificación, ma-

triz de confusión, Curva ROC, Curva de pérdida, Curva de Accuracy, por lo que se procede 

a generar estas gráficas. El mejor modelo es almacenado para la comparativa final. 

 
3.5.3 MLP 

Al igual que los dos modelos anteriores se inicia con la optimización de la arquitec-

tura y los hiperparámetros mediante Grid Search, con esto se busca la configuración que 

mejor capture las fronteras de decisión no lineales del riesgo sísmico. 

Los parámetros que se deben considerar en este modelo son hidden_layer_sizes el 

cual permite la exploración de arquitecturas de una capa (50, 100) y dos capas (50, 50); ac-

tivation que son funciones de activación, entre las más comunes se tiene relu y tanh, por 
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otro lado, está Alpha que se definió con un término de regularización L2 y finalmente lear-

ning_rate_init que corresponde a la tasa de aprendizaje inicial. 

 

El entrenamiento se realiza con early_stopping=True, lo que utiliza una fracción del 

conjunto de entrenamiento como validación interna y detiene el proceso si el rendimiento 

deja de mejorar, previniendo el sobreajuste y ahorrando tiempo. 

A diferencia de XGBoost o Random Forest, el diagnóstico de la MLP se centra en la evolu-

ción del entrenamiento, por un lado se tiene la Curva de Pérdida (best_mlp.loss_curve_) 

aquí se muestra cómo disminuye el error (loss) en el conjunto de entrenamiento a lo largo 

de las épocas. Una caída constante es señal de un buen proceso de optimización. Por otro 

lado, se tiene la Curva de Validación (best_mlp.validation_scores_) en este caso se muestra 

el score (precisión interna) del modelo en el conjunto de validación interno utilizado para 

el early stopping. Es clave para verificar que el modelo no se haya sobreajustado antes de 

finalizar el entrenamiento. 

 

3.5.4 SVM 

Se optimizó el clasificador SVM mediante Grid Search para encontrar el hiperplano 

óptimo que separe las clases de riesgo en el espacio de características escalado. Además, 

se consideran también los siguientes parámetros: C (Parámetro de Regularización) el cual 

controla el trade-off entre la penalización por error de clasificación y la simplicidad de la 

frontera; la gamma por su parte define la influencia de un solo ejemplo de entrenamiento 

(esencial para el kernel RBF) y finalmente el kernel en donde se realizan pruebas con los 

kernels RBF (Radial Basis Function), que maneja fronteras no lineales, y poly (Polinomial). 

Se usa el modelo base SVC(probability=True) para asegurar que el modelo pueda 

devolver las probabilidades, lo cual es necesario para trazar la Curva ROC/AUC. El resul-

tado del modelo son las predicciones binarias (y_pred_svm) y las probabilidades 

(y_proba_svm). 
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Finalmente, se realizó una comparativa de todos los modelos para identificar el clasi-

ficador de riesgo sísmico con el mejor Accuracy y guardarlo junto con los artefactos de pre-

procesamiento necesarios para su despliegue.  

Se creó un diccionario (artifact) que empaqueta todos los componentes necesarios 

para usar el modelo en un entorno nuevo, asegurando la coherencia entre el entrenamiento 

y la inferencia. El artefacto completo se guardó en un archivo final (best_model_[Nombre del 

Modelo].pkl). 

El sistema desarrollado corresponde a una aplicación de escritorio orientada al análi-

sis y clasificación del riesgo sísmico en el territorio ecuatoriano, con énfasis en la evaluación 

de eventos que podrían representar un potencial peligro para la actividad volcánica, especí-

ficamente en el entorno del volcán Cotopaxi. La herramienta integra técnicas de aprendizaje 

automático con una interfaz gráfica intuitiva, facilitando la interacción del usuario con mode-

los predictivos avanzados sin requerir conocimientos técnicos especializados. 
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CAPITULO 4 

4. ANÁLISIS DE RESULTADOS  

4.1 Resultados del Pre procesamiento  
 

A continuación, se muestra los resultados por cada etapa del trabajo desarrollado.   

En la etapa ETL fue posible la unificación de los tres catálogos sísmicos de diferen-

tes periodos de tiempo, se considera una integración exitosa ya que a pesar de que cada 

catálogo tenía diferente formato, columna distintas y tipos de magnitudes diferentes, se lo-

gró estandarizar a una sola fuente de datos sólida y robusta.  

Por otro lado, considerando que la variable objetivo debía ser homogenizada debido 

al diferente formato y origen de esta, este cálculo a Mw permitió comparar eventos sísmicos 

de diferentes épocas y evitar el sesgo por el uso de escalas incompatibles. 

Figura 4 

Distribución de tipos de magnitud  

  

Nota: Se muestran todas las magnitudes originales de todos los catálogos.  
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Se debe considerar además que Mw no es una magnitud real como tal sino mas 

bien una aproximación estadística válida para análisis globales  

Como se puede ver en la gráfica, la conversión no distorsiona significativamente la 

distribución de las magnitudes, ya que existe una alta similitud entre la variable original y la 

ajustada.  Así mismo se observa cómo se conservan los patrones como por ejemplo la 

forma de la curva, la asimetría y la cola. No se introducen artefactos visibles.  

La comparación de las gráficas con las magnitudes originales y homogenizadas per-

mite entender que la aproximación Mw es válida para este tipo de estudios temporales.  

 

Figura 5 

Distribución de las magnitudes Mw  

 

Nota: Distribución de las magnitudes una vez que se ha aplicado la conversión 
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Figura 6 

Frecuencia de magnitudes  

 

Nota: Se muestra la distribución de las magnitudes originales.  

Por último, aquí en el ETL se realizó el primer proceso de limpieza de los datos en 

donde se realizó una limpieza controlada de los duplicados. El riesgo que se generó en este 

proceso es que se eliminen por error dos eventos sísmicos que se encuentren cercanos en 

tiempo y espacio; sin embargo, la literatura nos indica que este proceso es correcto debido 

a que las mediciones son históricas, para el caso de enjambres sísmicos se debe realizar 

otra validación pues esta no es la más adecuada.   

El resultado final del ETL fue un catálogo sísmico confiable para continuar con el 

análisis exploratorio.  
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Figura 7 

Resumen proceso ETL 

 

Nota: Imagen del resultado obtenido en el Notebook. 

