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Resumen 

El presente trabajo desarrolla un modelo predictivo mediante técnicas de aprendizaje 

automático para estimar la producción anual de banano en la región Costa del Ecuador, 

utilizando información levantada en el periodo 2012–2024. El modelo integra datos agro-

productivos oficiales de la Encuesta de Superficie y Producción Agropecuaria Continua ESPAC 

y variables climáticas satelitales de NASA POWER. 

Con el objetivo de superar las limitaciones de modelos estadísticos tradicionales para 

representar la complejidad del sistema agrícola, se evaluaron múltiples arquitecturas de modelo, 

incluyendo regresión lineal, máquinas de vectores de soportes (SVM) y métodos de ensamble. 

Estas arquitecturas fueron analizadas tanto en términos de desempeño predictivo como de 

interpretabilidad, apoyándose en técnicas de explicabilidad del modelo (SHAP), las cuales 

permitieron identificar a la superficie cosechada y a variables estructurales asociadas como las 

predictoras dominantes del rendimiento.   

Los resultados obtenidos evidencian que el algoritmo Bagged Trees (Ensamble de 

árboles) presenta el desempeño más robusto entre los modelos evaluados, alcanzando un 

coeficiente de determinación (𝑅ଶ) superior al 0.95 durante la fase de entrenamiento. De igual 

forma, la validación temporal con datos correspondientes al 2024 confirmó su alta capacidad de 

predicción, registrando un error porcentual medio (MAPE) de 1.69% para la provincia de Los 

Ríos y 5.57% para Guayas. Estos resultados consolidan al modelo propuesto como una 

herramienta sólida y confiable para la planificación y evaluación de escenarios en el sector 

bananero del Ecuador.  

Palabras clave: Producción de banano, Machine Learning, Modelos de ensamble, Análisis 
agroclimáƟco, Costa ecuatoriana. 
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Abstract 

This research develops a predictive model using machine learning techniques to estimate 

annual banana production in the Ecuadorian Coastal region, utilizing data collected over the 

period 2012–2024. The model integrates official agro-productive data from the Continuous 

Agricultural Surface and Production Survey (ESPAC) with satellite-derived climatic variables 

from NASA POWER. 

To overcome the limitations of traditional statistical models in capturing the complexity 

of agricultural systems, multiple modeling architectures were evaluated, including linear 

regression, Support Vector Machines (SVM), and ensemble-based methods. These architectures 

were assessed both in terms of predictive performance and interpretability, supported by model 

explainability techniques (SHAP), which identified harvested areas and associated structural 

variables as the dominant predictors of production variability. 

The results indicate that the Bagged Trees algorithm (ensemble of decision trees) exhibits 

the most robust performance among the evaluated models, achieving a coefficient of 

determination (R²) greater than 0.95 during the training phase. Likewise, temporal validation 

using data from 2024 confirmed its high predictive capability, registering a Mean Absolute 

Percentage Error (MAPE) of 1.69% for Los Ríos province and 5.57% for Guayas. These findings 

consolidate the proposed model as a reliable and effective tool for scenario evaluation and 

strategic planning within Ecuador’s banana production sector. 

Keywords: Banana producƟon; Machine Learning; Ensemble models; AgroclimaƟc analysis; 
Ecuadorian Coast. 
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Capítulo 1 

Definición del proyecto 

El presente proyecto desarrolla un modelo predictivo de aprendizaje automático orientado 

a estimar la producción anual del banano, uno de los cultivos permanentes más relevantes de la 

región Costa del Ecuador, utilizando registros históricos del periodo (2012-2024). La 

investigación integra bases oficiales de producción agropecuaria de la Encuesta de Superficie y 

Producción Agropecuaria Continua (ESPAC), los cuales son registrados a escala anual, con 

variables agroclimáticas derivadas de fuentes satelitales como NASA POWER, aplicando 

metodologías que permitan agregar y seleccionar los meses climáticamente más influyentes para 

el ciclo productivo del banano. Esta integración permite modelar relaciones no lineales entre 

variabilidad climática, condiciones ambientales y rendimiento agrícola, superando las 

limitaciones inherentes a los modelos estadísticos tradicionales. 

