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RESUMEN

La presente investigacién examina y contrasta los marcos de clasificacion empleados
en los datos sismicos con el objetivo de pronosticar las erupciones en el volcan Cotopaxi,
uno de los volcanes mas activos y peligrosos de Ecuador. La importancia de la investigacion
reside en la necesidad de contar con sistemas predictivos mas precisos que las metodolo-
gias convencionales, capaces de mitigar los riesgos sociales, econdomicos y ambientales
asociados a los fendmenos volcanicos. El objetivo principal era evaluar la viabilidad de los
algoritmos de aprendizaje automatico para predecir escenarios eruptivos con una precision
superior al 70%. La metodologia se basé en el marco CRISP-ML (Q), que consistia en com-
prender el problema, preparar datos sismicos historicos y en tiempo real del IG-EPN vy llevar
a cabo la capacitacion y la validacion del modelo. Algoritmos como Random Forest, SVM,
XGBoost y MLP se yuxtapusieron y evaluaron utilizando parametros de precision, recupera-
cion, puntuacion de F1 y AUC-ROC. Los hallazgos indican que los modelos de aprendizaje
profundo, en particular las redes neuronales recurrentes, muestran un rendimiento superior
a la hora de discernir los patrones precursores. Se concluye que la incorporacion de la inteli-
gencia artificial en la vulcanologia constituye una contribucion cientifica y social fundamental

para mejorar los sistemas de alerta temprana en Ecuador.

Palabras clave: aprendizaje automatico, clasificacion, prediccion sismica, Cotopaxi, CRISP-

ML(Q).
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ABSTRACT

This research examines and compares the classification frameworks used in seismic
data with the aim of predicting eruptions at Cotopaxi volcano, one of Ecuador's most active
and dangerous volcanoes. The importance of the research lies in the need for predictive sys-
tems that are more accurate than conventional methodologies and capable of mitigating the
social, economic, and environmental risks associated with volcanic phenomena. The main
objective was to evaluate the feasibility of machine learning algorithms to predict eruptive
scenarios with an accuracy greater than 70%. The methodology was based on the CRISP-
ML (Q) framework, which consisted of understanding the problem, preparing historical and
real-time seismic data from the IG-EPN, and carrying out model training and validation. Algo-
rithms such as Random Forest, SVM, XGBoost, and MLP were juxtaposed and evaluated
using precision, recall, F1 score, and AUC-ROC parameters. The findings indicate that deep
learning models, particularly recurrent neural networks, show superior performance in dis-
cerning precursor patterns. It is concluded that the incorporation of artificial intelligence in
volcanology constitutes a fundamental scientific and social contribution to improving early

warning systems in Ecuador.

Keywords: machine learning, classification, seismic prediction, Cotopaxi, CRISP-ML(Q).
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CAPITULO 1

1. INTRODUCCION

El avance tecnoldgico en microelectrénica, informatica, computacién y telecomunica-
ciones ha llevado a un crecimiento exponencial en la capacidad de generar y almacenar da-
tos. Esta gran cantidad de datos ha impulsado la necesidad de técnicas que transformen
grandes volumenes de informacion en conocimiento util, siendo el Descubrimiento de Cono-
cimiento en Bases de Datos (KDD) y el Data Mining técnicas emblematicas en este sentido
(Ramos, 2019). En el contexto de la gestion de desastres naturales, especificamente la pre-
diccién de erupciones volcanicas, la sismologia volcanica se ha consolidado como una de
las herramientas mas cruciales para el monitoreo y la prediccion a corto plazo. Los procesos
internos de los volcanes generan sefiales sismicas variadas que son fundamentales para

entender la dinamica eruptiva(Perales Palacios et al., 2021).

La integracion de técnicas avanzadas de inteligencia artificial y aprendizaje automa-
tico ha revolucionado el campo de la volcanologia predictiva, permitiendo el procesamiento
de grandes volumenes de datos sismicos en tiempo real (Carniel & Guzman, 2020; Carniel

& Guzman, 2025).

Este proyecto de investigacion se orienta al andlisis de datos sismicos mediante téc-
nicas estadisticas y de aprendizaje automatico, con el fin de detectar y caracterizar precurso-
res de erupciones volcanicas en Ecuador La propuesta se fundamenta en la creciente nece-
sidad de contar con modelos predictivos que integren sefales sismo-volcanicas, tales como
eventos volcano-tectonicos (VT), de largo periodo (LP), tremores y sismos hibridos, en un

sistema capaz de reconocer patrones andmalos y anticipar escenarios eruptivos.

Estudios recientes han demostrado que los modelos de aprendizaje automatico pue-

den detectar hasta 7.5 veces mas eventos sismicos que los métodos manuales tradicionales,
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mejorando significativamente la capacidad de identificar precursores eruptivos (Yukutake et

al., 2023).

Este proyecto se define como una investigacion aplicada que utilizara técnicas de
analisis de datos, incluyendo métodos estadisticos y de aprendizaje automatico (machine
learning), para examinar los datos sismicos historicos y en tiempo real de los volcanes mas
activos de Ecuador. El objetivo es identificar y caracterizar patrones precursores de actividad
eruptiva. Por ejemplo, la aplicacion de redes neuronales y algoritmos de aprendizaje automa-
tico ha permitido reconocer patrones de energia sismica y caidas de entropia que anteceden
a erupciones en volcanes como Etna, Kilauea y Augustine (Rey-Devesa, Benitez, et al.,
2023). Ademas, enfoques innovadores como el aprendizaje por transferencia han demostrado
ser efectivos para mejorar el pronéstico en volcanes con datos escasos, generalizando cono-

cimiento adquirido de multiples sistemas volcanicos (Ardid et al., 2025).

Se analizaran distintos tipos de sefales sismo-volcanicas registradas por la red de
monitoreo del Instituto Geofisico de la Escuela Politécnica Nacional (IG-EPN), institucién
que ha liderado el monitoreo volcanico en Ecuador durante cuatro décadas, enfrentando
desafios instrumentales y desarrollando capacidades técnicas para la vigilancia de volcanes

de alto riesgo como Cotopaxi (Hidalgo et al., 2023).

De esta manera, se pretende disponer de un modelo que permita alcanzar un nivel
de exactitud superior al 70% en la prediccion de escenarios eruptivos, contribuyendo al
desarrollo de nuevas aplicaciones tecnoldgicas orientadas a la gestion de riesgos volcani-
cos en el pais. La implementacion operativa de sistemas de monitoreo en tiempo real basa-
dos en machine learning, como los desarrollados para el volcan Axial Seamount, demuestra

la viabilidad de estos enfoques para sistemas de alerta temprana (Wang et al., 2024).
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Justificacion e importancia del trabajo de investigacién

El Ecuador alberga 35 volcanes potencialmente activos, cuya dinamica representa
una amenaza latente para la poblacion, la infraestructura y la economia del pais (Vaca Molina,
2024). Estudios recientes han permitido establecer un indice de Peligrosidad Volcanica (IPV)
preliminar que clasifica a los principales volcanes en diferentes categorias de riesgo. Sin em-
bargo, este tipo de indicadores se fundamenta principalmente en parametros historicos y geo-
l6gicos, lo que limita su capacidad predictiva frente a la evolucion en tiempo real de la activi-

dad sismica volcanica.

Bajo este contexto, se considera necesario complementar el enfoque tradicional
con técnicas modernas de aprendizaje automatico y modelos de clasificacion, capaces de
identificar patrones complejos en los registros sismicos tecténico-volcanicos y de aportar ma-
yor precision en la deteccion temprana de escenarios eruptivos. Modelos generalizados en-
trenados con datos de multiples volcanes han demostrado capacidad para detectar precurso-
res sismicos en sistemas volcénicos no incluidos en el conjunto de entrenamiento, superando
métodos basados unicamente en amplitud promedio (Ardid et al., 2023). La comparacion sis-
tematica de diferentes algoritmos de clasificacién permitira reconocer cudales ofrecen mejores
resultados en términos de exactitud, robustez y reduccion de sesgos, aportando bases cien-

tificas solidas para el desarrollo de sistemas predictivos confiables.

Desarrollar este proyecto como aplicacion en volcanes de alta peligrosidad permitira
generar conocimiento extrapolable a otros escenarios volcanicos, consolidando un aporte

tanto cientifico como social en la prevencion de desastres naturales en Ecuador.
El presente proyecto adquiere relevancia por tres razones principales:

e Riesgo social y humano: La cercania de los principales volcanes a zonas densa-
mente pobladas convierte la prediccion temprana en un factor determinante para sal-

var vidas. La experiencia de erupciones repentinas, como la de Whakaari en 2019,
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evidencia la necesidad de modelos de alerta basados en datos y no Unicamente en
juicios expertos (Dempsey et al., 2020). En Ecuador, volcanes como el Cotopaxi,
Tungurahua y Sangay han demostrado su potencial destructivo a lo largo de la histo-
ria. Un prondstico mas preciso y oportuno de una erupcion puede salvar innumera-
bles vidas al permitir evacuaciones preventivas y bien organizadas. Sistemas inte-
grados de alerta temprana que combinan umbrales estadisticos de precursores con
difusion automatizada de alarmas han demostrado su utilidad en contextos operati-
vos (Spina et al., 2020).

Impacto econémico: Las erupciones volcanicas tienen repercusiones directas en la
agricultura, transporte aéreo y turismo. La deteccion temprana de senales precurso-
ras, como la variacion de la entropia de Shannon en registros sismicos, posibilita re-
ducir pérdidas al activar protocolos preventivos con suficiente antelacion (Rey-De-
vesa et al., 2023). Una erupcion puede paralizar sectores econémicos clave como la
agricultura, la ganaderia, el turismo y la aviacion, debido a la caida de ceniza y los
flujos laharicos. Este proyecto busca mitigar el impacto econdmico al proporcionar
informacion que permita a las industrias y al gobierno prepararse y proteger sus acti-

VOS.

Avance cientifico y tecnolégico: La evidencia sugiere que muchos procesos erupti-
vos presentan sefales precursoras sutiles y de largo plazo que no son detectadas
por métodos tradicionales. El analisis del nivel sismico de fondo en Shinmoe-dake,
Japén, reveld que la preparacion eruptiva puede extenderse por meses y ser regis-
trada solo mediante técnicas avanzadas de procesamiento (Ichihara et al., 2023b).
La implementaciéon de modelos predictivos avanzados basados en datos sismicos
posicionaria a Ecuador a la vanguardia de la vulcanologia en la region. Ademas,
este proyecto contribuira a un entendimiento mas profundo de la dinamica interna de

los volcanes andinos, generando conocimiento valioso para la comunidad cientifica
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internacional, al tiempo de fortalecer las capacidades del IG-EPN, la institucion en-
cargada del monitoreo, fundamental para la seguridad nacional. Técnicas innovado-
ras como el emparejamiento de plantillas multiescala han permitido descubrir precur-
sores eruptivos recurrentes en escalas temporales de 1 a 60 dias en diversos con-

textos volcanicos (Ardid et al., 2024).

Problema de investigacion

El prondstico temprano de las erupciones volcanicas en Ecuador sigue planteando un
problema, a pesar de la accesibilidad de la informacién sismica historica y en tiempo real.
Las técnicas de monitoreo convencionales basadas en parametros geoldgicos e historicos
proporcionan informacién valiosa; sin embargo, presentan dificultades para pronosticar con
precision la incidencia de una erupcién. Esta deficiencia complica la ejecucion de medidas
preventivas oportunas, lo que amplifica los riesgos sociales, econdémicos y ambientales en
el contexto de fendmenos volcanicos importantes, como los relacionados con el Cotopaxi.
En consecuencia, existe la necesidad de investigar la utilizacion de modelos de clasificacion
basados en el aprendizaje automatico para discernir los patrones sismicos precursores y

evaluar su viabilidad como instrumento predictivo a corto plazo.

1.1 Alcance

El estudio se centrara en el volcan Cotopaxi como caso principal, dada su alta peli-
grosidad y la disponibilidad de registros sismicos histéricos y recientes provistos por el Insti-
tuto Geofisico de la Escuela Politécnica Nacional (IG-EPN). Se analizaran tanto periodos de
calma como fases de reactivacion, en especial la crisis eruptiva de 2015, para entrenar y

validar modelos de clasificacion.

Aunque el énfasis inicial sera en Cotopaxi, los resultados seran extrapolables a otros
volcanes activos del pais, como Tungurahua y Reventador, permitiendo disefar sistemas

predictivos replicables a nivel regional.
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Aunque el énfasis inicial sera en Cotopaxi, los resultados seran extrapolables a otros
volcanes activos del pais, como Tungurahua y Reventador, permitiendo disefiar sistemas pre-
dictivos replicables a nivel regional. La experiencia exitosa del modelo de prondstico desarro-
llado para el volcan Copahue en los Andes del Sur, que logré emitir alertas pseudo-prospec-
tivas entre 5y 75 horas antes de erupciones pequefas, demuestra la viabilidad de este enfo-

que en contextos andinos similares (Cabrera et al., 2024).

Componentes del alcance
1. Volcan de Estudio Principal: Se propone iniciar el analisis con el volcan Cotopaxi,
debido a su historial eruptivo y al elevado riesgo que representa para areas estraté-
gicas del pais, incluyendo el Distrito Metropolitano de Quito y la ciudad de Lata-

cunga.

2. Datos para Utilizar: Se utilizaran las bases de datos sismicos historicos y los datos
en tiempo real proporcionados y curados por el IG-EPN. Esto incluye catalogos de
eventos sismicos clasificados y formas de onda continuas de las estaciones de mo-

nitoreo del Cotopaxi.

3. Periodo de Andlisis: El estudio abarcara los datos sismicos recopilados durante los
periodos de calma y de reactivacion del volcan, con especial énfasis en el proceso

eruptivo de 2015 para entrenar y validar los modelos.

4. Resultados Esperados: El proyecto se limitara a la creacion y validacion de un mo-
delo predictivo. La implementacién de este modelo en un sistema de alerta temprana
en tiempo real quedara fuera del alcance de esta fase, pero se sentaran las bases

para su futuro desarrollo.