Durante el proceso de análisis de la calidad de los datos, se realizó la clasificación 

de los eventos en dos categorías: “Potencial Peligro” y “Sin peligro”, esta clasificación se 

basó en criterios físicos de la data recolectada como distancia, magnitud y profundidad; es 

decir que no es un modelo de aprendizaje automático sino mas bien está basado en reglas 

geofísicas.  

El volcán Cotopaxi fue modelado como un punto de coordenadas a partir del cual se 

generaron las distancias geodésicas y en base a la Tabla 2 los eventos fueron clasificados. 

El resultado fue el esperado: 

Figura 8 

Resultado clasificación binaria con eventos reales 

 

En condiciones geofísicas este resultado tiene sentido ya que siendo conscientes 

con la realidad sísmica la gran mayoría de los sismos no afectan la actividad del sistema 

volcánico. Sin embargo, con este resultado se pudo observar que para el entrenamiento con 

Machine Learning si representa un problema pues evidencia un desbalance de clases.  
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La limitación de esta clasificación binaria es que únicamente los divide en dos gru-

pos, pero no los diferencia por niveles de peligro ya que dentro de las clasificaciones inicia-

les también pudiera haber subclasificaciones.  

A continuación, se graficaron los eventos considerados como “Potencial Peligro” ya 

que esto permite visualizar la amenaza real que podrían afectar la estabilidad de la actividad 

volcánica del Cotopaxi y esto a su vez nos deja ver porque este volcán es el más vigilado a 

nivel nacional y de gran interés a nivel internacional. Este gráfico sería ideal como un filtro 

inicial de eventos relevantes para estudios futuros relacionados con la sismología del vol-

cán.  

Figura 9 

Clasificación de sismos considerados de Potencial Peligro 

 

Nota: El radio del marcador corresponde a la magnitud del sismo, el color rojo es para los 

eventos clasificados como potencial peligro y el pin plomo marca la ubicación del volcán Co-

topaxi.  
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Este análisis permitió clasificar sismos que, por su ubicación y energía liberada, re-

presentan una amenaza directa a la estabilidad del sistema volcánico a Cotopaxi. 

Posteriormente, al haber evidenciado que existe un desbalance de clases se generó 

un proceso data augmentation para generar datos sintéticos que sean físicamente coheren-

tes y apegados a las condiciones de los datos reales. Con este método se resolvió el desba-

lance de clases para poder obtener un dataset listo para el entrenamiento y que no sobre-

ajuste a un accuracy de 1, lo cual es común cuando no existen suficientes datos para entre-

nar en una de las clases.  

Figura 10 

Resultado del balanceo de clases 

 

 

Se valida este proceso ya que el objetivo principal no es el análisis sísmico como tal 

sino es construir un dataset que sea entrenable y a su vez sea científicamente defendible.  

Para validar geográficamente que son datos sintéticos plausibles y de calidad, se 

procedió con la ilustración de los sismos para hacer una comparativa con los datos reales 

que se muestran en la FIGURA 9 
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Figura 11 

Sismos sintéticos generados como Potencial Peligro 

 

Nota: Los sismos sintéticos se generaron cerca de fallas geológicas en un perímetro de 

100km alrededor del Volcán Cotopaxi. 

Se utilizaron los mismos criterios de validación de la categoría “Potencial Peligro”, 

garantizando así la plausibilidad física de los nuevos datos.  

Se puede evidenciar que se mantiene la misma lógica que la clasificación de even-

tos reales puesto que la ubicación geográfica de los puntos sintéticos encierra áreas muy 

similares a los sismos reales y debido a que la clase desbalanceada era la de “Potencial Pe-

ligro”, se evidencia que la FIGURA 11 es mucho más poblada pues claramente ese es el 

objetivo en este proceso.  

Y de igual manera que los datos reales tienen ruido y errores, es necesario también 

simular los mismos “errores” en los datos sintéticos por lo que es agregado el ruido en las 
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variables continuas, este paso introduce zonas grises de igual manera que existe en los 

eventos reales. La generación de ruido es clave y obligatorio hasta cierto punto en la gene-

ración de datos sintéticos pues de esta manera se evita un overfitting y un accuracy artificial 

de 1.  Por lo tanto, con esto se garantiza que la data sintética respete la tectónica la real, in-

corpora incertidumbre y evita el aprendizaje trivial.     

La limitación de esta técnica es que no hay un enfoque sobre el estado dinámico del 

volcán, el ruido sigue distribuciones simples y no existe un mecanismo focal, sin embargo, 

como el objetivo de este trabajo es la aplicación de algoritmos de machine learning, el trata-

miento es el adecuado, en otros casos de estudio se puede mitigar la debilidad de la activi-

dad sísmica teórica que al momento es mínima.  

Finalmente, se prepararon los datos para el entrenamiento. El dataset preprocesado 

se encuentra listo para su división en entrenamiento 80% y prueba 20%; así como también 

se define las variables características y la variable objetivo, es importante considerar que se 

utilizan las variables “ruidosas”, para evitar que el modelo aprenda reglas “perfectas”.  

 

4.2 Resultados del entrenamiento de los modelos 
 

El primer modelo de entrenamiento a ser comparado es Random Forest cuyo desa-

rrollo y evaluación se estructura de tal forma que sea rigurosa y sistemática. En primer lu-

gar, se realiza una búsqueda profunda de hiperparámetros, el cual tiene por objetivo identifi-

car la configuración óptima del modelo para maximizar su desempeño y al mismo tiempo 

evitar el sobreajuste; este proceso se complemente con la aplicación de validación cruzada, 

lo que a su vez permite evaluar la capacidad de generalización del modelo sobre diferentes 

subconjuntos de datos y de esta manera garantizar la estabilidad de los resultados. De igual 

manera, se cuantifica el desempeño del modelo a través de métricas objetivas, permitiendo 

así una base para el análisis y toma de decisiones. Para finalizar, el proceso fue reforzado 
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con la generación de visualizaciones que facilitan la interpretación y el almacenamiento del 

mejor modelo obtenido para su posterior uso.  