Diversas investigaciones demuestran que los factores climáticos influyen de manera no 

lineal en la productividad agrícola y que los enfoques convencionales basados en regresiones 

lineales presentan limitaciones para capturar estos efectos. En este escenario, el uso de 

algoritmos avanzados de Machine Learning (ML) permite descubrir patrones ocultos, mejorar la 

precisión predictiva y generar métricas útiles para la planificación agrícola, gestión del riesgo 

climático y optimización de recursos.  

El enfoque planteado en este proyecto contribuye al desarrollo de herramientas analíticas 

robustas orientadas a comprender el impacto del clima sobre un cultivo estratégico como el 

banano, evaluar posibles escenarios futuros y apoyar la toma de decisiones basada en datos en el 

sector agro productivo ecuatoriano. Además, establece un marco replicable para estudios 
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posteriores centrados en otros cultivos o que incorporen modelos de predicción multiescalar 

basados en datos espaciales o series temporales de mayor granularidad. 

 

Justificación e importancia del trabajo de investigación 

El banano es uno de los principales cultivos del Ecuador y de numerosos países 

tropicales, no solo por su alta demanda internacional, sino por su impacto económico y social 

que genera a través de su cadena de valor. La producción de banano sostiene actividades 

agrícolas, logísticas y comerciales que contribuyen a la generación de divisas, empleo y 

estabilidad económica de distintos sectores agro-productivos. En este contexto, el poder estimar 

la producción futura del banano con base en datos históricos y variables climáticas resulta 

fundamental para la planificación agrícola, optimización de recursos y reducción de 

incertidumbre en un entorno influenciado por factores ambientales complejos.  

La relación entre variables meteorológicas y rendimiento es muy marcada en cultivos 

tropicales como el banano, los cuales responden de manera sensible a variaciones de 

temperatura, precipitación, humedad del suelo y radiación solar. Esta relación requiere de un 

enfoque que permita analizar datos no lineales y patrones que los modelos tradicionales no 

siempre logran describir adecuadamente.  

Las tendencias actuales en ciencia de datos y agricultura de precisión demuestran que 

técnicas como regresión estadística, modelos de aprendizaje automático y algoritmos de 

predicción multivariable representan una herramienta de alto potencial para anticipar el 

comportamiento productivo de cultivos agrícolas. Sin embargo, en el caso del banano, existe una 

brecha importante en la literatura regional: los estudios predictivos disponibles son escasos o se 



3 

 
 

QUITO – ECUADOR | 2025 

centran en agrupaciones de cultivos, dejando un vació respecto al análisis específico de este 

cultivo emblemático. 

Por ello, la presente investigación propone un enfoque metodológico robusto para 

analizar la producción bananera e implementar modelos predictivos que permitan estimar el 

rendimiento futuro del cultivo en la región costa del Ecuador. Esta investigación no solo busca 

aportar un conocimiento técnico valioso sobre la relación entre variables climáticas y 

productivas, sino que también ofrece un conjunto de herramientas que puedan ser utilizadas por 

productores, técnicos agrícolas y exportadores para la toma de decisiones estratégicas.  

De igual forma, el uso de modelos estadísticos y técnicas de aprendizaje automático 

contribuyen a la modernización del análisis agrícola, alineándose con prácticas internacionales 

de agricultura y ciencia de datos aplicada.  La construcción de modelos predictivos confiables 

permite avanzar hacia sistemas de alerta temprana, optimización de ciclos de producción y 

mejores en la eficiencia de recursos. De este modo, el trabajo se justifica en términos científicos, 

económicos y prácticos, consolidándose como un aporte para el análisis de cultivos en el 

Ecuador. 