Se ha identificado la relevancia de los volcanes potencialmente activos y el impacto

de contar con modelos predictivos confiables en el contexto del problema volcanico en
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Ecuador, Paralelamente, se revisan las fuentes de datos disponibles y se determina su utili-

dad para el entrenamiento de modelos de clasificacion.

Ingenieria de datos (preparacion de datos): Se realizara el preprocesamiento nece-
sario para transformar los datos crudos en insumos utilizables por los modelos. Esto incluye
limpieza de registros, segmentacion de eventos sismicos, extraccion de caracteristicas, ba-

lanceo de clases y construccion del dataset final con las etiquetas de clasificacion.

Ingenieria de modelos de aprendizaje automatico: Se disefian y entrenan diferentes
algoritmos de clasificacion (Random Forest, SVM, XGBoost, LightGBM, CNN, LSTM/GRU),
ajustando hiperparametros y evaluando su rendimiento. Esta etapa tiene un caracter experi-
mental y comparativo, ya que se busca determinar qué modelo ofrece mejores métricas de

precision, recall, F1-score y AUC-ROC en la prediccion de actividad eruptiva.

Estudios comparativos han demostrado que diferentes arquitecturas (RF, ANN,
CNN, LSTM) presentan sensibilidades variables al ruido y desempefios relativos distintos

segun las caracteristicas del conjunto de datos (Mustafa et al., 2022).

Garantia de calidad para aplicaciones de aprendizaje automaético: Se validaran los
modelos obtenidos bajo un esquema de pruebas, verificando su robustez, ausencia de so-
breajuste y capacidad de generalizacion. Se emplearan técnicas de validacion mismas que

permitiran seleccionar el mejor modelo de clasificacion para el escenario planteado.

Implementacién: Se integrara el modelo con mejor clasificacién en una aplicacion pi-

loto o prototipo, para que el publico objetivo pueda verificar el funcionamiento.

Monitoreo y Mantenimiento: Después del despliegue se realizaran pruebas necesa-
rias para que el aplicativo prototipo funcione correctamente, donde en caso de presentarse

fallos puedan realizarse los ajustes necesarios.
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1.2 ldea a defender

Con la evaluacion de la informacion sismica utilizando metodologias de categoriza-
cion y aprendizaje computacional puede discernir los motivos precursores de las erupciones
y lograr grados de precision superiores al 70% en la prediccion a corto plazo del comporta-
miento eruptivo del volcan Cotopaxi, lo que constituye una alternativa factible para mejorar

los sistemas de vigilancia volcanica y contribuir a la reduccion del riesgo en Ecuador.

1.3 Objetivos

1.4 Objetivo general

Evaluar la factibilidad de modelos de clasificacion basado en datos sismicos para la
identificacion de escenarios de amenazas volcanicas en el volcan Cotopaxi, como apoyo a

la mitigacion del riesgo volcanico en Ecuador.

1.5 Objetivos especificos

o Caracterizar estadisticamente la sismicidad de eventos eruptivos histéricos del vol-

can Cotopaxi mediante el andlisis de sismicidad, y energia liberada.

e Comparar diferentes modelos de clasificacién aplicados a datos sismicos, con el fin
de identificar el modelo mas adecuado para la obtener una alerta temprana de esce-

narios de amenazas volcanicas

e Comprobar el desempefio del modelo de clasificacion seleccionado utilizando un
conjunto de datos de prueba independiente, considerando métricas como precision,

sensibilidad, especificidad y tasa de falsas alarmas.

El presente documento se organiza en cinco capitulos. El Capitulo 1 introduce la te-

matica, justifica la investigacion y establece los objetivos. El Capitulo 2 realiza una revision
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de la literatura relevante, abarcando el estado del arte y el marco tedrico sobre sismologia
volcanica, procesamiento de sefiales, Machine Learning y gestién de riesgos. El Capitulo 3
detalla la metodologia propuesta, siguiendo un enfoque estructurado. El Capitulo 4 presenta
el analisis y discusion de los resultados obtenidos. Finalmente, el Capitulo 5 expone las

conclusiones del trabajo y sugiere lineas de investigacion futuras.
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CAPITULO 2

2. REVISION DE LITERATURA

2.1 Estado del Arte

La prediccion de erupciones volcanicas ha evolucionado gracias a la integracion de
métodos sismoldgicos avanzados y técnicas de inteligencia artificial. Tradicionalmente, la
identificacion de precursores se basaba en el analisis manual de catalogos sismicos y en la
experiencia de los observatorios locales. Sin embargo, la complejidad y diversidad de los
procesos volcanicos han impulsado la adopcion de enfoques automatizados y basados en
datos. Las revisiones recientes del campo destacan la transicion desde métodos heuristicos
hacia sistemas predictivos basados en evidencia cuantitativa y aprendizaje de patrones

(Carniel & Guzman, 2020).

Estudios recientes han demostrado la utilidad de aplicar métricas de informacion
como la entropia de Shannon, la cual tiende a decrecer horas antes de una erupcion. Esta
metodologia fue validada en volcanes como Etna, Kilauea y Mount St. Helens, mostrando
que los cambios en la entropia, combinados con indicadores de energia y frecuencia, pue-

den anticipar escenarios eruptivos con varias horas de antelacién (Rey-Devesa et al., 2023).

Investigaciones especificas en el Volcan de Colima han confirmado que la disminu-
cion de la entropia de Shannon en sefiales sismicas continuas puede preceder explosiones
con 2 a 6 dias de anticipacion, consolidando esta métrica como herramienta complementa-
ria para el monitoreo operativo (Rey-Devesa et al., 2023). Herramientas computacionales
desarrolladas recientemente en Python permiten estimar en tiempo real la entropia de
Shannon, curtosis, indice de frecuencia y energia sobre registros sismicos, facilitando el

andlisis de eventos VT, LP y tremores (Gutiérrez et al., 2025).
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Asimismo, para Ichihara et al. (2023) la deteccion de sefales precursoras de baja
amplitud ha cobrado relevancia. Investigaciones en el volcan Shinmoe-dake (Japén) eviden-
ciaron que el analisis del nivel sismico de fondo (SBL) permite identificar procesos de prepa-
racion eruptiva que se desarrollan a lo largo de meses, incluso cuando no hay sefiales visi-
bles en la superficie. Este hallazgo sugiere que parte de los “falsos negativos” en la vigilan-

cia volcanica se deben a la falta de metodologias sensibles a estas variaciones.

Enfoques basados en ruido sismico ambiental, incluyendo interferometria y analisis
de variaciones de velocidad (dv/v), estan siendo explorados para detectar cambios precur-
sores a erupciones freaticas, con propuestas de integrar machine learning para mejorar la

interpretacion (Lecocq et al., 2023).

Otro avance significativo proviene del uso de aprendizaje automatico supervisado y
no supervisado. En Whakaari (Nueva Zelanda), un modelo de machine learning logré detec-
tar secuencias energéticas que ocurrian entre horas y dias antes de erupciones, emitiendo
alertas tempranas en tiempo real. Este estudio constituye un caso pionero de implementa-
cion practica de algoritmos predictivos en sistemas de alerta volcanica (Dempsey et al.,

2020).

Para Ardid et al. (2023) los enfoques de aprendizaje por transferencia han demos-
trado ser particularmente prometedores para volcanes con datos escasos. Modelos entrena-
dos con registros sismicos de 24 volcanes diferentes han logrado detectar precursores ge-
nerales y predecir erupciones en volcanes no incluidos en el conjunto de entrenamiento, su-

perando métodos basados unicamente en amplitud promedio.

El uso de estadistica ergédica combinada con transferencia de aprendizaje ha mejo-
rado significativamente el prondstico a corto plazo mediante generalizacion entre volcanes

similares (Ardid et al., 2025).
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El analisis de clusteres de tremores ha permitido descubrir patrones que los méto-
dos clasicos pasaban por alto. Durante la erupcién del Geldingadalir en 2021, el uso de téc-
nicas de deep learning sobre datos sismicos continuos permitié identificar secuencias pre-
cursoras tres dias antes del inicio de la erupcién, asi como las fases de transiciéon entre efu-
sion continua de lava y pulsos de fountaining (Mousavi et al., 2023). Redes hibridas que
combinan scattering y ConvLSTM han demostrado capacidad para detectar comportamiento
metastable en sefales sismicas polifénicas, con aplicabilidad para transferencia entre dife-

rentes sistemas volcanicos (Bueno et al., 2021).

Finalmente, los avances en la clasificacion y localizacion de sefiales sismo-volcani-
cas también han fortalecido la prediccion. El analisis multicomponente en el Piton de la
Fournaise (La Reunion) mostro que los enjambres sismicos migran desde niveles profundos
hacia zonas someras antes de una erupcion, informacion crucial para estimar la dinamica

internacional (Journeau et al., 2020).

La evidencia internacional también incluye el uso de redes sismicas locales en la
vigilancia volcanica. En Bali, (Syahbana et al., 2019) analizaron mas de 2.700 eventos vol-
cano-tecténicos previos a la erupcion del Agung, diferenciando entre fracturamiento de roca

y migracion de magma, lo que permitid reconstruir la secuencia eruptiva con mayor detalle.

Asimismo, Yukutake et al. (2023) mostraron que los modelos de machine learning
entrenados con catalogos sismicos pueden detectar hasta 7,5 veces mas eventos volcani-
cos que los métodos manuales. En el Kirishima (Japon), esta técnica permitio identificar hi-
pocentros de enjambres y variaciones de b-values previas a erupciones magmaticas y frea-
ticas. Para, Fenner et al. (2022) el desarrollo de herramientas de deteccién automéatica tam-
bién ha beneficiado a volcanes con actividad estromboliana el médulo AWESAM, capaz de
detectar cientos de miles de eventos en Stromboli, Italia, sin necesidad de grandes catalo-

gos de entrenamiento, alcanzando una precision del 95% en comparacion con registros ma-
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nuales. Métodos de analisis espectral continlio operando en tiempo casi real han sido desa-
rrollados para la red sismica del Etna, permitiendo deteccion de anomalias y estimacion in-

dicativa de intensidad eruptiva potencial (Ollino, 2022).

Finalmente, los avances en modelos de riesgo sismico y volcanico en contextos ur-
banos complementan estos desarrollos. En Quito, Cordoba et al. (2025) elaboraron un mo-
delo de riesgo probabilista que integra escenarios volcanicos y sismicos, aportando insumos

clave para la planificacion preventiva en ciudades altamente vulnerables.

Aplicaciones especificas en la region andina han demostrado la viabilidad de estos
enfoques. Un pipeline de machine learning aplicado al volcan Copahue integré extracciéon
de precursores sismicos y decision de alerta, reportando alertas pseudo-prospectivas entre

5y 75 horas antes de erupciones pequefias (Cabrera et al., 2024).

Disenos hibridos que combinan series temporales y machine learning para predic-
cion eruptiva en volcanes como Merapi ilustran flujos de preprocesamiento y validacion
adaptables a conjuntos de datos ecuatorianos (Mandita et al., 2024). Estudios comparativos
de diferentes arquitecturas de redes neuronales han evaluado el desempefio de RBFNN,
ANN, CNN y LSTM para prediccion de erupciones, mostrando sensibilidades variables al
ruido y desempenios relativos distintos segun las caracteristicas del conjunto de datos
(Shyamala et al., 2022; Mustafa et al., 2022). La aplicacién de Random Forests para predic-
cion eruptiva en el Anillo de Fuego del Pacifico ha sido evaluada en grandes conjuntos re-

gionales, discutiendo su eficacia frente a otras técnicas de clasificacion (Kaza et al., 2025).

Sistemas operativos de monitoreo en tiempo real

La implementacion de sistemas operativos de monitoreo volcanico ha avanzado sig-
nificativamente. Sistemas integrados de alerta temprana que combinan umbrales estadisticos
de precursores con difusién automatizada de alarmas a dispositivos moviles ofrecen referen-

cias de arquitectura operativa (Spina et al., 2020). La construccion de catalogos sismicos
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etiquetados con machine learning y el despliegue de monitoreo en tiempo real, integrando
aprendizaje no supervisado para discriminacion de sefiales, han demostrado su utilidad en

volcanes submarinos como Axial Seamount (Wang et al., 2024).

Herramientas de inteligencia artificial y machine learning para mejorar sistemas de
alerta temprana han sido aplicadas exitosamente en Stromboli, incluyendo prediccion de in-
tensidad de eventos explosivos basandose en deformacion y series temporales locales
(Longo et al., 2024). Enfoques bayesianos de aprendizaje profundo para deteccion y clasifi-
cacion de transientes en flujo continuo han demostrado capacidad para detectar cambios

previos a erupciones, mostrando utilidad para monitoreo probabilistico (IEEE, 2022).

Marco teérico

2.2 Contexto geodinamico y volcanismo en Ecuador

El Ecuador se encuentra en un entorno tectonico complejo, dominado por la sub-
duccion de la placa de Nazca bajo la Sudamericana. Este proceso genera una zona de
Wadati-Benioff caracterizada por sismicidad intermedia y superficial, asi como por un nota-
ble volcanismo en la regién andina (Hanu & Vanek, 1987). La variabilidad en la inclinacion
de la losa subducida y la presencia de zonas asismicas se relacionan directamente con el
emplazamiento de volcanes activos como Cotopaxi, Tungurahua y Reventador, cuya proxi-

midad a zonas densamente pobladas incrementa la vulnerabilidad social y econémica.

2.3 Volcanes activos en Ecuador

Ecuador se ubica en un contexto geodinamico complejo, influenciado por la subduc-
cion de la placa de Nazca bajo la Sudamericana. Este proceso da lugar a la formacion de

una zona de Wadati-Benioff y a la presencia de mas de 30 volcanes potencialmente activos,
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entre los que destacan Cotopaxi, Tungurahua, Sangay y Reventador (Chlieh, 2021). La pro-
ximidad de estos sistemas volcanicos a areas densamente pobladas incrementa la vulnera-

bilidad social y econémica del pais.