La búsqueda de los mejores hiperparámetros se filtró con la métrica de optimización 

accuracy y con una validación cruzada de 3-fold. El resultado es la impresión del top 5 de 

mejores combinaciones de hiperparámetros, esto es útil para analizar la sensibilidad y ade-

más de otorgar transparencia metodológica.  

Figura 12 

Mejores hiperparametros para random forest 

 

Nota: Se muestran únicamente las 5 combinaciones de hiperparámetros que obtuvieron me-

jor promedio en CV. 

Se puede ver que existe una clara tendencia en cada uno de los hiperparámetros:  'n_esti-

mators': 100, 'max_depth': None, 'min_samples_split': 5, 'class_weight': None 

El modelo fue entrenado y se obtuvieron las siguientes métricas de rendimiento: 
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Figura 13 

Reporte de Clasificación y Matriz de Confusión de Random Forest 

 

 

Se observa que el accuracy del modelo alcanzó un valor de 0.95 lo cual, dentro del 

contexto de este trabajo, se interpreta como una métrica global aceptable del modelo en ge-

neral.  

Por otro lado, la matriz de confusión nos indica que los eventos considerados en la 

categoría “Sin Peligro” se predicen bastante bien ya que únicamente 5 muestras son falsos 

positivos; sin embargo la categoría “Potencial Peligro” muestra bastante ambigüedad ya que 

entre los casos predichos y los reales hay una tendencia el 50/50, esto se puede ver en el 

Recall de “Potencial Peligro” donde se obtuvo un puntaje de 0.51 indicando que aproxima-

damente la mitad de los eventos críticos no fueron detectados correctamente, esto puede 

deberse a una frontera de decisión conservadora, posiblemente por la incorporación de 
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ruido instrumental de etiquetado, lo cual fue diseñado para evitar el sobreajuste y simular 

condiciones reales de incertidumbre.  

Por otro lado, si bien el desempeño global del modelo es aceptable con un 0.95, la 

baja sensibilidad con relación a los eventos considerados potencialmente peligrosos, limita 

a que pueda ser un modelo utilizado como sistema de alerta temprano ya que en la mitad 

de los casos los riesgos reales no van a ser detectados ni alertados. Sin embargo, a pesar 

de llegar a esta conclusión, estos resultados llegan a tener sentido hasta cierto punto ya que 

la amenaza de la actividad volcánica no depende ni única ni directamente de la sismología, 

sino también de condiciones geológicas y meteorológicas adicionales. 

Otra métrica de rendimiento del modelo es la curva ROC, esta curva permite medir 

la capacidad de la discriminación del modelo, es decir que tan bien separa los eventos en 

promedio “Potencial Peligro” de los “Sin Peligro” para todos los umbrales.   

Figura 14 

Curva ROC- Random Forest 

 

Nota: AUC siglas para Area Under Curve 

Para este modelo se obtuvo un AUC de 0.77 este valor se puede interpretar como 

una probabilidad en donde si se selecciona un evento al azar de “Sin Peligro” y “Potencial 
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Peligro”, el modelo le asignará una probabilidad mayor al evento peligroso el 77% de las ve-

ces.  

En una escala de interpretación global, un AUC en una escala entre 0.7 y 0.8 es 

bueno-aceptable, el AUC bueno-ideal habría sido entre 0.8 y 0.9. Este resultado nos indica 

que el modelo tiene una buena capacidad de discriminación de clases y captura patrones 

relevantes en los datos, sin embargo, la selección final limita la sensibilidad frente a la clase 

crítica.  

La discrepancia entre un AUC bueno y un recall reducido, se puede interpretar como 

una frontera difusa de decisión y claramente existe una superposición entre clases, condi-

ciones que se ajustan a escenarios realistas sísmicos.  

La curva a continuación, dentro de este contexto, responde a la pregunta ¿Qué tan 

confiables son las alertas a lo largo de todos los umbrales, cuando el modelo decide emitir 

una alerta?  

Figura 15 

Curva Precision-Recall Random Forest 

 

Nota: AP siglas para Average Precision  
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El valor obtenido de 0.95 se puede interpretar como el acierto en un 95% de las ve-

ces en promedio cuando el modelo se clasifica como “Potencial Peligro”. 

Esta interpretación podría parecer contradictoria con el Recall de 0.51 discutido an-

teriormente, sin embargo, no lo es ya que esta métrica se enfoca únicamente en las pocas 

alertas que emite el modelo, pero de estas pocas alertas se acierta casi siempre, ósea un 

95%.  

A nivel de la interpretación en el contexto sísmico quiere decir que, si el modelo 

marca un sismo como potencialmente peligroso, tiene una probabilidad casi certera que si lo 

es; sin embargo, en el contexto global hay muchos eventos peligrosos que no están siendo 

detectados.  

En un contexto geopolítico, es preferible tener un AP alto con un recall ajustable, a 

tener un recall bajo con muchas falsas alarmas, ya que en este contexto implicaría una des-

estabilización a nivel económico y social el generar una alarma innecesaria.  

Finalmente, para este modelo se generó una gráfica de curva de aprendizaje 

Figura 16 

Curva de Aprendizaje-Random Forest 

 

Nota: Este algoritmo no entrena por épocas.  
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La curva de entrenamiento aproximadamente igual a 1 implica que el modelo 

aprende muy bien los datos de entrenamiento, esto muestra que puede memorizar patrones 

complejos. Por otro lado, la curva de validación cruzada que se mantiene en 0.95 aproxima-

damente, indica una buena generalización. La brecha entre ambas curvas es pequeña lo 

cual es un resultado positivo.   

En base a todos los resultados obtenidos de Random Forest, los valores no son con-

tradictorios sino complementarios, el modelo aprende bien, pero decide con cautela.    

 

El segundo modelo de entrenamiento a ser comparado es XGBoost, el resultado de 

este modelo se puede resumir a los siguientes puntos: 

 Búsqueda sistemática de hiperparámetros, 

 Re entrenamiento registrando métricas por épocas 

 Métricas cuantitativas: Precision, Recall, AUC, etc.  

 Almacenamiento del mejor modelo.  

Se obtuvo los siguientes resultados para la combinación de mejores hiperparámetros: 

 

Figura 17 

Mejores hiperparametros de xgboost 

 

Se puede observar que se marca una clara tendencia: 

n_estimators: 200, max_depth: 3, learning_rate: 0.1,subsample: 1 
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Se almacena el mejor conjunto de hiperparámetros para entrenar el modelo, de igual 

manera se lo filtra por el mejor promedio obtenido.  