El monitoreo sistematico de estos volcanes ha sido liderado por el Instituto Geofisico
de la Escuela Politécnica Nacional (IG-EPN) durante cuatro décadas, enfrentando desafios
instrumentales significativos mientras desarrolla capacidades técnicas para la vigilancia de

volcanes de alto riesgo (Hidalgo et al., 2023).

Figura 1

Volcanes del Ecuador

JPasto Moces

San Miguel
detbarra

[Quito Ed

OMan(a OQue\/edo

FLCUADOR
oRlobamba
)

oGuayaquil »

Cuenca
°

Machala
°

Tumbes 3 +
°

100 km ¢ '
200 mi Tumbes Loja

Nota. Adaptado de Instituto Geografico Militar (2025).

Loreto

Tabla 1

Listado de volcanes Potencialmente activos en el Ecuador

Ubicacién Cantidad Punto A
Cayambe, Reventador, Guagua Pichincha, Coto-
Volcanes continentales 7 paxi, Tungurahua, Sangay y Potrerillos- Cha-
cana
Volcanes de Galapagos 7 Marchena, Cerro Azul, Fernandina, Santo To-

mas Chico, Alcedo, Darwin y Wolf

Nota. Adaptado de Instituto Geografico Militar (2025).
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2.4 Riesgo volcanico y sus implicaciones sociales

La actividad volcanica representa una amenaza significativa para la seguridad de
las comunidades y la infraestructura critica. Estudios de riesgo en ciudades como Quito han
integrado escenarios sismicos y volcanicos, demostrando que la exposicion urbanay la con-
centracion poblacional amplifican los posibles impactos (Cordoba et al., 2025). Casos inter-
nacionales, como la erupcién subita de Whakaari en 2019, han puesto en evidencia que los
sistemas de alerta basados solo en criterios heuristicos son insuficientes, dado que muchas
erupciones ocurren con poca o ninguna sefal perceptible en superficie (Dempsey et al.,

2020)

2.5 Riesgo social y humano de la actividad volcanica

La historia eruptiva reciente del Ecuador muestra que fenédmenos como la caida de
ceniza, flujos piroclasticos y lahares generan impactos directos sobre la poblacion, la infra-
estructura critica y la economia nacional. En este sentido, contar con sistemas predictivos
confiables permite mitigar pérdidas humanas y materiales. Investigaciones internacionales
resaltan que las erupciones subitas, como la de Whakaari en 2019, subrayan la urgencia de

modelos de alerta mas dindmicos y automaticos (Dempsey et al., 2020).

2.6 Senales precursoras de erupciones volcanicas

Los precursores volcanicos se manifiestan como anomalias sismicas, geoquimicas o
geodésicas que anteceden a una erupcion. Entre las mas estudiadas se encuentran los
eventos volcano-tectonicos (VT), los de largo periodo (LP) y los tremores arménicos. La lite-

ratura reciente destaca la utilidad de nuevas métricas en su caracterizacion.

En primer lugar, la entropia de Shannon, que decrece de manera sistematica previo
a erupciones, permitiendo anticipar la transicion hacia estados criticos; aplicaciones especi-
ficas han demostrado prondsticos exitosos con 2 a 6 dias de anticipacion en volcanes como

Colima (Rey-Devesa et al., 2023).
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Como segunda caracteristica, el nivel sismico de fondo (SBL), que ha revelado pro-
cesos eruptivos de lenta evolucion no detectables con métodos convencionales, como en el

caso del Shinmoe-dake en Japodn (Ichihara et al., 2023b).

En tercer lugar, la identificacion de enjambres sismicos migratorios, observados en
La Reunion, que marcan la intrusion de magma hacia zonas someras antes del inicio erup-

tivo (Journeau et al., 2020).

Y finalmente, el registro de secuencias prolongadas de sismicidad, como en el
Agung (Indonesia), donde miles de eventos VT precedieron la erupcion de 2017, distin-

guiendo entre fracturamiento de rocas y migracion de magma (Syahbana et al., 2019).

El procesamiento efectivo de sefiales sismicas volcanicas requiere una comprension
profunda de los pasos clave: filtrado, representacion tiempo-frecuencia (TFR), deteccion de
eventos y extraccion de caracteristicas. La integracion de machine learning en estas etapas
mejora significativamente la discriminacion de sefiales volcanicas y la vigilancia en tiempo

real (Khan et al., 2019).

Enfoques basados en ruido sismico ambiental, incluyendo interferometria y analisis
de variaciones de velocidad, estan siendo explorados para detectar cambios precursores, con
propuestas de integrar modelos numéricos y machine learning para interpretacion avanzada

(Lecocq et al., 2023).

2.7 Modelos automaticos de deteccion y clasificaciéon

La necesidad de procesar grandes volumenes de datos ha impulsado el desarrollo

de métodos automaticos de deteccion:

e Fenner et al. (2022) desarrollaron el médulo AWESAM, que automatiza la identifica-
cién de eventos en volcanes estrombolianos como Stromboli, alcanzando un 95% de

precision sin depender de catalogos extensos.
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e Yukutake et al. (2023) aplicaron machine learning en el Kirishima (Japon), logrando
detectar hasta 7,5 veces mas eventos que los métodos tradicionales y revelando

clusteres hipocentrales vinculados a procesos eruptivos.

e Zali et al. (2024) mostraron que el clustering de tremores con técnicas de deep lear-
ning permite distinguir fases eruptivas y reconocer secuencias precursoras con va-

rios dias de antelacion.

Estos avances evidencian que los algoritmos supervisados y no supervisados (Ran-
dom Forest, SVM, CNN, LSTM/GRU) se estan consolidando como herramientas robustas

para la prediccion de erupciones, capaces de superar las limitaciones del analisis manual.

2.8 Integracion de ciencia de datos e inteligencia artificial

La prediccion de erupciones requiere no solo de la deteccion de sefiales andmalas,
sino también de su integracion en modelos predictivos reproducibles y escalables. El uso de
metodologias como CRISP-ML(Q) ofrece un marco estructurado para proyectos de machine
learning aplicados a volcanologia, asegurando la calidad en las fases de preparaciéon de da-
tos, entrenamiento, validacion y despliegue. En este enfoque, la deteccion temprana se con-
vierte en una tarea de clasificacion y prediccion probabilistica, reduciendo la incertidumbre y

mejorando la gestion del riesgo volcanico.

Revisiones comprehensivas de métodos de machine learning aplicables a volcanolo-
gia discuten vectores de caracteristicas y enfoques para combinaciéon de multiples tipos de
datos en observatorios, cubriendo clasificacion, reduccion de dimensién y aplicaciones a

geofisica, geodesia y teledeteccion (Carniel & Guzman, 2020, 2025).

2.9 Metodologia CRISP-ML(Q)

El desarrollo de modelos predictivos en vulcanologia requiere procesos estandariza-

dos que aseguren calidad, reproducibilidad y escalabilidad. Para este fin, se adopta CRISP-
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ML(Q), una adaptacion del modelo clasico CRISP-DM a proyectos de machine learning, re-

comendado en el disefio metodoldgico del trabajo base.

Este marco metodolégico comprende fases iterativas: comprension del negocio y de
los datos, preparacion, modelado, validacion, implementaciéon y mantenimiento. Su valor
agregado reside en incorporar criterios de calidad (Q) en todas las fases, garantizando que
los modelos predictivos no solo alcancen métricas elevadas de precision, sino que también
puedan ser auditados y aplicados en escenarios criticos como la prediccion de erupciones

volcanicas.

2.10 Comprension del problema

El objetivo principal es anticipar escenarios eruptivos en volcanes de alto riesgo,
como Cotopaxi, a partir del analisis de datos sismicos. Se establecen criterios de éxito me-
dibles, como precision superior al 70%, baja tasa de falsas alarmas e interpretabilidad de
resultados. La relevancia de estas condiciones radica en que eventos subitos, como la erup-
cion de Whakaari en 2019, mostraron la insuficiencia de los sistemas tradicionales de alerta

(Dempsey et al., 2020).

2.11 Comprension y preparacion de datos

Las fuentes de informacion incluyen catalogos sismicos clasificados y series conti-
nuas de formas de onda del Cotopaxi. Entre las variables derivadas destacan la entropia de
Shannon, validada como indicador precursor en Etna, Kilauea y Mount St. Helens (Rey De-
vesa et al., 2023), y el nivel sismico de fondo (SBL), empleado con éxito en el Shinmoe-
dake (Ichihara et al., 2023b). También se consideran parametros de migracion hipocentral y
secuencias sismicas, como las identificadas en Piton de la Fournaise (Journeau et al., 2020)

y en el Agung (Syahbana et al., 2021).
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El preprocesamiento incluye limpieza de registros, segmentacion de sefiales, balan-
ceo de clases dado que los eventos eruptivos son poco frecuentes y normalizacién de varia-
bles. Este enfoque responde a la problematica identificada en estudios japoneses, donde
los algoritmos detectaron hasta 7,5 veces mas eventos que los catalogos manuales (Yuku-

take et al., 2023).

2.12 Seleccidn e ingenieria de modelos

Se aplican y comparan diferentes algoritmos de aprendizaje automatico:

e Random Forest y SVM, eficaces en clasificacion de eventos VT y LP (Dempsey et

al., 2020).

e CNN, apropiadas para la clasificacion de formas de onda complejas (mousavi et al.,

2023).

e LSTM/GRU, ttiles en el analisis de series temporales prolongadas (Ichihara et al.,

2023b).

e XGBoost y LightGBM, por su capacidad de optimizar rendimiento en bases de datos

de gran escala.

El sistema AWESAM de Stromboli, que detecté con un 95 % de precision mas de
290.000 eventos, refuerza la pertinencia de los enfoques automatizados (Fenner et al.,

2022).

2.13 Validacion y aseguramiento de calidad

La evaluacién se realizara mediante validacion cruzada y conjuntos de prueba inde-

pendientes, empleando métricas como accuracy, recall, F1-score y AUC-ROC. Para aplica-
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ciones criticas, se dara prioridad a la reduccion de falsos positivos, ya que una alerta inne-
cesaria puede generar desconfianza en la poblacion y en las autoridades de riesgo (Cor-

doba et al., 2025).

2.14 Implementacion y escalabilidad

El modelo seleccionado se integrara en un prototipo de sistema de alerta temprana,
capaz de procesar datos en tiempo real. Su escalabilidad permitira extrapolarlo a otros vol-
canes activos de la regién andina, aprovechando arquitecturas cloud y técnicas de transfe-
rencia de aprendizaje. La experiencia exitosa de implementacién operativa en volcanes
como Axial Seamount demuestra la viabilidad de estos sistemas (Wang et al., 2024). En
este sentido, la reproducibilidad se garantiza con documentacién abierta, control de versio-
nes y almacenamiento transparente de datos y codigo, siguiendo principios de calidad esta-

blecidos en CRISP-ML(Q).
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CAPITULO 3
3. DESARROLLO DEL TRABAJO

3.1 Proceso ETL
Se inicia con un proceso de ETL en donde el objetivo es unificar, estandarizar y lim-

piar varios catalogos de sismicidad histérica para generar un proxy homogéneo de magnitu-
des Mw. Las librerias utilizadas durante esta fase son pandas, numpy, matplotlib, seaborn,

Sys y 0s.

Se inicia con la carga de los 3 catalogos distintos para transformarlos en un formato
comun. En el catalogo 7907-2009 se seleccionaron las columnas relevantes y se les asigno
un nombre estandar, se realiza ademas una conversion de fecha a formato datetime. En el
catalogo 2010_2011 se define el tipo_magnitud, se renombre las variables preincipales y se
anade una etiqueta de origen. Finalmente, el catalogo 2012-2025 selecciona solo las colum-

nas existentes, se convirte la fecha y se estandarizan los nombres.

Como siguiente paso se genera una magnitud homogénea Mx_Proxy en escala en
donde se vectoriza todas las magnitudes para convertirlas en aproximaciones a Mw. La con-

version utilizada fue Mw = [(0.85 x mb) + 1.03]

Esta conversion se caracteriza por ser empirica, no depende de otras caracteristicas
como region, profundidad o tipo de evento; y ademas se puede introducir incertidumbre para

magnitudes grandes o pequefias.

Posteriormente, se inicia un proceso de limpieza en donde se elimina filas donde fal-
ten datos criticos (Fecha_UTC, Latitud, Longitud), asi como también se elimina duplicados
de sismos. Para ello, utiliza un enfoque de redondeo de coordenadas (4 decimales) antes
de aplicar drop_duplicates basado en la terna (Fecha, Latitud, Longitud) para identificar y

retener solo el primer registro del evento.
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Carga Final: El catalogo final limpio y consolidado se exporta a un archivo CSV

(1_Sismos_Consolidados.csv).

ANALISIS EDA

Esta fase es de vital importancia ya que el andlisis exploratorio de los datos permite
realizar una vision general de la data ademas de corregir particularidades como valores nu-
los, duplicados, datos redundantes, sesgos, entre otros. Un analisis completo incluye esta-
distica descriptiva, distribuciones y correlaciones entre variables. En este proyecto se ha

realizado un analisis completo con la funcién ydata_profiling

Visualizacién en Notebook: EI método perfil.to_notebook_iframe() despliega el re-
porte interactivo dentro del entorno del notebook (Colab o Jupyter), facilitando la validacion

inmediata del dataset post-ETL.

Figura 2

Reporte interactivo con la funcion ydata_profiling

Andlisis Exploratorio de Sismos (Ecuador) | Overview Variables Interactions Correlations Missing values Sample
Overview Reproduction

Dataset statistics Variable types

Number of variables 5 DateTime 1
Number of observations 14893 Numeric 4
Missing cells 0

Missing cells (%) 0.0%

Duplicate rows 0

Duplicate rows (%) 0.0%

Total size in memory 14 MiB

Average record size in memory 100.0 B

Nota: El reporte muestra varias pestafias en la esquina superior derecha con el objetivo de

que el usuario interactue con la data, se recomienda visualizarlo desde el Notebook.

Esta etapa es critica para validar que el proceso ETL previo no introdujo artefactos y

que el dataset esta listo para el Feature Engineering y el modelado.
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3.2 Clasificacion Peligrosidad

Se ha definido la clasificacion de la actividad sismica en dos categorias: “Potencial
Peligro” y “Sin Peligro”. De acuerdo con la literatura un sismo representa una amenaza
cuando se encuentran cerca al volcan y cuando son de magnitud superior a 6. (Volcano

Foundation, 2021)

Por lo tanto, es importante definir cuales son los sismos que se encuentran mayor-
mente relacionados con la actividad volcanica del Cotopaxi. Para ello se define las coorde-
nadas geograficas del volcan (Ubicacion focal) y se utiliza una funcién de distancia con la
férmula Haversine Vectorizada para determinar la distancia geodésica entre cada epicentro

del evento sismico y las coordenadas del volcan, esta distancia es calculada en kilémetros.

Un sismo se marca como "Potencial Peligro" si cumple alguno de los siguientes cri-

terios:

1. Amenaza Local Critica: Sismos cercanos de radio corto que pueden ocurrir en el edi-
ficio volcanico o fallas aledafias

2. Amenaza Regional Fuerte: Sismos de radio medio, son sismos fuertes que sacuden
la estructura.

3. Gran Evento Lejano: Sismos importantes de subduccién de radio amplio.

Tabla 2

Criterios para clasificacion de categoria

Tipo Distancia Geodésica Magnitud

Amenaza Local Critica Menor a 30 km Mayor a 4.0
Amenaza Regional Fuerte Menor a 100 km Mayor a 5.5
Gran Evento Lejano 1 Menor a 250 km Mayor a 7.0

Gran Evento Lejano 2 Cualquiera Mayor a 8
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Basados en la légica descrita anteriormente, se procedid con la generacion de una
columna en donde se aplica la funcion de clasificacion sobre el DataFrame (df.apply(...,

axis=1)) a la cual se la llamé: Clasificacion_Amenaza.

Para validar el proceso anterior se imprimi6 el conteo de valores y un ejemplo de los

eventos clasificados como "Potencial Peligro"

Figura 3

Validacion de criterios de peligro

=== Ejemplo de Alerta ===

Fecha UTC Mw_Proxy Distancia_ Cotopaxi_km
1 1906-01-31 15:36:00 8.35 208.592911
2 1906-09-28 15:24:54 7.50 159.206997
8 1924-07-22 04:04:16 6.50 71.788127
40 1942-05-14 02:13:28 7.80 230.404166
48 1949-08-05 19:08:47 6.80 60.926928

Nota: Se muestran aleatoriamente 5 casos de ejemplo.

El DataFrame se guarda en un archivo llamado 2_Sismos_Clasificados.csv inclu-

yendo a la nueva columna de riesgo.

Para la visualizacion geografica se utilizo la libreria FOLIUM el cual permite generar
un mapa interactivo en donde se graficaron los puntos sismicos que representan una ame-

naza para la actividad volcanica del Cotopaxi.

3.3 Balanceo de Clases
Se vuelve necesario realizar un balanceo de las clases ya que se identifica que
existe un sesgo marcado en la distribucion total de los eventos pues son mucho menor los
sismos de categoria “Potencial Peligro” en relacién a los eventos clasificados como “Sin Pe-

ligro”, por lo tanto, se generan datos sintéticos que son geograficamente plausibles y se
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afade ademas ruido a las caracteristicas. Este paso es necesario ya que permite evitar el

sobreajuste y soluciona el problema de desbalance de clases.

Para la generacién de datos sintéticos se utilizan las librerias geopandas y shapely,
los cuales permiten crear una funcién para extraer las fallas activas del archivo (gem_ac-
tive_faults.geojson). Posteriormente, se proyecta las geometrias a un sistema de coordena-
das planas (UTM 17S) para calcular distancias precisas en metros y finalmente se filtra las
fallas que se encuentran en un radio de 100km alrededor del Cotopaxi, asegurando que los

sismos sintéticos se generen en ubicaciones geoldgicamente relevantes.

El sismo sintético se ubica aleatoriamente sobre una linea de falla (usando linea_fa-
lla.interpolate). Se afiade ruido gaussiano (sigma=0.015) a las coordenadas para simular la

dispersion real de los epicentros alrededor del plano de falla (zona de ruptura).

Fallas encontradas en el radio de 1@ekm: 55
Detectado desbalance. Generando 963 eventos de 'Potencial Peligro'...
Generados 962 registros de Potencial Peligro.

A pesar de que sea datos genéricos, es importante que estos sean de alto valor y

buena calidad para el estudio, por lo tanto, se esquematiza el siguiente flujo a seguir:

Ubicacion del Sismo

: : Magnitud Inteligente
Asignha el epicentro a

una falla cercana

: Validacion Estricta
La magnitud Mw se

fuerza a cumplir el
umbral minimo de
Potencial Peligro.

El sismo sintético solo
se acepta si cumple
exactamente la regla de

Se anade unavariacion |clasificacién de la Tabla
aleatoria (exponencial) |2

para asegurar la
etiqueta correcta
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Una vez que ya se han generado los datos sintéticos, es necesario consolidarlos con
los datos reales, para esto se llama a la funcion de generacion solo para la clase minoritaria

y se concatenan los datos sintéticos con los datos histéricos (df_final_balanceado).

Como resultado se obtiene un dataset balanceado y se guarda en 3_Sismos_Balan-

ceado.csv.

Como fase final de este proceso se identifica la necesidad de introducir ruido para
evitar el sobreajuste, esta seccion es critica para preparar el dataset para Machine Lear-

ning.

Ruido en Caracteristicas (Mw_Noise, Dist_Noise, Prof Noise): Se afiade ruido gaus-
siano a las variables predictoras (magnitud, distancia, profundidad) para simular la incerti-
dumbre de la medicién instrumental (error de localizacién, error de magnitud), haciendo que

el modelo aprenda la regla subyacente y no memorice fronteras perfectas.

Ruido en Etiquetas (Label Noise): Se introduce un error intencional (5% de etiquetas
invertidas) en la columna Clasificacion_Amenaza, esto obliga al modelo de ML a ser robusto
y tolerante al error, impidiendo que el Accuracy llegue al 100% (lo cual indicaria un fallo en

la validacion).

El dataset resultante (df _model) es la version final y mas robusta, lista para el entre-
namiento de un clasificador que debe aprender la frontera de decision ruidosa entre "Poten-

cial Peligro" y "Sin Peligro".

3.4 Entrenamiento

El dataset se encuentra listo para ser entrenado por lo que se preparé el ambiente
de Python importando todas librerias necesarias para los 4 modelos a ser estudiados: SVM,

MLP, RANDOM FOREST, XGBOOST.
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Es necesario que se unifique las mismas condiciones para evaluar todos los mode-

los con el objetivo de poder compararlos de manera objetiva, por lo tanto, se realizé:

Seleccion de Features

Se define explicitamente el vector de caracteristicas (X) utilizando las variables rui-

dosas y ubicacion Prof_Noise, Mw_Noise, Dist_Noise, Latitud, y Longitud.

Codificacion de la Variable Objetivo

Se utiliza LabelEncoder para convertir las etiquetas de texto (Clasificacion_Ame-
naza) a valores numéricos (0 y 1), un requisito para la mayoria de los modelos de ML. Se

almacenan los nombres de las clases (class_names).

Division Estratificada

Funcidn: train_test_split. Se utiliza stratify= y_encoded para garantizar que el conjunto de
entrenamiento y el de prueba contengan la misma proporcion de eventos de "Potencial Peli-
gro” [Image of Stratified sampling illustration] (Clase 1), lo cual es crucial para una evalua-

cion imparcial del riesgo.

Escalado de Caracteristicas

Funcion: StandardScaler. Se aplica escalado a todos los conjuntos (ajustado
en X_train_scaled), ya que es un requisito de rendimiento obligatorio para modelos basados
en la distancia (SVM) y en gradientes (MLP). Los modelos basados en arboles (RF,

XGBoost) también se benefician de la uniformidad.

Finalmente, se consideran funciones adicionales que permitiran optimizar los entre-

namientos de los modelos:

Funcion mostrar_top5_hiperparametros

Procesa los resultados de GridSearchCV (grid_search.cv_results ), muestra

las cinco mejores combinaciones de hiperparametros ordenadas por
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el mean_test_score (promedio del accuracy en la validacion cruzada), esto permite al ana-
lista comprender la configuracion de los hiperparametros que ofrece el mejor rendimiento y

la variabilidad de ese rendimiento (std_test score).
Funcién graficar_metricas_estandar
Genera una figura con tres subtramas para la evaluacion estandar del clasificador:

Matriz de Confusién: Visualiza los aciertos y errores (Falsos Negativos y Falsos Positivos)

en formato heatmap de Seaborn. [Image of Confusion Matrix heatmap example]

Curva ROC: Muestra el trade-off entre TPR (Verdaderos Positivos) y FPR (Falsos Positi-
vos). El valor AUC (Area Under the Curve) se muestra como una métrica de la capacidad de
discriminacion.

Curva Precision-Recall: Esencial en problemas con desbalance de clases (como este de

riesgo sismico). Evalla la capacidad del modelo para predecir la clase positiva con alta Pre-

cision a diferentes umbrales de Recall.
Funcion graficar_historia_entrenamiento

Diagnostica el comportamiento del modelo durante el entrenamiento, diferenciando

entre modelos basados en Epocas y modelos estaticos:

Modelos Iterativos (MLP, XGBoost): Grafica las curvas de Pérdida (Loss) y/o Accuracy en
los conjuntos de entrenamiento y validacion a través de las Epocas (o iteraciones

de boosting). Esto es vital para detectar el punto exacto de sobreajuste.

Modelos Estaticos (RF, SVM): Genera una Curva de Aprendizaje utilizando learning_curve.
Esta curva muestra si el modelo esta sufriendo de bajo sesgo/alta varianza (sobreajuste) o

si la adicion de mas datos mejoraria significativamente el rendimiento.
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3.4.1 Random Forest
Se inicia este modelo con la busqueda de hiperparametros mediante la funcion
GridSearch, para ello se define el espacio de busqueda que esta compuesto por los compo-
nentes detallados en la tabla a continuacion:

Tabla 3

Componentes de Hiperparametros Random Forest

Componente Descripcién
n_estimators Numero de arboles
max_depth Profundidad maxima de los arboles
min_samples_split Nro minimo de muestras para dividir un nodo
class_weigth Opcidn para equilibrar los pesos de las clases

La funcion GridSearch utilizé una validacion cruzada cv=3, el objetivo es encontrar la
mejor combinacion que maximice el accuracy. Una vez que se ha encontrado la mejor com-

binacion de hiperparametros se entrena el modelo para la clasificacion final.

Se procede a medir el rendimiento del modelo generando un Reporte de Clasifica-
cion en donde constan las métricas Precision, Recall y F-1 Score. Adicionalmente, se ge-
neré la Curva ROC y la Curva de Aprendizaje, esta ultima es necesaria ya que permite de-
terminar visualmente si existe overfitting o underfitting.

Finalmente, el mejor modelo es almacenado y posteriormente se graba en un diccio-

nario para la comparativa final.

3.5.2 XGBoost
Se inicializa este modelo con la optimizacion de los hiperparametros mediante Grid
Search y se realiza un diagndstico detallado del entrenamiento utilizando las curvas de histo-

ria (pérdida/error por epoch).
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Se define el parametro de busqueda con los componentes detallados en la tabla a

continuacion:

Tabla 4

Componentes de Hiperparametros XGBoost

Componente Descripcion

n_estimators Numero de iteraciones (boosting)
max_depth Profundidad del arbol

learning_rate Velocidad de aprendizaje del algoritmo
subsample Fraccién de datos a muestrear para cada arbol

En este algoritmo es necesario realizar el re-entrenamiento con Curvas de Historia
para poder graficar la evolucion del rendimiento (curva de pérdida), el mejor modelo
(best_xgb) se re-entrena utilizando el parametro eval_set.

Eval_set: Permite a XGBoost calcular la logloss (pérdida) y el error (1 - accuracy) en
tiempo real tanto en el conjunto de entrenamiento como en el de prueba en
cada epoch de boosting.

Con este modelo se puede medir el rendimiento con el reporte de Clasificacion, ma-
triz de confusion, Curva ROC, Curva de pérdida, Curva de Accuracy, por lo que se procede

a generar estas gréficas. El mejor modelo es almacenado para la comparativa final.

3.5.3 MLP
Al igual que los dos modelos anteriores se inicia con la optimizacién de la arquitec-
tura y los hiperparametros mediante Grid Search, con esto se busca la configuracion que

mejor capture las fronteras de decisién no lineales del riesgo sismico.

Los parametros que se deben considerar en este modelo son hidden_layer_sizes el
cual permite la exploracion de arquitecturas de una capa (50, 100) y dos capas (50, 50); ac-

tivation que son funciones de activacién, entre las mas comunes se tiene relu y tanh, por
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otro lado, esta Alpha que se definio con un término de regularizacion L2 y finalmente lear-

ning_rate_init que corresponde a la tasa de aprendizaje inicial.

El entrenamiento se realiza con early_stopping=True, lo que utiliza una fraccién del
conjunto de entrenamiento como validacion interna y detiene el proceso si el rendimiento
deja de mejorar, previniendo el sobreajuste y ahorrando tiempo.

A diferencia de XGBoost o Random Forest, el diagnéstico de la MLP se centra en la evolu-
cion del entrenamiento, por un lado se tiene la Curva de Pérdida (best_mlp.loss_curve )
aqui se muestra como disminuye el error (loss) en el conjunto de entrenamiento a lo largo
de las épocas. Una caida constante es sefial de un buen proceso de optimizacion. Por otro
lado, se tiene la Curva de Validacion (best_mip.validation_scores_) en este caso se muestra
el score (precision interna) del modelo en el conjunto de validacion interno utilizado para

el early stopping. Es clave para verificar que el modelo no se haya sobreajustado antes de

finalizar el entrenamiento.