La exploración del Grid en XGBoost se destaca por árboles simples con aprendizaje 

lento versus árboles complejos con aprendizaje rápido.  

En este algoritmo se realiza un re entrenamiento lo cual permite ver el sobreajuste y 

analizar la estabilidad del modelo.  

Se muestra a continuación las métricas del rendimiento general del modelo: 

Figura 18 

Reporte de Clasificación y Matriz de Confusión de XGBoost 

 

 

Del reporte de clasificación se puede observar que se obtuvo un puntaje global del 

rendimiento del modelo con un accuracy de 0.95 
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Por otro lado, la matriz de confusión nos indica que los eventos considerados en la 

categoría “Sin Peligro” se predicen bastante bien ya que únicamente 6 muestras son falsos 

positivos; sin embargo, la categoría “Potencial Peligro”, al igual que el modelo anterior, 

muestra bastante ambigüedad ya que 151 casos que se predijeron como “Sin Peligro” resul-

taron si siendo una amenaza, y de forma paralela casi el mismo número de eventos resulta-

ron siendo eventos reales potencialmente peligrosos. La tendencia es que 1 de cada 2 

eventos peligrosos no son discriminados correctamente esto se puede ver en el Recall de 

“Potencial Peligro” donde se obtuvo un puntaje de 0.51 esto puede deberse a una frontera 

de decisión conservadora, posiblemente por la incorporación de ruido.  

Se puede observar además una ligera mejora que Random Forest (RF) en relación a 

los eventos peligrosos predichos correctamente, ya que en RF fueron 158 eventos y con 

XGBoost son 159 eventos.  

Por otro lado, se mide también al modelo con la Curva ROC 

Figura 19 

Curva ROC-XGBoost 

 

Nota: AUC siglas para Area Under Curve 
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Se obtuvo un resultado similar a RF con un AUC de 0.76 que se interpreta como una 

probabilidad del 76% de que el modelo asigne mayormente una probabilidad a un sismo po-

tencialmente peligro que a uno que no sea peligroso, eligiendo de manera aleatoria cual-

quier evento sísmico.  El 0.76 es una métrica buena sin embargo no sobresaliente y es una 

oportunidad de mejora. 

En el contexto de las geociencias es un valor esperado un AUC que se encuentre 

entre 0.7 y 0.8; sin embargo, con datos sintéticos se esperaría que esta métrica sea al me-

nos 0.8, el ruido añadido intencionalmente está cumpliendo su función y el problema ya no 

es trivial.  

A continuación, se muestra la gráfica Precision-Recall   

Figura 20 

Curva Precision-Recall XGBoost 

 

Nota: AP siglas para Average Precision  

 

Se obtiene el mismo resultado de AP que en Random Forest, la interpretación es la misma 

ya que esta métrica hace referencia únicamente a los eventos peligrosos y sus aciertos, es 
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decir que cuando se generen alarmas de sismos potencialmente peligrosos, con casi toda 

seguridad los eventos si serán peligrosos.  

A continuación, se muestra la gráfica de pérdida, esta gráfica es una de las más im-

portantes en el algoritmo de XGBoost ya que mide que tan buenas son las probabilidades 

más que la clase final, sin embargo, penaliza fuertemente las predicciones muy seguras 

pero que terminan siendo incorrectas.    

Figura 21 

Curva de Pérdida (Loss)-XGBoost 

 

Se puede observar que la curva de pérdida muestra una disminución progresiva de 

ambas curvas al inicio, en la fase intermedia se marca una distancia entre la curva de entre-

namiento y la curva de validación, y en la etapa final la curva de validación se aplana mien-

tras que la curva de entrenamiento sigue bajando. Esta fase final es la deseable o esperada 

ya que significa que el límite de la información útil ha sido alcanzado.  

En este contexto, la pérdida no llega a cero ya que en un sistema volcánica no se 

encuentra determinada una frontera perfecta y clara entre el peligro y no peligro, por lo 

tanto, el modelo está mostrando la realidad.  
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El modelo está evitando el sobreajuste y tratando de generalizar adecuadamente a 

las clases.  

A continuación, se muestra la siguiente métrica que es la Curva de Accuracy, esta 

curva tiene una interpretación de mucho cuidado ya que el Accuracy no es la métrica princi-

pal del algoritmo, sin embargo, si aporta información complementaria.  

Figura 22 

Curva de Accuracy- XGBoost 

 

El resultado esperado de esta gráfica es que ambas curvan suban rápidamente y se 

estabilicen ambas horizontalmente y mantengan una brecha cercana entra las dos curvas. 

Si ambas curvas se encuentran en un accuracy entre 0.95 y 0.99 se puede interpre-

tar como que el modelo aprende bien, pero no memoriza completamente los datos.  

Adicionalmente, se observa que las curvan se mantienen altas y estables sin mayo-

res fluctuaciones, lo que indica que es un resultado esperado y correcto.  

Es importante mencionar que un accuracy alto, en este contexto, no significa que 

sea un buen detector de amenaza de eventos potencialmente peligrosos, mas bien la inter-

pretación correcta sería que el modelo es bueno detectando casos “fáciles” es decir los 



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS  53 
 
 
 

 

 

QUITO – ECUADOR | 2024 

eventos “Sin Peligro”, esto ayuda a que el accuracy suba, sin embargo, en los eventos críti-

cos tiene baja sensibilidad para discriminar este tipo de eventos.  

Por lo tanto, se debe considerar que el accuracy sirve para medir la estabilidad glo-

bal del modelo, pero no debe ser utilizado como referencia de un umbral en específico, es-

pecialmente en este caso no debe interpretarse como métrica de capacidad de detección de 

eventos sísmicos peligrosos.  

 

El tercer modelo que ha sido entrenado es MLP- Red Neuronal.   Este modelo no uti-

liza reglas explícitas y aprende fronteras no lineales continuas.  

Al Igual que en los dos modelos anteriores, se utilizó GridSearch para definir la me-

jor combinación de hiperparametros: 

Figura 23 

Mejores hiperparámetros de red neuronal-MLP 

  

En este proceso de GridSearch se utilizó EarlyStopping, lo cual es una validación in-

terna que detiene el entrenamiento cuando ya el desempeño deja de mejorar, esto a su vez 

redujo el sobreajuste y el entrenamiento innecesario.  