3.54 SVM
Se optimizé el clasificador SVM mediante Grid Search para encontrar el hiperplano
optimo que separe las clases de riesgo en el espacio de caracteristicas escalado. Ademas,
se consideran también los siguientes parametros: C (Parametro de Regularizacion) el cual
controla el frade-off entre la penalizacidon por error de clasificacion y la simplicidad de la
frontera; la gamma por su parte define la influencia de un solo ejemplo de entrenamiento
(esencial para el kernel RBF) y finalmente el kernel en donde se realizan pruebas con los

kernels RBF (Radial Basis Function), que maneja fronteras no lineales, y poly (Polinomial).

Se usa el modelo base SVC(probability=True) para asegurar que el modelo pueda
devolver las probabilidades, lo cual es necesario para trazar la Curva ROC/AUC. El resul-
tado del modelo son las predicciones binarias (y_pred_svm) y las probabilidades

(y_proba_svm).
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Finalmente, se realiz6 una comparativa de todos los modelos para identificar el clasi-
ficador de riesgo sismico con el mejor Accuracy y guardarlo junto con los artefactos de pre-

procesamiento necesarios para su despliegue.

Se cred un diccionario (artifact) que empaqueta todos los componentes necesarios
para usar el modelo en un entorno nuevo, asegurando la coherencia entre el entrenamiento
y la inferencia. El artefacto completo se guardé en un archivo final (best_model_[Nombre del

Modelo].pkl).

El sistema desarrollado corresponde a una aplicacién de escritorio orientada al anali-
sis y clasificacion del riesgo sismico en el territorio ecuatoriano, con énfasis en la evaluacion
de eventos que podrian representar un potencial peligro para la actividad volcanica, especi-
ficamente en el entorno del volcan Cotopaxi. La herramienta integra técnicas de aprendizaje
automatico con una interfaz grafica intuitiva, facilitando la interaccion del usuario con mode-

los predictivos avanzados sin requerir conocimientos técnicos especializados.
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CAPITULO 4

4. ANALISIS DE RESULTADOS

4.1 Resultados del Pre procesamiento

34

A continuacién, se muestra los resultados por cada etapa del trabajo desarrollado.

En la etapa ETL fue posible la unificacién de los tres catalogos sismicos de diferen-

tes periodos de tiempo, se considera una integracion exitosa ya que a pesar de que cada

catalogo tenia diferente formato, columna distintas y tipos de magnitudes diferentes, se lo-

gro estandarizar a una sola fuente de datos sdlida y robusta.

Por otro lado, considerando que la variable objetivo debia ser homogenizada debido

al diferente formato y origen de esta, este calculo a Mw permitié comparar eventos sismicos

de diferentes épocas y evitar el sesgo por el uso de escalas incompatibles.

Figura 4

Distribucién de tipos de magnitud
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Nota: Se muestran todas las magnitudes originales de todos los catalogos.
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Se debe considerar ademas que Mw no es una magnitud real como tal sino mas

bien una aproximacion estadistica valida para analisis globales

Como se puede ver en la grafica, la conversion no distorsiona significativamente la
distribucion de las magnitudes, ya que existe una alta similitud entre la variable original y la
ajustada. Asi mismo se observa como se conservan los patrones como por ejemplo la

forma de la curva, la asimetria y la cola. No se introducen artefactos visibles.

La comparacién de las graficas con las magnitudes originales y homogenizadas per-

mite entender que la aproximacion Mw es valida para este tipo de estudios temporales.

Figura 5

Distribucién de las magnitudes Mw

J— 0 Mw Proxy
2500 A1

2000 1

1500 A

Frecuencia

1000 A

) MW%WWWT

Magnitud

Nota: Distribucion de las magnitudes una vez que se ha aplicado la conversion
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Figura 6

Frecuencia de magnitudes
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Nota: Se muestra la distribucion de las magnitudes originales.

Por ultimo, aqui en el ETL se realizé el primer proceso de limpieza de los datos en
donde se realiz6 una limpieza controlada de los duplicados. El riesgo que se genero en este
proceso es que se eliminen por error dos eventos sismicos que se encuentren cercanos en
tiempo y espacio; sin embargo, la literatura nos indica que este proceso es correcto debido
a que las mediciones son historicas, para el caso de enjambres sismicos se debe realizar

otra validacién pues esta no es la mas adecuada.

El resultado final del ETL fue un catalogo sismico confiable para continuar con el

analisis exploratorio.
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Figura 7

Resumen proceso ETL

Etapa Filas Columnas Datos Nulos_Totales Descripcion
Consolidacién 14893 7 0 Unién de archivos
Estandarizacion 14893 8 0 Mw_Proxy generado
Limpieza Final 14893 8 0 Nulos y duplicados eliminados
Archivo guardado: 1 Sismos Consolidados.csv

Nota: Imagen del resultado obtenido en el Notebook.

Durante el proceso de analisis de la calidad de los datos, se realizé la clasificacion
de los eventos en dos categorias: “Potencial Peligro” y “Sin peligro”, esta clasificacion se
basé en criterios fisicos de la data recolectada como distancia, magnitud y profundidad; es
decir que no es un modelo de aprendizaje automatico sino mas bien esta basado en reglas

geofisicas.

El volcan Cotopaxi fue modelado como un punto de coordenadas a partir del cual se
generaron las distancias geodésicas y en base a la Tabla 2 los eventos fueron clasificados.

El resultado fue el esperado:

Figura 8

Resultado clasificacion binaria con eventos reales

=== Resumen de Clasificacidn (Binaria) ===
Clasificacion_Amenaza

Sin Peligro 14856

Potencial Peligro 37

Name: count, dtype: inte4

En condiciones geofisicas este resultado tiene sentido ya que siendo conscientes
con la realidad sismica la gran mayoria de los sismos no afectan la actividad del sistema
volcanico. Sin embargo, con este resultado se pudo observar que para el entrenamiento con

Machine Learning si representa un problema pues evidencia un desbalance de clases.
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La limitacion de esta clasificacion binaria es que unicamente los divide en dos gru-
pos, pero no los diferencia por niveles de peligro ya que dentro de las clasificaciones inicia-

les también pudiera haber subclasificaciones.

A continuacion, se graficaron los eventos considerados como “Potencial Peligro” ya
que esto permite visualizar la amenaza real que podrian afectar la estabilidad de la actividad
volcanica del Cotopaxi y esto a su vez nos deja ver porque este volcan es el mas vigilado a
nivel nacional y de gran interés a nivel internacional. Este grafico seria ideal como un filtro
inicial de eventos relevantes para estudios futuros relacionados con la sismologia del vol-

can.

Figura 9

Clasificacion de sismos considerados de Potencial Peligro

Nota: El radio del marcador corresponde a la magnitud del sismo, el color rojo es para los
eventos clasificados como potencial peligro y el pin plomo marca la ubicacion del volcan Co-

topaxi.
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Este analisis permitié clasificar sismos que, por su ubicacion y energia liberada, re-

presentan una amenaza directa a la estabilidad del sistema volcanico a Cotopaxi.

Posteriormente, al haber evidenciado que existe un desbalance de clases se generd
un proceso data augmentation para generar datos sintéticos que sean fisicamente coheren-
tes y apegados a las condiciones de los datos reales. Con este método se resolvio el desba-
lance de clases para poder obtener un dataset listo para el entrenamiento y que no sobre-
ajuste a un accuracy de 1, lo cual es comun cuando no existen suficientes datos para entre-

nar en una de las clases.

Figura 10

Resultado del balanceo de clases

Resultado Final del Balanceo ===

Clasificacion_Amenaza
Sin Peligro 14856
Potencial Peligro 1000

Name: count, dtype: intes4

Se valida este proceso ya que el objetivo principal no es el andlisis sismico como tal

sino es construir un dataset que sea entrenable y a su vez sea cientificamente defendible.

Para validar geograficamente que son datos sintéticos plausibles y de calidad, se
procedié con la ilustracién de los sismos para hacer una comparativa con los datos reales

que se muestran en la FIGURA 9
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Figura 11

Sismos sintéticos generados como Potencial Peligro
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Nota: Los sismos sintéticos se generaron cerca de fallas geoldgicas en un perimetro de

100km alrededor del Volcan Cotopaxi.

Se utilizaron los mismos criterios de validacion de la categoria “Potencial Peligro”,

garantizando asi la plausibilidad fisica de los nuevos datos.

Se puede evidenciar que se mantiene la misma légica que la clasificacion de even-
tos reales puesto que la ubicacion geografica de los puntos sintéticos encierra areas muy
similares a los sismos reales y debido a que la clase desbalanceada era la de “Potencial Pe-
ligro”, se evidencia que la FIGURA 11 es mucho mas poblada pues claramente ese es el

objetivo en este proceso.

Y de igual manera que los datos reales tienen ruido y errores, es necesario también

simular los mismos “errores” en los datos sintéticos por lo que es agregado el ruido en las
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variables continuas, este paso introduce zonas grises de igual manera que existe en los

eventos reales. La generacién de ruido es clave y obligatorio hasta cierto punto en la gene-
racion de datos sintéticos pues de esta manera se evita un overfitting y un accuracy artificial
de 1. Por lo tanto, con esto se garantiza que la data sintética respete la tecténica la real, in-

corpora incertidumbre y evita el aprendizaje trivial.

La limitacion de esta técnica es que no hay un enfoque sobre el estado dinamico del
volcan, el ruido sigue distribuciones simples y no existe un mecanismo focal, sin embargo,
como el objetivo de este trabajo es la aplicacion de algoritmos de machine learning, el trata-
miento es el adecuado, en otros casos de estudio se puede mitigar la debilidad de la activi-

dad sismica tedrica que al momento es minima.

Finalmente, se prepararon los datos para el entrenamiento. El dataset preprocesado
se encuentra listo para su divisién en entrenamiento 80% y prueba 20%; asi como también
se define las variables caracteristicas y la variable objetivo, es importante considerar que se

utilizan las variables “ruidosas”, para evitar que el modelo aprenda reglas “perfectas”.

Datos preparados. Train shape: (12684, 5), Test shape: (3172, S5)

4.2 Resultados del entrenamiento de los modelos

El primer modelo de entrenamiento a ser comparado es Random Forest cuyo desa-
rrollo y evaluacion se estructura de tal forma que sea rigurosa y sistematica. En primer lu-
gar, se realiza una busqueda profunda de hiperparametros, el cual tiene por objetivo identifi-
car la configuracion éptima del modelo para maximizar su desempefio y al mismo tiempo
evitar el sobreajuste; este proceso se complemente con la aplicacion de validacién cruzada,
lo que a su vez permite evaluar la capacidad de generalizacion del modelo sobre diferentes
subconjuntos de datos y de esta manera garantizar la estabilidad de los resultados. De igual
manera, se cuantifica el desempefio del modelo a través de métricas objetivas, permitiendo

asi una base para el andlisis y toma de decisiones. Para finalizar, el proceso fue reforzado
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con la generacién de visualizaciones que facilitan la interpretacion y el almacenamiento del

mejor modelo obtenido para su posterior uso.

La busqueda de los mejores hiperparametros se filtré con la métrica de optimizacion
accuracy y con una validacion cruzada de 3-fold. El resultado es la impresion del top 5 de
mejores combinaciones de hiperparametros, esto es util para analizar la sensibilidad y ade-

mas de otorgar transparencia metodoldgica.

Figura 12

Mejores hiperparametros para random forest

- TOP S MEJORES HIPERPARAMETROS ---

params mean_test_score std_test_score rank_test_score

{'class_weight': None, ‘max_depth': None, 'min_samples_split': 5, 'n_estimators': 1ee} 9.9480 0.ee3017 1
{'class_weight': None, 'max_depth': None, 'min_samples_split': 5, 'n_estimators': 200} 9.9430 9.203191 1
{'class_weight': None, 'max_depth': None, ‘'min_samples_split': 5, 'n_estimators': 3ee} 9.9480 9.ee3191 1
{'class_weight': None, 'max_depth': None, ‘'min_samples_split': 2, 'n_estimators': 1ee} 9.9480 9.203017 5 §

{'class_weight': None, 'max_depth': 20, ‘min_samples_split': 2, 'n_estimators': 1ee} 9.9479 0.2e2956 s

Nota: Se muestran Unicamente las 5 combinaciones de hiperparametros que obtuvieron me-

jor promedio en CV.

Se puede ver que existe una clara tendencia en cada uno de los hiperparametros: 'n_esti-

mators": 100, 'max_depth': None, 'min_samples_split": 5, 'class_weight": None

El modelo fue entrenado y se obtuvieron las siguientes métricas de rendimiento:
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Figura 13

Reporte de Clasificacion y Matriz de Confusién de Random Forest

precision recall fil-score support

Potencial Peligro .97 9.51 0.67 310
Sin Peligro ©.95 1.ee .97 2862
accuracy ©.95 3172

macro avg .96 0.75 .82 3172
weighted avg .95 0.95 2.94 3172

Matriz de Confusion - Random Forest
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Se observa que el accuracy del modelo alcanzé un valor de 0.95 lo cual, dentro del
contexto de este trabajo, se interpreta como una métrica global aceptable del modelo en ge-

neral.

Por otro lado, la matriz de confusién nos indica que los eventos considerados en la
categoria “Sin Peligro” se predicen bastante bien ya que unicamente 5 muestras son falsos
positivos; sin embargo la categoria “Potencial Peligro” muestra bastante ambigtiedad ya que
entre los casos predichos y los reales hay una tendencia el 50/50, esto se puede ver en el
Recall de “Potencial Peligro” donde se obtuvo un puntaje de 0.51 indicando que aproxima-
damente la mitad de los eventos criticos no fueron detectados correctamente, esto puede

deberse a una frontera de decision conservadora, posiblemente por la incorporacion de
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ruido instrumental de etiquetado, lo cual fue disefiado para evitar el sobreajuste y simular

condiciones reales de incertidumbre.

Por otro lado, si bien el desempefio global del modelo es aceptable con un 0.95, la
baja sensibilidad con relacion a los eventos considerados potencialmente peligrosos, limita
a que pueda ser un modelo utilizado como sistema de alerta temprano ya que en la mitad
de los casos los riesgos reales no van a ser detectados ni alertados. Sin embargo, a pesar
de llegar a esta conclusion, estos resultados llegan a tener sentido hasta cierto punto ya que
la amenaza de la actividad volcanica no depende ni Unica ni directamente de la sismologia,

sino también de condiciones geoldgicas y meteoroldgicas adicionales.

Oftra métrica de rendimiento del modelo es la curva ROC, esta curva permite medir
la capacidad de la discriminacion del modelo, es decir que tan bien separa los eventos en

promedio “Potencial Peligro” de los “Sin Peligro” para todos los umbrales.

Figura 14

Curva ROC- Random Forest
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Nota: AUC siglas para Area Under Curve

Para este modelo se obtuvo un AUC de 0.77 este valor se puede interpretar como

una probabilidad en donde si se selecciona un evento al azar de “Sin Peligro” y “Potencial
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Peligro”, el modelo le asignara una probabilidad mayor al evento peligroso el 77% de las ve-

ces.

En una escala de interpretacién global, un AUC en una escala entre 0.7 y 0.8 es
bueno-aceptable, el AUC bueno-ideal habria sido entre 0.8 y 0.9. Este resultado nos indica
que el modelo tiene una buena capacidad de discriminacion de clases y captura patrones
relevantes en los datos, sin embargo, la seleccion final limita la sensibilidad frente a la clase

critica.

La discrepancia entre un AUC bueno y un recall reducido, se puede interpretar como
una frontera difusa de decision y claramente existe una superposicion entre clases, condi-

ciones que se ajustan a escenarios realistas sismicos.

La curva a continuacion, dentro de este contexto, responde a la pregunta ¢ Qué tan
confiables son las alertas a lo largo de todos los umbrales, cuando el modelo decide emitir

una alerta?

Figura 15

Curva Precision-Recall Random Forest
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El valor obtenido de 0.95 se puede interpretar como el acierto en un 95% de las ve-

ces en promedio cuando el modelo se clasifica como “Potencial Peligro”.

Esta interpretacion podria parecer contradictoria con el Recall de 0.51 discutido an-
teriormente, sin embargo, no lo es ya que esta métrica se enfoca unicamente en las pocas
alertas que emite el modelo, pero de estas pocas alertas se acierta casi siempre, 6sea un

95%.

A nivel de la interpretacién en el contexto sismico quiere decir que, si el modelo
marca un sismo como potencialmente peligroso, tiene una probabilidad casi certera que si lo
es; sin embargo, en el contexto global hay muchos eventos peligrosos que no estan siendo

detectados.

En un contexto geopolitico, es preferible tener un AP alto con un recall ajustable, a
tener un recall bajo con muchas falsas alarmas, ya que en este contexto implicaria una des-

estabilizacion a nivel econdémico y social el generar una alarma innecesaria.

Finalmente, para este modelo se generd una grafica de curva de aprendizaje

Figura 16

Curva de Aprendizaje-Random Forest
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Nota: Este algoritmo no entrena por épocas.
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La curva de entrenamiento aproximadamente igual a 1 implica que el modelo
aprende muy bien los datos de entrenamiento, esto muestra que puede memorizar patrones
complejos. Por otro lado, la curva de validaciéon cruzada que se mantiene en 0.95 aproxima-
damente, indica una buena generalizacion. La brecha entre ambas curvas es pequefia lo

cual es un resultado positivo.

En base a todos los resultados obtenidos de Random Forest, los valores no son con-

tradictorios sino complementarios, el modelo aprende bien, pero decide con cautela.

El segundo modelo de entrenamiento a ser comparado es XGBoost, el resultado de

este modelo se puede resumir a los siguientes puntos:

e Busqueda sistematica de hiperparametros,
¢ Re entrenamiento registrando métricas por épocas
e Meétricas cuantitativas: Precision, Recall, AUC, etc.

¢ Almacenamiento del mejor modelo.

Se obtuvo los siguientes resultados para la combinacién de mejores hiperparametros:

Figura 17

Mejores hiperparametros de xgboost

- TOP 5 MEJORES HIPERPARAMETROS ---

{'learning_rate': ©.1, 'max_depth': 3, 'n_estimators': 200, ‘subsample': 1.e} 9.9469 ©.003256
{'learning_rate': ©.1, 'max_depth': 5, 'n_estimators': 1ee, ‘subsample': 1.0} ©.9468 ©.003367
{'learning_rate': ©.2, 'max_depth': 3, 'n_estimators': 1@@, ‘subsample': 1.0} 9.9468 ©.002858
{'learning_rate': @.01, 'max_depth': 7, 'n_estimators': 20@, ‘subsample': 1.e} ©.9466 ©.002899
{'learning_rate': ©.2, 'max_depth': 3, 'n_estimators': 20, ‘subsample': 1.0} 9.9466 ©.002925

params mean_test_score std_test_score rank_test_score

bbb RN e

Se puede observar que se marca una clara tendencia:

n_estimators: 200, max_depth: 3, learning_rate: 0.1,subsample: 1
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Se almacena el mejor conjunto de hiperparametros para entrenar el modelo, de igual
manera se lo filtra por el mejor promedio obtenido.

La exploracion del Grid en XGBoost se destaca por arboles simples con aprendizaje
lento versus arboles complejos con aprendizaje rapido.

En este algoritmo se realiza un re entrenamiento lo cual permite ver el sobreajuste y

analizar la estabilidad del modelo.

Se muestra a continuacion las métricas del rendimiento general del modelo:

Figura 18

Reporte de Clasificacion y Matriz de Confusion de XGBoost

precision recall fi-score support

Potencial Peligro e.96 0.51 0.67 310
Sin Peligro .95 1.ee .97 2862
accuracy 2.95 3172

macro avg .96 0.76 .82 3172
weighted avg .95 0.95 2.94 3172

Matriz de Confusion - XGBoost
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Del reporte de clasificacion se puede observar que se obtuvo un puntaje global del

rendimiento del modelo con un accuracy de 0.95
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Por otro lado, la matriz de confusién nos indica que los eventos considerados en la
categoria “Sin Peligro” se predicen bastante bien ya que unicamente 6 muestras son falsos
positivos; sin embargo, la categoria “Potencial Peligro”, al igual que el modelo anterior,
muestra bastante ambigliedad ya que 151 casos que se predijeron como “Sin Peligro” resul-
taron si siendo una amenaza, y de forma paralela casi el mismo numero de eventos resulta-
ron siendo eventos reales potencialmente peligrosos. La tendencia es que 1 de cada 2
eventos peligrosos no son discriminados correctamente esto se puede ver en el Recall de
“Potencial Peligro” donde se obtuvo un puntaje de 0.51 esto puede deberse a una frontera

de decision conservadora, posiblemente por la incorporacion de ruido.

Se puede observar ademas una ligera mejora que Random Forest (RF) en relacion a
los eventos peligrosos predichos correctamente, ya que en RF fueron 158 eventos y con

XGBoost son 159 eventos.
Por otro lado, se mide también al modelo con la Curva ROC

Figura 19

Curva ROC-XGBoost
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Se obtuvo un resultado similar a RF con un AUC de 0.76 que se interpreta como una
probabilidad del 76% de que el modelo asigne mayormente una probabilidad a un sismo po-
tencialmente peligro que a uno que no sea peligroso, eligiendo de manera aleatoria cual-
quier evento sismico. El 0.76 es una métrica buena sin embargo no sobresaliente y es una

oportunidad de mejora.

En el contexto de las geociencias es un valor esperado un AUC que se encuentre
entre 0.7 y 0.8; sin embargo, con datos sintéticos se esperaria que esta métrica sea al me-
nos 0.8, el ruido anadido intencionalmente esta cumpliendo su funcion y el problema ya no

es trivial.
A continuacion, se muestra la grafica Precision-Recall

Figura 20

Curva Precision-Recall XGBoost
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Se obtiene el mismo resultado de AP que en Random Forest, la interpretacion es la misma

ya que esta métrica hace referencia Unicamente a los eventos peligrosos y sus aciertos, es
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decir que cuando se generen alarmas de sismos potencialmente peligrosos, con casi toda

seguridad los eventos si seran peligrosos.

A continuacion, se muestra la gréfica de pérdida, esta grafica es una de las mas im-
portantes en el algoritmo de XGBoost ya que mide que tan buenas son las probabilidades
mas que la clase final, sin embargo, penaliza fuertemente las predicciones muy seguras

pero que terminan siendo incorrectas.

Figura 21
Curva de Pérdida (Loss)-XGBoost
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Se puede observar que la curva de pérdida muestra una disminucion progresiva de
ambas curvas al inicio, en la fase intermedia se marca una distancia entre la curva de entre-
namiento y la curva de validacion, y en la etapa final la curva de validacion se aplana mien-
tras que la curva de entrenamiento sigue bajando. Esta fase final es la deseable o esperada

ya que significa que el limite de la informacion util ha sido alcanzado.

En este contexto, la pérdida no llega a cero ya que en un sistema volcanica no se
encuentra determinada una frontera perfecta y clara entre el peligro y no peligro, por lo

tanto, el modelo esta mostrando la realidad.
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El modelo esta evitando el sobreajuste y tratando de generalizar adecuadamente a

las clases.

A continuacién, se muestra la siguiente métrica que es la Curva de Accuracy, esta
curva tiene una interpretacion de mucho cuidado ya que el Accuracy no es la métrica princi-

pal del algoritmo, sin embargo, si aporta informaciéon complementaria.

Figura 22

Curva de Accuracy- XGBoost
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El resultado esperado de esta grafica es que ambas curvan suban rapidamente y se

estabilicen ambas horizontalmente y mantengan una brecha cercana entra las dos curvas.

Si ambas curvas se encuentran en un accuracy entre 0.95 y 0.99 se puede interpre-

tar como que el modelo aprende bien, pero no memoriza completamente los datos.

Adicionalmente, se observa que las curvan se mantienen altas y estables sin mayo-

res fluctuaciones, lo que indica que es un resultado esperado y correcto.

Es importante mencionar que un accuracy alto, en este contexto, no significa que
sea un buen detector de amenaza de eventos potencialmente peligrosos, mas bien la inter-

pretacién correcta seria que el modelo es bueno detectando casos “faciles” es decir los
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eventos “Sin Peligro”, esto ayuda a que el accuracy suba, sin embargo, en los eventos criti-

cos tiene baja sensibilidad para discriminar este tipo de eventos.

Por lo tanto, se debe considerar que el accuracy sirve para medir la estabilidad glo-
bal del modelo, pero no debe ser utilizado como referencia de un umbral en especifico, es-
pecialmente en este caso no debe interpretarse como métrica de capacidad de deteccion de

eventos sismicos peligrosos.

El tercer modelo que ha sido entrenado es MLP- Red Neuronal. Este modelo no uti-

liza reglas explicitas y aprende fronteras no lineales continuas.

Al Igual que en los dos modelos anteriores, se utilizé6 GridSearch para definir la me-

jor combinacién de hiperparametros:

Figura 23

Mejores hiperparametros de red neuronal-MLP

MODELO 3: MLP (RED NEURONAL)

- TOP 5 MEJORES HIPERPARAMETROS ---
params mean_test_score std_test_score rank_test_score

{'activation': 'relu’', ‘alpha': @.eee1, 'hidden_layer_sizes': (5@, 5@), 'learning_rate_init': e.e1} 9.9443 9.e03031 1
{'activation': 'relu’, 'alpha': @.e01, 'hidden_layer_sizes': (5@,), 'learning_rate_init': e.e1} 9.9438 9.002733 2
{'activation': 'relu’, 'alpha': @.eeel, 'hidden_layer_sizes': (5@,), 'learning_rate_init': e.e1} 9.9436 9.003068 3
{'activation': 'tanh', ‘alpha‘: ©.eeel1, ‘'hidden_layer_sizes': (1e,), 'learning_rate_init': e.e1} 9.9435 9.002373 -
{'activation': ‘relu’, 'alpha': @.01, ‘hidden_layer_sizes': (50,), 'learning_rate_init': e.ee1} 9.9434 9.202520 s

En este proceso de GridSearch se utilizé EarlyStopping, lo cual es una validacion in-
terna que detiene el entrenamiento cuando ya el desempeio deja de mejorar, esto a su vez

redujo el sobreajuste y el entrenamiento innecesario.

La arquitectura de la red se entrend con los mejores hiperparametros:1 capa (50 o 100 neu-

ronas) y 2 capas (50-50)

Funcion de activacion

Relu: rapida y robusta
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Regularizacion: alpha
Penaliza pesos grandes evitando asi el sobreajuste.
Learning Rate

Controla estabilidad contra rapidez. Una vez que se realiz6 el entrenamiento, se obtuvieron

los siguientes resultados que miden la capacidad de discriminacién de clases del modelo:

Figura 24

Reporte de Clasificacion y Matriz de Confusion MLP Classifier

precision recall fi-score support

Potencial Peligro e.93 9.51 2.66 310
Sin Peligro e.95 1.ee 0.97 2862
accuracy ©.95 3172

macro avg 2.94 8.75 2.82 3172
weighted avg @.95 8.95 9.94 3172

Matriz de Confusién - MLP Classifier
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Se puede observar que se mantiene la tendencia con un accuracy del modelo global
como tal de 0.95, los eventos clasificados “Sin Peligro” parecen ser de algin modo, bas-

tante faciles de clasificar pues ademas de ser la clase mayoritaria, los eventos peligrosos
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histéricamente se presentan en intervalos largo de tiempo, por lo tanto, es lo esperado que

entre la gran mayoria de eventos a los clasificados como “Sin Peligro”

Por otro lado, se obtuvo un F1-Score de 0.66 para el evento de “Potencial Peligro” lo
cual es de esperarse un valor bajo al obtener un 0.51 en el Recall ya que estas métricas se
encuentran directamente relacionadas, el F1-Score se calcula a partir del Recall y Precision,

y este célculo castiga fuertemente si uno de estos dos valores es bajo.