La arquitectura de la red se entrenó con los mejores hiperparámetros:1 capa (50 o 100 neu-

ronas) y 2 capas (50–50) 

Función de activación 

Relu: rápida y robusta 
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Regularización: alpha 

Penaliza pesos grandes evitando así el sobreajuste. 

Learning Rate 

Controla estabilidad contra rapidez. Una vez que se realizó el entrenamiento, se obtuvieron 

los siguientes resultados que miden la capacidad de discriminación de clases del modelo: 

Figura 24 

Reporte de Clasificación y Matriz de Confusión MLP Classifier 

 

 

Se puede observar que se mantiene la tendencia con un accuracy del modelo global 

como tal de 0.95, los eventos clasificados “Sin Peligro” parecen ser de algún modo, bas-

tante fáciles de clasificar pues además de ser la clase mayoritaria, los eventos peligrosos 
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históricamente se presentan en intervalos largo de tiempo, por lo tanto, es lo esperado que 

entre la gran mayoría de eventos a los clasificados como “Sin Peligro” 

Por otro lado, se obtuvo un F1-Score de 0.66 para el evento de “Potencial Peligro” lo 

cual es de esperarse un valor bajo al obtener un 0.51 en el Recall ya que estas métricas se 

encuentran directamente relacionadas, el F1-Score se calcula a partir del Recall y Precision, 

y este cálculo castiga fuertemente si uno de estos dos valores es bajo.  

El F1-Score entre 0.6 y 0.7 se considera aceptable, y dentro del contexto volcánico 

es realista, ya que no mide perfección sino compromiso operacional. Un F1-Score aceptable 

es consistente con un sistema de alerta aceptable, mas no un clasificador que sea determi-

nante.  

Posteriormente, se obtuvo la Curva de Precision-Recall donde se observa que se 

mantiene la tendencia.  

Figura 25 

Curva Precision-Recall MLP 

 

Nota: AP siglas para Average Precision  

La gráfica mantiene la misma interpretación en donde se mide la calidad de las aler-

tas peligrosas y que en este caso casi siempre acierta.  
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De este resultado se puede interpretar a nivel del contexto sísmico en donde el mo-

delo es muy conservado, es muy confiable cuando alerta eventos altamente peligrosos, sin 

embargo, es poco sensible ya que no detecta casi la mitad de los eventos que deberían 

marca una alerta.  

Un AP alto se puede interpretar también como un ranking interno dentro del modelo 

muy bueno para la clase de “Potencial Peligro”, aunque la frontera de decisión fina sea muy 

conservadora.  

Dentro de un contexto aplicativo, el modelo no aporta mayormente para generar una 

alerta temprana automática ya que, no es suficiente porque pierde muchos eventos críticos. 

Sin embargo, sería excelente para un sistema de apoyo de decisión ya que da prioridad a 

los eventos con una alta probabilidad real.  

En la curva ROC se observaron los siguientes resultados: 

Figura 26 

Curva ROC- MLP Classifier 

 

Nota: AUC siglas para Area Under Curve 
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Al igual que las otras métricas, el AUC es consistente, marcando así un valor de 

0.76, en este contexto es un valor bueno y aceptable ya que de haber obtenido un AUC 

>0.9 habría significado algún tipo de problema como fuga de información o aprendizajes tri-

viales; el valor de 0.77 es el esperado ya que el modelo está trabajando a propósito con da-

tos ruidosos e intenta imitar un escenario real.  

Con este resultado se puede decir que, el modelo clasifica mejor que al azar y de 

manera consistente, pero le hace falta la optimización para maximizar los eventos altamente 

peligrosos.  

Se muestra a continuación la curva de pérdida para este modelo. 

Figura 27 

Curva de Pérdida MLP Classifier 

 

Se puede observar que la curva cae rápidamente en las primeras épocas, esto signi-

fica que el modelo ha encontrado rápidamente patrones informativos en el conjunto de da-

tos, este es el resultado esperado debido a que las variables tienen un significado físico y se 

realizó correctamente el escalado.  
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Luego, se observa una estabilización en la curva a medida que se van aumentando 

las épocas, sin embargo, no implica que más épocas mejoraría en modelo, esto quiere decir 

que el modelo ha extraído toda la información útil.  

Desde el punto vista volcánico, se podría decir que no todos los sismos cercanos tie-

nen la capacidad de activar al volcán y de igual manera que no todos los sismos grandes 

producen un efecto en la actividad sísmica y esto se debe principalmente a que se deben 

considerar además factores externos como el estado del magma, la presión, las fallas geo-

lógicas, entre otros muchos más para que se conjugue todo el escenario para un evento po-

tencialmente peligroso.    

La gráfica a continuación muestra una validación interna del accuracy en donde una 

fracción del conjunto de entrenamiento pasa a ser entrenada y calcula el accuracy en cada 

época.  

Figura 28 

Validación de Exactitud MLP Classifier 

 

En esta gráfica se espera que las oscilaciones no son fuertes y no existan caídas 

abruptas, sin embargo, en esta gráfica se puede ver que existen dos picos negativos muy 

marcados, esto puede deberse al ruido gaussiano y el ruido intencional en las etiquetas. 
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También puede deberse al tamaño reducido del set de validación en donde si unos eventos 

mal clasificados pueden provocar las caídas en la curva. 

De todas maneras, las caídas abruptas no son preocupantes ya que se puede ver 

que la gráfica se recupera rápidamente y vuelve a elevar la curva, aquí se puede ver que el 

early stopping no se detiene por una caída, sino que continúa mejorando.  En términos ge-

nerales, la curva se estabiliza alrededor de los valores medios de la figura y a pesar de las 

oscilaciones con caídas abruptas debido a la exploración bajo incertidumbre, no necesaria-

mente es una mala generalización, sería preocupante en el caso de que mantuviera una 

tendencia descendente sostenida.  