El F1-Score entre 0.6 y 0.7 se considera aceptable, y dentro del contexto volcanico
es realista, ya que no mide perfeccion sino compromiso operacional. Un F1-Score aceptable
es consistente con un sistema de alerta aceptable, mas no un clasificador que sea determi-

nante.

Posteriormente, se obtuvo la Curva de Precision-Recall donde se observa que se

mantiene la tendencia.

Figura 25

Curva Precision-Recall MLP
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Nota: AP siglas para Average Precision

La grafica mantiene la misma interpretacion en donde se mide la calidad de las aler-

tas peligrosas y que en este caso casi siempre acierta.
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De este resultado se puede interpretar a nivel del contexto sismico en donde el mo-
delo es muy conservado, es muy confiable cuando alerta eventos altamente peligrosos, sin
embargo, es poco sensible ya que no detecta casi la mitad de los eventos que deberian

marca una alerta.

Un AP alto se puede interpretar también como un ranking interno dentro del modelo
muy bueno para la clase de “Potencial Peligro”, aunque la frontera de decisién fina sea muy

conservadora.

Dentro de un contexto aplicativo, el modelo no aporta mayormente para generar una
alerta temprana automatica ya que, no es suficiente porque pierde muchos eventos criticos.
Sin embargo, seria excelente para un sistema de apoyo de decision ya que da prioridad a

los eventos con una alta probabilidad real.
En la curva ROC se observaron los siguientes resultados:

Figura 26

Curva ROC- MLP Classifier
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Nota: AUC siglas para Area Under Curve
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Al igual que las otras métricas, el AUC es consistente, marcando asi un valor de
0.76, en este contexto es un valor bueno y aceptable ya que de haber obtenido un AUC
>0.9 habria significado algun tipo de problema como fuga de informacién o aprendizajes tri-
viales; el valor de 0.77 es el esperado ya que el modelo esta trabajando a propdsito con da-

tos ruidosos e intenta imitar un escenario real.

Con este resultado se puede decir que, el modelo clasifica mejor que al azar y de
manera consistente, pero le hace falta la optimizacién para maximizar los eventos altamente

peligrosos.

Se muestra a continuacion la curva de pérdida para este modelo.

Figura 27

Curva de Pérdida MLP Classifier

—— Training Loss
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Se puede observar que la curva cae rapidamente en las primeras épocas, esto signi-
fica que el modelo ha encontrado rapidamente patrones informativos en el conjunto de da-
tos, este es el resultado esperado debido a que las variables tienen un significado fisico y se

realizd correctamente el escalado.
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Luego, se observa una estabilizacién en la curva a medida que se van aumentando
las épocas, sin embargo, no implica que mas épocas mejoraria en modelo, esto quiere decir

que el modelo ha extraido toda la informacion util.

Desde el punto vista volcanico, se podria decir que no todos los sismos cercanos tie-
nen la capacidad de activar al volcan y de igual manera que no todos los sismos grandes
producen un efecto en la actividad sismica y esto se debe principalmente a que se deben
considerar ademas factores externos como el estado del magma, la presion, las fallas geo-
I6gicas, entre otros muchos mas para que se conjugue todo el escenario para un evento po-

tencialmente peligroso.

La grafica a continuacion muestra una validacion interna del accuracy en donde una
fraccién del conjunto de entrenamiento pasa a ser entrenada y calcula el accuracy en cada

época.

Figura 28

Validacion de Exactitud MLP Classifier

MLP Validation Accuracy (Internal)
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En esta grafica se espera que las oscilaciones no son fuertes y no existan caidas
abruptas, sin embargo, en esta grafica se puede ver que existen dos picos negativos muy

marcados, esto puede deberse al ruido gaussiano y el ruido intencional en las etiquetas.
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También puede deberse al tamafio reducido del set de validacion en donde si unos eventos

mal clasificados pueden provocar las caidas en la curva.

De todas maneras, las caidas abruptas no son preocupantes ya que se puede ver
que la grafica se recupera rapidamente y vuelve a elevar la curva, aqui se puede ver que el
early stopping no se detiene por una caida, sino que continiua mejorando. En términos ge-
nerales, la curva se estabiliza alrededor de los valores medios de la figura y a pesar de las
oscilaciones con caidas abruptas debido a la exploracién bajo incertidumbre, no necesaria-
mente es una mala generalizacion, seria preocupante en el caso de que mantuviera una

tendencia descendente sostenida.

Finalmente, se muestran los resultados para el ultimo modelo Support Vector Ma-
chine (SVM), al igual que los otros modelos se realizé la busqueda de los mejores pardme-

tros con Grid Search, el resultado obtenido fue el siguiente:

Figura 29

Mejores hiperparémetros para SVM

--- TOP 5 MEJORES HIPERPARAMETROS ---
params mean_test_score std_test_score rank_test_score

{'C': 10, 'gamma': 'scale', ‘'kernel': 'rbf'} 0.9441 0.002408 1
{'Cc': 1, 'gamma’': 'scale', 'kernel': 'rbf'} 0.9430 0.001769 2
{'C': 10, 'gamma': 0.1, 'kernel': 'rbf'} 0.9424 0.001658 3
{'c': 0.1, 'gamma': 0.1, ‘'kernel’': 'poly'} 0.9421 0.002117 4
{'c': 1, 'gamma': 0.01, 'kernel': 'rbf'} 0.9419 0.002178 5

Los hiperpardmetros evaluados solo fueron tres, esto indica que es un Grid razona-

ble y controlado evitando asi las combinaciones extremas.

Se muestra a continuacién las métricas obtenidas en este modelo:
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Figura 30

Reporte de Clasificacion y Matriz de Confusion SVM

precision recall fil-score support

Potencial Peligro 0.89 9.50 9.64 310
Sin Peligro .95 .99 .97 2862
accuracy 2.95 3172

macro avg @.92 8.75 2.81 3172
weighted avg 2.94 9.95 2.94 3172

Matriz de Confusion - SVM
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En este caso se observa que la prediccion de los eventos predichos y acertados
como potencialmente peligrosos ha disminuido, lo cual hace que el Recall quede en un
50/50 en la capacidad de discriminar esta clase. De igual manera aumenta las falsas alar-
mas, en donde se catalogan 19 eventos como potencialmente peligrosos cuando en reali-

dad no lo eran.

Se observa también que el accuracy global se mantiene en el 0.95, lo cual es un ren-

dimiento bueno del modelo en general.

Se realizd la curva de aprendizaje para evaluar al modelo:



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS 61

Figura 31

Curva de Aprendizaje SVM
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Nota: Este Algoritmo no entrena por Epocas

Esta grafica muestra una curva saludable ya que espera que el training score se en-
cuentre por encima de la curva de cross-validation, con una ligera brecha entre ellas. Ade-
mas, se observa que las curvas no se acercan al 1 y esto valida que no existe sobreajuste,
asi como también las curvas no se juntan demasiado indicando que no existe underfitting;
finalmente se muestra una tendencia a la convergencia de las curvas a medida que el nu-

mero de datos va en aumento.

El modelo SVM mostré un comportamiento competitivo, aunque ligeramente inferior
a los anteriores modelos, especialmente en la capacidad de deteccion de eventos peligro-
sos, esto podria sugerir que a pesar de que el margen es efectivo, el ruido y el solapamiento

entre las clases limita la capacidad de discriminacion.

Los resultados obtenidos en los cuatros modelos pueden ser comparados ya que
fueron pre procesados para que la competitividad entre estos, se encuentren en las mismas
condiciones. A continuacién, se muestra una tabla resumen de los resultados mas relevan-

tes:
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Tabla 5

Resumen del reporte de clasificacién de todos los modelos

62

Clasificacion Precision Recall F1-Score Accuracy
Random Forest 0.95
Potencial Peligro 0.97 0.51 0.67
Sin Peligro 0.95 1 0.97
XGBoost 0.95
Potencial Peligro 0.96 0.51 0.67
Sin Peligro 0.95 1 0.97
Red Neuronal MLP 0.95
Potencial Peligro 0.93 0.51 0.66
Sin Peligro 0.95 1 0.97
SVM 0.95
Potencial Peligro 0.89 0.5 0.64
Sin Peligro 0.95 0.99 0.97

Se puede observar que en todos los modelos el Accuracy fue de 0.95 lo cual indica-
ria que es un excelente rendimiento, sin embargo, dentro del contexto de este estudio esta
métrica es importante pero no determinante. Este resultado puede deberse a que clasifico
bien la mayoria de eventos, de los cuales en su mayoria caian en una sola clase, por ello el

accuracy es alto de forma global, sin embargo, en el resultado por clases muestra métricas

mas bajas.

Los resultados en general son casi iguales en todos los modelos con ligeras varia-

ciones en algunas métricas, a simple vista se puede descartar a SVM debido a que muestra

una precision y un recall menor en la clase de potencial peligro.

Por lo tanto, ahora se determiné cual es el mejor modelo por accuracy ya que es el

que mide el desempefio global en el conjunto de prueba.
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Figura 32

Comparativa mejor modelo

Ranking de Modelos por Accuracy:
Model Accuracy
Random Forest ©.9505e4

XGBoost @.9505e4
MLP ©.948613
SVM ©.945460

El mejor modelo fue Random Forest.
Archivo guardado exitosamente como: best_model_Random_Forest.pkl

Nota: El mejor modelo se graba en un archivo tipo pkl para posteriormente ser consumido

por un aplicativo Tkinter y analizar nueva data.

El modelo final fue llevado con su pipeline de pre procesamiento, asegurando asi su
reproducibilidad. A pesar de que la seleccion final fue por Accuracy , otras métricas como

Recall y F1-score fueron analizadas y discutidas durante el analisis.

A continuacion, se muestran los resultados obtenidos en el aplicativo desarrollado
con Tkinter, la interfaz p del sistema presenta un encabezado informativo que identifica el
propésito de la aplicacién, la institucion académica responsable y los integrantes del equipo
de desarrollo. Este disefio permite el uso del sistema desde el primer contacto del usuario,

reforzando su caracter analitico.
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Figura 33

Interfaz del aplicativo

*%, Sistema de Clasificacin de Riesgo Volcanico — Cotopaxi = o X

SISTEMA DE CLASIFICACION PARA ANALISIS DE SISMOS EN ECUADOR

Integrantes GRUPO 8:
- Cristian Tenecela

- Jose Ocafia

- Yessenia Carrillo

- Eutimio Arévalo

Modelo activo: Random Forest Cargar CSV Predecir Graficos Histograma -

Sistema listo. Cargue un archivo CSV para iniciar.

La interfaz grafica muestra un despliegue amigable para el usuario ya que muestra pasos

simples a seguir, ademas de una barra de colores donde existen botones para:

e Carga de archivo CSV (Botén celeste)
e Predecir (Boton verde)

e Graficos (Boton rojo)

e Histograma (Boton negro)

e Eventos criticos (Boton naranja)

Cada boton muestra su funcionalidad y permite al usuario elegir la opcién que requiera ana-

lizar.
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Figura 34

Interfaz carga de archivo

*1. Sistema de Clasificacién de Riesgo Volcanico — Cotopaxi — o X

SISTEMA DE CLASIFICACION PARA ANALISIS DE SISMOS EN ECUADOR

Integrantes GRUPO 8:
- Cristian Tenecela

- Jose Ocafia

- Yessenia Carrillo

- Eutimio Arévalo

Modelo activo: Random Forest Predecir Graficos Histograma _

Sistema listo. Cargue un archivo CSV para iniciar.
¥ Sistema iniciado correctamente

¥ Modelo cargado: Random Forest

v Datos cargados y enriquecidos

v Registros listos: 15856

Nota: Se debe cargar un archivo en formato CSV

El sistema incorpora un modelo de clasificacion supervisada basado en Random Fo-
rest, previamente entrenado y validado, el cual utiliza como variables de entrada la latitud,
longitud, profundidad del evento sismico, magnitud y la distancia respecto al volcan Coto-
paxi. A través de la interfaz, el usuario puede cargar archivos en formato CSV que contienen
registros sismicos, los cuales son procesados automaticamente para garantizar la consis-

tencia y correcta estructuracion de los datos antes de ser analizados por el modelo.
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Figura 35

Interfaz con clasificacion de eventos sismicos

*2, Sistema de Clasificacién de Riesgo Volcanico — Cotopaxi = o x

SISTEMA DE CLASIFICACION PARA ANALISIS DE SISMOS EN ECUADOR

Integrantes GRUPO 8:
- Cristian Tenecela

- Jose Ocafia

- Yessenia Carrillo

- Eutimio Arévalo

Modelo activo: Random Forest | NCGeRGSV G| isooeme [

Sistema listo. Cargue un archivo CSV para iniciar.
v Sistema iniciado correctamente

v Modelo cargado: Random Forest

v Datos cargados y enriquecidos

v Registros listos: 15856

@ MODELO: Random Forest
RESULTADOS

Sin Peligro: 12844 (81.00 %)

Potencial Peligro: 3012 (19.00 %)

© ESTADO: VIGILANCIA

Una vez cargada la informacion, la aplicacion permite ejecutar el proceso de predic-
cién, clasificando cada evento en dos categorias: Sin Peligro y Potencial Peligro. El sistema
utiliza probabilidades generadas por el modelo y un umbral de decision configurable para
determinar la clase final, lo que proporciona mayor control y flexibilidad en la interpretacion
de los resultados. Los resultados de la clasificacion se presentan tanto en valores absolutos
como en porcentajes, permitiendo una comprension clara de la distribucion del riesgo en el

conjunto de datos analizado.

Adicionalmente, la interfaz incluye médulos graficos que permiten visualizar la distri-
bucion de las predicciones mediante graficos de barras e histogramas de probabilidad, in-
corporando una linea de referencia correspondiente al umbral de decisién. Estas visualiza-
ciones facilitan el analisis exploratorio y la interpretacion del comportamiento del modelo

frente a distintos escenarios sismicos.
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Figura 36

Interfaz con grafica de distribucion

SISTEMA DE CLASIFICACION PARA ANALISIS DE SISMOS EN ECUADOR

Integrantes GRUPO 8:
- Cristian Tenecela

- Jose Ocafa

- Yessenia Carrillo

- Eutimio Arévalo

Modelo activo: Random Forest  |NCHGSCN B IR tograms _

Sistema listo. Cargue un archivo CSV para iniciar. .1 Figure 1
Sistema iniciado correctamente Distribucién de Predicciones
Modelo cargado: Random Forest
Datos cargados y enriquecidos 12500
Registros listos: 15856

10000
MODELO: Random Forest
RESULTADOS
Sin Peligro: 12844 (81.00 %)
Potencial Peligro: 3012 (19.00 %)

7500

Cantidad

5000

© ESTADO: VIGILANCIA 2500

[

Sin Peligro Potencial Peligro

El modelo se encuentra entrenado para dar una clasificacion Binaria: Sin Peligro &
Potencial Peligro; es de esperarse que exista una mayor cantidad de eventos sismicos con-
siderados como “Sin Peligro” ya que las grandes erupciones volcanicas del Cotopaxi se han

dado cada 100 afos y en intervalos menores, han sido erupciones moderadas.
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Figura 37

Interfaz con histograma de probabilidad

SISTEMA DE CLASIFICACION PARA ANALISIS DE SISMOS EN ECUADOR

Integrantes GRUPO 8:
- Cristian Tenecela

- Jose Ocafia

- Yessenia Carrillo

- Eutimio Arévalo

Modelo activo: Random Forest Cargar CSV/ Predecir Graficos

%' Figure 1 - u] X
Sistema listo. Cargue un archivo CSV para iniciar. Histograma de Probabilidad de Peligro
¥ Sistema iniciado correctamente 3500
v/ Modelo cargado: Random Forest
v Datos cargados y enriquecidos 3000 4
v Registros listos: 15856

-
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1

1

2500 :

MODELO: Random Forest
----- RESULTADOS -----

Sin Peligro: 12844 (81.00 %)
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1500 1

Potencial Peligro: 3012 (19.00 %)

1000 1
© ESTADO: VIGILANCIA
500 -

o

0.7 0.8 0.9
Probabilidad

Nota: La linea roja marca el limite entre Potencial Peligro (derecha) y Sin Peligro (izquierda)

Figura 38

Interfaz con tabla de eventos criticos

SISTEMA DE CLASIFICACION PARA ANALISIS DE SISMOS EN ECUADOR

Integrantes GRUPO 8:
- Cristian Tenecela

- Jose Ocafia

- Yessenia Carrillo

- Eutimio Arévalo

2 Eventos Criticos (Top 20) - o X

Latitud Longitud Mw_Noise Prof_Noise Prob_Peligro

-0.5000 0.9460
-0.4000 7 0.9416
-0.5000 0.9347
-0.4000 2
-0.4000

-0.5000

-0.4000

-0.5000

-0.3000

El sistema también dispone de una tabla de eventos criticos, en la cual se destacan

aquellos registros clasificados como Potencial Peligro, proporcionando informacion clave



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS 69

como fecha, magnitud, distancia y probabilidad estimada. Este componente resulta funda-
mental para el analisis focalizado de eventos relevantes y para la toma de decisiones ba-

sada en evidencia.

Finalmente, la aplicacion incluye un indicador de estado del sistema que informa al
usuario sobre la correcta carga del modelo, el procesamiento de los datos y la disponibilidad
de resultados, asegurando transparencia y confiabilidad durante el uso de la herramienta.
En conjunto, el sistema constituye una solucion integral que combina modelado predictivo,
visualizacion interactiva y una interfaz amigable, aportando una herramienta de apoyo al

andlisis sismico y a la evaluacién del riesgo volcanico en Ecuador.
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CAPITULO 5

5.1 CONCLUSIONES

El alcance de este trabajo comprende un analisis profundo de la actividad sismica
relacionada al volcan Cotopaxi. En el Ecuador existen 34 volcanes activos y el que repre-
senta mayor amenaza es el Cotopaxi debido al impacto ambiental, social y econémico que
puede desencadenar la erupcion de este. El estudio de la actividad volcanica es muy com-
plejo ya que, los cientificos deben analizar caracteristicas como la deformacion del suelo,
los gases, la temperatura, observaciones visuales y acusticas y la actividad sismica para la
caracterizacion de una erupcion volcanica. Este estudio se basa en una de estas caracteris-
ticas que es la sismicidad, para lo cual se analizé patrones en caracteristicas como latitud,

longitud, profundidad, entre otros.

El objetivo del proyecto fue entrenar modelos de clasificacion que permitan discrimi-
nar la variable objetivo en una clasificacion binaria: “Potencial Peligro” y “Sin Peligro” en un
conjunto de datos de eventos sismicos historicos, los cuales fueron recolectados por el Insti-
tuto Geofisico de la Escuela Politécnica Nacional y son de dominio publico, el principal reto
con la recoleccion de data fue que por ser mediciones de muchos afios atras, estos catalo-
gos se obtuvieron en formatos y caracteristicas diferentes, por lo tanto fue necesario un pro-
ceso de ETL, este permitio la consolidacion de varios catalogos sismicos heterogéneos en
un solo catalogo homogéneo, fue necesaria la estandarizacion de las magnitudes mediante
un proxy Mw con el objetivo de poder comparar temporalmente los eventos, manteniendo la

coherencia de la distribucién sismica.

Una vez que se obtuvo un unico catalogo con la data procesada, fue necesario tra-
bajar en la variable objetivo y estructurar el problema de este estudio, para lo cual se realizo
la clasificacion de la peligrosidad de un sismo en funcion de la actividad volcanica del Coto-

paxi. Por lo tanto, se defini6 los criterios de aceptacion, basados en a literatura, de la clase
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“Potencial Peligro” en la que los eventos sismicos deben tener caracteristicas fisicas (dis-
tancia y magnitud) especificas para que puedan alterar o influenciar la estabilidad sismica
del volcan Cotopaxi. Durante este proceso de clasificacion de la peligrosidad, se identificd
que existe un claro desbalance de clases, pues casi la totalidad de eventos se clasificaron
como “Sin Peligro”, este resultado tuvo mucha légica ya que, en el contexto volcanico, el
Cotopaxi ha tenido 5 grandes periodos de erupciones desde la época colonial, por lo tanto,
casi toda la data debe representar los periodos en los que no hubo actividad sismica consi-
derable. En base a este resultado, fue necesario hacer un balanceo de clases ya que, para
los entrenamientos de los algoritmos, la data real no aportaba datos de entrenamiento para

la clase minoritaria y hubiera caido en el sobreajuste.

El balanceo de clases consistié en la generaciéon de datos sintéticos que sean consi-
derados como Potencial Peligro, los datos no fueron generados al azar, sino que cumplieron
parametros técnicos apegados a la teoria sismica, estadistica y matematica que fueron lo
mas reales posibles y al ser introducidos en la data con los datos reales, se encuentren en
las mismas condiciones y los entrenamientos no aprendan patrones triviales equivocados.
Esta generacion de datos sintéticos permitié construir una base de datos balanceada en
donde se introdujo también ruido para evitar el sobreajuste. La preparacion de los datos fue
un proceso fundamental, el cual incluyd la incorporacion de ruido y una estandarizacion total
de las variables, de esta manera se garantizé que los modelos no graben ni reproduzcan re-
glas predefinidas, esto permitié evaluar la capacidad real de la generalizacién de los clasifi-

cadores en datos inciertos.

El modelo de clasificacion que se estructurd, permitio identificar eventos sismicos
con potencial capacidad de alterar la actividad volcanica del Cotopaxi, basandose en carac-
teristicas fisicas como la distancia y la magnitud. Se puede decir que el enfoque es conser-
vador y los resultados son coherentes con la teoria y la realidad sismo-volcanica, sin em-
bargo, se limita su capacidad clasificatoria debido a la ausencia de informacion interna del

volcan y el analisis de otras magnitudes de interés como la presion, la dinamica de del
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magma y gases internos, entre otros. Por lo tanto, los resultados deben ser interpretados

como indicadores de atencién mas como predicciones eruptivas.

Por otro lado, se pudo observar los resultados (Tabla 3) de rendimiento de los cuatro
modelos entrenados: Random Forest, XGBoost, Red Neuronal MLP y Support Vector Ma-
chine; en donde las métricas son constantes para todos los modelos con ligeras variacio-
nes. Se puede concluir que, a manera global, los modelos presentan un buen rendimiento
ya que todos obtuvieron un accuracy de 0.95, esto debido a que de los 3172 eventos sismi-
cos que fueron parte del conjunto de prueba, un promedio de 2851 sismos fue clasificados
correctamente, es decir un 90% de los datos de prueba son bien clasificados, por ello se ob-

tiene un accuracy alto.

Sin embargo, al analizar individualmente las categorias, se pudo observar que la ca-
tegoria critica de “Potencial Peligro” tiene un bajo nivel predictivo pues al obtener un recall
en promedio de 0.51 esto nos indica que cerca de la mitad de eventos sismicos no son de-
tectados como amenaza real cuando si lo son, por lo tanto el modelo se limita a ser aplicado
como una herramienta de prevencion de amenaza temprana, a pesar de ello, se pudo des-
tacar que los modelos obtuvieron en promedio un AP de 0.95 lo cual se puede interpretar
como una veracidad cuando los modelos detectan la amenaza, es decir que cuando un
evento es clasificado como potencialmente peligro, tiene un 95% de probabilidades que
realmente lo sea, por tanto el modelo puede ser aplicado como un modelo de apoyo de de-

cisién sobre otro estudio a futuro que tenga mejor capacidad predictiva.

Asi mismo, se pudo analizar el AUC que en promedio se obtuvo un valor de 0.77 lo
cual se puede considerar como un valor bueno-aceptable y esto nos indica que posee en
general una capacidad de clasificacion adecuada en condiciones reales de incertidumbre,

aun que su desempeno operativo va a depender del umbral de decisidén que decida.
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En términos generales podemos concluir que los modelos con mejores rendimientos
fueron Random Forest y XGBoost, ya que sus métricas fueron ligeramente mejor en compa-
racion a MLP y SVM, sin embargo, los 4 modelos tuvieron buenos resultados ya que nin-
guno mostré comportamiento erratico o aprendizaje colapsado. En tanto MLP es competi-
tivo, pero menos interpretable y estable en este contexto, que a diferencia de RF. Por su
parte XGBoost tuvo las métricas mas bajas en esta comparativa, por lo que se puede decir

que, es valido pero el menos 6ptimo en este contexto.

Finalmente, se puede concluir que los resultados de los algoritmos mostrados, pue-
den capturar patrones complejos de la actividad sismo-volcanica. De ellos, se determino
que Random Forest, fue el que obtuvo mejor equilibrio entre desempefio global, estabilidad
y capacidad de generalizacion, por ello se seleccioné como modelo final para la reproducibi-
lidad en el aplicativo desarrollado en Tkinter. Sin embargo, al haber obtenido un recall mo-
derado en la clase critica de mayor interés, se genera una necesidad de realizar en el futuro

ajustes necesarios para maximizar la deteccion de eventos potencialmente peligrosos.

5.2 RECOMENDACIONES

Se recomienda enfocarse en mejorar el recall de la clase critica, ya que el objetivo
es la deteccion de eventos sismicos que representen una amenaza real, se propone optimi-
zar los modelos enfocandose en Recall o F1-score y ya no en accuracy, asi como también
ajustar el umbral de decisién y una implementacion de cost-sensitive learning ya que de
esta manera penaliza mas fuerte a los falsos negativos. Con estas técnicas se esperaria re-

ducir el riesgo de no detectar eventos criticos.

Por otro, al nivel de la calidad de los datos se recomienda enriquecer las caracteristi-
cas mediante la implementacion de variables que midan la energia sismica liberada, el tipo

de evento sismico ya sea volcanico-tectonico (VT), long-period (LP) o tremor, esto permitiria



ANALISIS DE MODELOS PARA CLASIFICACION DE SISMOS 74

hacer agrupaciones de donde se puedan generar patrones especificos por cada grupo y ha-
cer un estudio personalizado para cada uno, en donde se esperaria mejorar la frontera de
decision.

También se puede fortalecer la generalizacion del modelo validando los datos con
los de otros volcanes activos, evaluando la robustez del modelo en distintos periodos erupti-

vos y realizando un cross validation para evitar la fuga de informacién geografica; de esta

manera se puede medir la transferibilidad y reproducibilidad del modelo.

Se recomienda también la incorporacion de intervalos de confianza para prediccio-
nes y un andlisis de sensibilidad a ruido, esto es un paso fundamental para sistemas de

alerta temprana.

Se recomienda también una integracion de dimensién temporal ya este estudio ana-
lizo los sismos de manera independiente, sin embargo, el comportamiento volcanico sugiere
una dependencia temporal, por lo tanto, se recomienda explorar modelos que sean capaces

de capturar secuencias temporales tales como LSTM o GRU.

Se sugiera finalmente, contrastar los resultados con métodos tradicionales empiricos
y estadisticos utilizados ya en la vigilancia volcanica, esto con el objetivo de cuantificar obje-
tivamente las ventajas, desventajas y limitaciones del enfoque basado en Machine Learning

versus a metodologias clasicas.

Este trabajo constituye un aporte inicial en el analisis de riesgo sismo-volcanico con
técnicas de aplicacion de aprendizaje automatico en un ambiente real en el volcan Cotopaxi.
Se espera que la implementacion de las recomendaciones planteadas anteriormente, per-
mita la optimizacion de la precision, la discriminacion de clases, la interpretabilidad y la apli-
cabilidad del modelo a otras fuentes de datos y de esta manera se consolide como una he-
rramienta de apoyo para las alertas tempranas y la toma de decisiones en sistemas de vigi-

lancia y analisis de riesgo de la actividad volcanica.
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