 

Finalmente, se muestran los resultados para el último modelo Support Vector Ma-

chine (SVM), al igual que los otros modelos se realizó la búsqueda de los mejores paráme-

tros con Grid Search, el resultado obtenido fue el siguiente: 

Figura 29 

Mejores hiperparámetros para SVM 

   

Los hiperparámetros evaluados solo fueron tres, esto indica que es un Grid razona-

ble y controlado evitando así las combinaciones extremas.   

Se muestra a continuación las métricas obtenidas en este modelo:  

 



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS  60 
 
 
 

 

 

QUITO – ECUADOR | 2024 

Figura 30 

Reporte de Clasificación y Matriz de Confusión SVM 

 

En este caso se observa que la predicción de los eventos predichos y acertados 

como potencialmente peligrosos ha disminuido, lo cual hace que el Recall quede en un 

50/50 en la capacidad de discriminar esta clase. De igual manera aumenta las falsas alar-

mas, en donde se catalogan 19 eventos como potencialmente peligrosos cuando en reali-

dad no lo eran.  

Se observa también que el accuracy global se mantiene en el 0.95, lo cual es un ren-

dimiento bueno del modelo en general.  

Se realizó la curva de aprendizaje para evaluar al modelo: 



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS  61 
 
 
 

 

 

QUITO – ECUADOR | 2024 

Figura 31 

Curva de Aprendizaje SVM 

 

Nota: Este Algoritmo no entrena por Epocas 

 

Esta gráfica muestra una curva saludable ya que espera que el training score se en-

cuentre por encima de la curva de cross-validation, con una ligera brecha entre ellas. Ade-

más, se observa que las curvas no se acercan al 1 y esto valida que no existe sobreajuste, 

así como también las curvas no se juntan demasiado indicando que no existe underfitting; 

finalmente se muestra una tendencia a la convergencia de las curvas a medida que el nú-

mero de datos va en aumento.  

El modelo SVM mostró un comportamiento competitivo, aunque ligeramente inferior 

a los anteriores modelos, especialmente en la capacidad de detección de eventos peligro-

sos, esto podría sugerir que a pesar de que el margen es efectivo, el ruido y el solapamiento 

entre las clases limita la capacidad de discriminación.  

Los resultados obtenidos en los cuatros modelos pueden ser comparados ya que 

fueron pre procesados para que la competitividad entre estos, se encuentren en las mismas 

condiciones. A continuación, se muestra una tabla resumen de los resultados más relevan-

tes: 
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Tabla 5 

Resumen del reporte de clasificación de todos los modelos 

Clasificación Precision Recall F1-Score Accuracy 
 

 Random Forest  0.95 
Potencial Peligro 0.97 0.51 0.67  

Sin Peligro 0.95 1 0.97   
 

 XGBoost  0.95 
Potencial Peligro 0.96 0.51 0.67  
Sin Peligro 0.95 1 0.97   

 
 Red Neuronal MLP  0.95 

Potencial Peligro 0.93 0.51 0.66  
Sin Peligro 0.95 1 0.97   

 
 SVM  0.95 

Potencial Peligro 0.89 0.5 0.64  
Sin Peligro 0.95 0.99 0.97   

 

Se puede observar que en todos los modelos el Accuracy fue de 0.95 lo cual indica-

ría que es un excelente rendimiento, sin embargo, dentro del contexto de este estudio esta 

métrica es importante pero no determinante. Este resultado puede deberse a que clasificó 

bien la mayoría de eventos, de los cuales en su mayoría caían en una sola clase, por ello el 

accuracy es alto de forma global, sin embargo, en el resultado por clases muestra métricas 

más bajas.  

Los resultados en general son casi iguales en todos los modelos con ligeras varia-

ciones en algunas métricas, a simple vista se puede descartar a SVM debido a que muestra 

una precisión y un recall menor en la clase de potencial peligro.  

Por lo tanto, ahora se determinó cual es el mejor modelo por accuracy ya que es el 

que mide el desempeño global en el conjunto de prueba.  



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS  63 
 
 
 

 

 

QUITO – ECUADOR | 2024 

 
Figura 32 

Comparativa mejor modelo 

 

Nota: El mejor modelo se graba en un archivo tipo pkl para posteriormente ser consumido 

por un aplicativo Tkinter y analizar nueva data.  

El modelo final fue llevado con su pipeline de pre procesamiento, asegurando así su 

reproducibilidad. A pesar de que la selección final fue por Accuracy , otras métricas como 

Recall y F1-score fueron analizadas y discutidas durante el análisis.  

A continuación, se muestran los resultados obtenidos en el aplicativo desarrollado 

con Tkinter, la interfaz p del sistema presenta un encabezado informativo que identifica el 

propósito de la aplicación, la institución académica responsable y los integrantes del equipo 

de desarrollo. Este diseño permite el uso del sistema desde el primer contacto del usuario, 

reforzando su carácter analítico. 
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Figura 33 

Interfaz del aplicativo 

 

La interfaz gráfica muestra un despliegue amigable para el usuario ya que muestra pasos 

simples a seguir, además de una barra de colores donde existen botones para: 

 Carga de archivo CSV (Botón celeste) 

 Predecir (Botón verde) 

 Gráficos (Botón rojo) 

 Histograma (Botón negro) 

 Eventos críticos (Botón naranja) 

Cada botón muestra su funcionalidad y permite al usuario elegir la opción que requiera ana-

lizar.  



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS  65 
 
 
 

 

 

QUITO – ECUADOR | 2024 

Figura 34 

Interfaz carga de archivo 

 

Nota: Se debe cargar un archivo en formato CSV 

El sistema incorpora un modelo de clasificación supervisada basado en Random Fo-

rest, previamente entrenado y validado, el cual utiliza como variables de entrada la latitud, 

longitud, profundidad del evento sísmico, magnitud y la distancia respecto al volcán Coto-

paxi. A través de la interfaz, el usuario puede cargar archivos en formato CSV que contienen 

registros sísmicos, los cuales son procesados automáticamente para garantizar la consis-

tencia y correcta estructuración de los datos antes de ser analizados por el modelo. 
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Figura 35 

Interfaz con clasificación de eventos sísmicos 

 

Una vez cargada la información, la aplicación permite ejecutar el proceso de predic-

ción, clasificando cada evento en dos categorías: Sin Peligro y Potencial Peligro. El sistema 

utiliza probabilidades generadas por el modelo y un umbral de decisión configurable para 

determinar la clase final, lo que proporciona mayor control y flexibilidad en la interpretación 

de los resultados. Los resultados de la clasificación se presentan tanto en valores absolutos 

como en porcentajes, permitiendo una comprensión clara de la distribución del riesgo en el 

conjunto de datos analizado. 

Adicionalmente, la interfaz incluye módulos gráficos que permiten visualizar la distri-

bución de las predicciones mediante gráficos de barras e histogramas de probabilidad, in-

corporando una línea de referencia correspondiente al umbral de decisión. Estas visualiza-

ciones facilitan el análisis exploratorio y la interpretación del comportamiento del modelo 

frente a distintos escenarios sísmicos. 
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Figura 36 

Interfaz con gráfica de distribución 

 

El modelo se encuentra entrenado para dar una clasificación Binaria: Sin Peligro & 

Potencial Peligro; es de esperarse que exista una mayor cantidad de eventos sísmicos con-

siderados como “Sin Peligro” ya que las grandes erupciones volcánicas del Cotopaxi se han 

dado cada 100 años y en intervalos menores, han sido erupciones moderadas.   
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Figura 37 

Interfaz con histograma de probabilidad 

 

Nota: La línea roja marca el límite entre Potencial Peligro (derecha) y Sin Peligro (izquierda) 

Figura 38 

Interfaz con tabla de eventos críticos 

 

El sistema también dispone de una tabla de eventos críticos, en la cual se destacan 

aquellos registros clasificados como Potencial Peligro, proporcionando información clave 
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como fecha, magnitud, distancia y probabilidad estimada. Este componente resulta funda-

mental para el análisis focalizado de eventos relevantes y para la toma de decisiones ba-

sada en evidencia. 

Finalmente, la aplicación incluye un indicador de estado del sistema que informa al 

usuario sobre la correcta carga del modelo, el procesamiento de los datos y la disponibilidad 

de resultados, asegurando transparencia y confiabilidad durante el uso de la herramienta. 

En conjunto, el sistema constituye una solución integral que combina modelado predictivo, 

visualización interactiva y una interfaz amigable, aportando una herramienta de apoyo al 

análisis sísmico y a la evaluación del riesgo volcánico en Ecuador. 
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CAPITULO 5 

5.1  CONCLUSIONES 
 

El alcance de este trabajo comprende un análisis profundo de la actividad sísmica 

relacionada al volcán Cotopaxi. En el Ecuador existen 34 volcanes activos y el que repre-

senta mayor amenaza es el Cotopaxi debido al impacto ambiental, social y económico que 

puede desencadenar la erupción de este.  El estudio de la actividad volcánica es muy com-

plejo ya que, los científicos deben analizar características como la deformación del suelo, 

los gases, la temperatura, observaciones visuales y acústicas y la actividad sísmica para la 

caracterización de una erupción volcánica. Este estudio se basa en una de estas caracterís-

ticas que es la sismicidad, para lo cual se analizó patrones en características como latitud, 

longitud, profundidad, entre otros.  

El objetivo del proyecto fue entrenar modelos de clasificación que permitan discrimi-

nar la variable objetivo en una clasificación binaria: “Potencial Peligro” y “Sin Peligro” en un 

conjunto de datos de eventos sísmicos históricos, los cuales fueron recolectados por el Insti-

tuto Geofísico de la Escuela Politécnica Nacional y son de dominio público, el principal reto 

con la recolección de data fue que por ser mediciones de muchos años atrás, estos catálo-

gos se obtuvieron en formatos y características diferentes, por lo tanto fue necesario un pro-

ceso de ETL, este permitió la consolidación de varios catálogos sísmicos heterogéneos en 

un solo catálogo homogéneo, fue necesaria la estandarización de las magnitudes mediante 

un proxy Mw con el objetivo de poder comparar temporalmente los eventos, manteniendo la 

coherencia de la distribución sísmica.  

Una vez que se obtuvo un único catálogo con la data procesada, fue necesario tra-

bajar en la variable objetivo y estructurar el problema de este estudio, para lo cual se realizó 

la clasificación de la peligrosidad de un sismo en función de la actividad volcánica del Coto-

paxi.  Por lo tanto, se definió los criterios de aceptación, basados en a literatura, de la clase 
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“Potencial Peligro” en la que los eventos sísmicos deben tener características físicas (dis-

tancia y magnitud) específicas para que puedan alterar o influenciar la estabilidad sísmica 

del volcán Cotopaxi.  Durante este proceso de clasificación de la peligrosidad, se identificó 

que existe un claro desbalance de clases, pues casi la totalidad de eventos se clasificaron 

como “Sin Peligro”, este resultado tuvo mucha lógica ya que, en el contexto volcánico, el 

Cotopaxi ha tenido 5 grandes periodos de erupciones desde la época colonial, por lo tanto, 

casi toda la data debe representar los periodos en los que no hubo actividad sísmica consi-

derable. En base a este resultado, fue necesario hacer un balanceo de clases ya que, para 

los entrenamientos de los algoritmos, la data real no aportaba datos de entrenamiento para 

la clase minoritaria y hubiera caído en el sobreajuste. 

El balanceo de clases consistió en la generación de datos sintéticos que sean consi-

derados como Potencial Peligro, los datos no fueron generados al azar, sino que cumplieron 

parámetros técnicos apegados a la teoría sísmica, estadística y matemática que fueron lo 

más reales posibles y al ser introducidos en la data con los datos reales, se encuentren en 

las mismas condiciones y los entrenamientos no aprendan patrones triviales equivocados. 

Esta generación de datos sintéticos permitió construir una base de datos balanceada en 

donde se introdujo también ruido para evitar el sobreajuste.  La preparación de los datos fue 

un proceso fundamental, el cual incluyó la incorporación de ruido y una estandarización total 

de las variables, de esta manera se garantizó que los modelos no graben ni reproduzcan re-

glas predefinidas, esto permitió evaluar la capacidad real de la generalización de los clasifi-

cadores en datos inciertos.  

El modelo de clasificación que se estructuró, permitió identificar eventos sísmicos 

con potencial capacidad de alterar la actividad volcánica del Cotopaxi, basándose en carac-

terísticas físicas como la distancia y la magnitud. Se puede decir que el enfoque es conser-

vador y los resultados son coherentes con la teoría y la realidad sísmo-volcánica, sin em-

bargo, se limita su capacidad clasificatoria debido a la ausencia de información interna del 

volcán y el análisis de otras magnitudes de interés como la presión, la dinámica de del 
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magma y gases internos, entre otros. Por lo tanto, los resultados deben ser interpretados 

como indicadores de atención más como predicciones eruptivas.  

Por otro lado, se pudo observar los resultados (Tabla 3) de rendimiento de los cuatro 

modelos entrenados: Random Forest, XGBoost, Red Neuronal MLP y Support Vector Ma-

chine; en donde las métricas son constantes para todos los modelos con ligeras variacio-

nes. Se puede concluir que, a manera global, los modelos presentan un buen rendimiento 

ya que todos obtuvieron un accuracy de 0.95, esto debido a que de los 3172 eventos sísmi-

cos que fueron parte del conjunto de prueba, un promedio de 2851 sismos fue clasificados 

correctamente, es decir un 90% de los datos de prueba son bien clasificados, por ello se ob-

tiene un accuracy alto.  

Sin embargo, al analizar individualmente las categorías, se pudo observar que la ca-

tegoría crítica de “Potencial Peligro” tiene un bajo nivel predictivo pues al obtener un recall 

en promedio de 0.51 esto nos indica que cerca de la mitad de eventos sísmicos no son de-

tectados como amenaza real cuando si lo son, por lo tanto el modelo se limita a ser aplicado 

como una herramienta de prevención de amenaza temprana, a pesar de ello, se pudo des-

tacar que los modelos obtuvieron en promedio un AP de 0.95 lo cual se puede interpretar 

como una veracidad cuando los modelos detectan la amenaza, es decir que cuando un 

evento es clasificado como potencialmente peligro, tiene un 95% de probabilidades que 

realmente lo sea, por tanto el modelo puede ser aplicado como un modelo de apoyo de de-

cisión sobre otro estudio a futuro que tenga mejor capacidad predictiva.  

Así mismo, se pudo analizar el AUC que en promedio se obtuvo un valor de 0.77 lo 

cual se puede considerar como un valor bueno-aceptable y esto nos indica que posee en 

general una capacidad de clasificación adecuada en condiciones reales de incertidumbre, 

aun que su desempeño operativo va a depender del umbral de decisión que decida.  
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En términos generales podemos concluir que los modelos con mejores rendimientos 

fueron Random Forest y XGBoost, ya que sus métricas fueron ligeramente mejor en compa-

ración a MLP y SVM, sin embargo, los 4 modelos tuvieron buenos resultados ya que nin-

guno mostró comportamiento errático o aprendizaje colapsado. En tanto MLP es competi-

tivo, pero menos interpretable y estable en este contexto, que a diferencia de RF. Por su 

parte XGBoost tuvo las métricas más bajas en esta comparativa, por lo que se puede decir 

que, es válido pero el menos óptimo en este contexto.  

Finalmente, se puede concluir que los resultados de los algoritmos mostrados, pue-

den capturar patrones complejos de la actividad sismo-volcánica. De ellos, se determinó 

que Random Forest, fue el que obtuvo mejor equilibrio entre desempeño global, estabilidad 

y capacidad de generalización, por ello se seleccionó como modelo final para la reproducibi-

lidad en el aplicativo desarrollado en Tkinter. Sin embargo, al haber obtenido un recall mo-

derado en la clase crítica de mayor interés, se genera una necesidad de realizar en el futuro 

ajustes necesarios para maximizar la detección de eventos potencialmente peligrosos.      

5.2 RECOMENDACIONES 
 

Se recomienda enfocarse en mejorar el recall de la clase crítica, ya que el objetivo 

es la detección de eventos sísmicos que representen una amenaza real, se propone optimi-

zar los modelos enfocándose en Recall o F1-score y ya no en accuracy, así como también 

ajustar el umbral de decisión y una implementación de cost-sensitive learning ya que de 

esta manera penaliza más fuerte a los falsos negativos. Con estas técnicas se esperaría re-

ducir el riesgo de no detectar eventos críticos.  

Por otro, al nivel de la calidad de los datos se recomienda enriquecer las característi-

cas mediante la implementación de variables que midan la energía sísmica liberada, el tipo 

de evento sísmico ya sea volcánico-tectónico (VT), long-period (LP) o tremor, esto permitiría 
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hacer agrupaciones de donde se puedan generar patrones específicos por cada grupo y ha-

cer un estudio personalizado para cada uno, en donde se esperaría mejorar la frontera de 

decisión.  

También se puede fortalecer la generalización del modelo validando los datos con 

los de otros volcanes activos, evaluando la robustez del modelo en distintos periodos erupti-

vos y realizando un cross validation para evitar la fuga de información geográfica; de esta 

manera se puede medir la transferibilidad y reproducibilidad del modelo.  

Se recomienda también la incorporación de intervalos de confianza para prediccio-

nes y un análisis de sensibilidad a ruido, esto es un paso fundamental para sistemas de 

alerta temprana.    

Se recomienda también una integración de dimensión temporal ya este estudio ana-

lizó los sismos de manera independiente, sin embargo, el comportamiento volcánico sugiere 

una dependencia temporal, por lo tanto, se recomienda explorar modelos que sean capaces 

de capturar secuencias temporales tales como LSTM o GRU. 

Se sugiera finalmente, contrastar los resultados con métodos tradicionales empíricos 

y estadísticos utilizados ya en la vigilancia volcánica, esto con el objetivo de cuantificar obje-

tivamente las ventajas, desventajas y limitaciones del enfoque basado en Machine Learning 

versus a metodologías clásicas.  

Este trabajo constituye un aporte inicial en el análisis de riesgo sismo-volcánico con 

técnicas de aplicación de aprendizaje automático en un ambiente real en el volcán Cotopaxi. 

Se espera que la implementación de las recomendaciones planteadas anteriormente, per-

mita la optimización de la precisión, la discriminación de clases, la interpretabilidad y la apli-

cabilidad del modelo a otras fuentes de datos y de esta manera se consolide como una he-

rramienta de apoyo para las alertas tempranas y la toma de decisiones en sistemas de vigi-

lancia y análisis de riesgo de la actividad volcánica.  
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Link del Notebook 
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