 

Alcance 

El alcance de este proyecto comprende el desarrollo, validación y comparación de 

modelos predictivos de aprendizaje automático orientados a estimar la producción anual de 

banano en la región Costa del Ecuador, para el periodo 2012-2024. El estudio se limita a las 

provincias para las cuales existe información anual consolidada en la ESPAC: El Oro, 

Esmeraldas, Guayas, Los Ríos, Santa Elena y Manabí.  
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Dado que la producción agrícola disponible es anual, mientras que las variables 

climáticas satelitales presentan resolución mensual, se aplica metodologías de agregación y 

selección de meses relevantes que permitan generar predictores climáticos consistentes con los 

ciclos de producción del banano. Se consideran variables climáticas como temperatura, 

precipitación, humedad, radiación solar y condiciones atmosféricas que influyen de manera 

directa en el rendimiento del cultivo.  

El alcance metodológico incluye la comparación de algoritmos de ML como arboles de 

decisión, Random Forest, XGBoost y máquinas de vectores de soporte, así como procesos de 

selección de características mediante técnicas estadísticas y basadas en modelos. Los algoritmos 

se evaluarán mediante métricas como MAE, RMSE y R^2 para seleccionar el modelo con mejor 

desempeño.  

El proyecto incorpora el desarrollo de un dashboard interactivo y una visualización web 

que permita comunicar los resultados del modelo y facilitar el análisis por parte de usuarios 

técnicos. Quedan fuera del alcance aspectos relacionados con manejo agronómico, presencia de 

plagas, fertilización, logística productiva o modelación espacial.  
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Objetivos 

Objetivo general 

Desarrollar un modelo predictivo de aprendizaje automático para estimar la producción 

anual de banano en la región Costa del Ecuador durante el periodo 2012-2024, integrando 

información agroproductiva oficial con variables climáticas satelitales, a fin de identificar 

patrones entre clima y rendimiento. 

Objetivo especifico 

 Recolectar y procesar datos de producción anual de banano provenientes de la 

ESPAC, así como variables agroclimáticas de NASA POWER, correspondientes a las provincias 

de El Oro, Manabí, Esmeraldas, Guayas, Santa Elena y Los Ríos para el periodo 2012-2024. 

 Depurar e integrar el conjunto de datos consolidado mediante procesos de 

limpieza, validación, tratamiento de valores atípicos y estandarización, con el fin de armonizar 

adecuadamente la información. 

 Analizar de manera exploratoria y multivariable el comportamiento histórico de la 

producción anual de banano, identificando tendencias, variaciones interanuales y años atípicos. 

 Entrenar y evaluar modelos de algoritmos de aprendizaje supervisado para 

determinar el modelo con mejor desempeño predictivo según métricas de validación (MAE, 

RMSE, R2). 

 Implementar un dashboard interactivo que permita comunicar los resultados del 

modelo, analizar escenarios y facilitar la interpretación por parte de usuarios. 
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Capítulo 2 

Revisión de Literatura 

Conceptos fundamentales 

Este capítulo presenta una síntesis de los avances recientes en la modelización de 

rendimientos agrícolas frente a cambios climáticos. Se aborda la problemática desde una 

perspectiva que abarca variables agronómicas, climatológicas y de ciencia de datos. El análisis se 

centra en el estado actual de técnicas de machine Learning (ML) y su capacidad de capturar 

relaciones no lineales entre la variabilidad climática y la productividad de cultivos. En este 

contexto de investigación, se define el rendimiento agrícola como la producción de un cultivo 

por unidad de superficie. 

 Rendimiento agrícola y complejidad de su predicción: El rendimiento en la 

producción de cultivos se ve afectado por diversas variables; pronosticar su variación requiere de 

modelos capaces de representar relaciones no lineales y dependencias temporales. Estimar el 

rendimiento con anticipación permite planificar la producción y comercialización de los 

productos, específicamente en regiones con alta variabilidad climática. 

 Variables climáticas y agroclimáticas: Las variaciones meteorológicas como 

precipitación, temperatura máxima/mínima, humedad relativa y evaporación son determinantes 

para el análisis del rendimiento. Los índices agroclimáticos combinan todas estas variables para 

entrenar modelos de predicción. 

 Aprendizaje automático (ML) y aprendizaje profundo (DL): Modelos de ML 

supervisado se centran en predecir resultados a partir de datos y se diferencian de la estadística 

clásica al priorizar la predicción predictiva sobre la inferencia causal. Los modelos de ML 

pueden manejar relaciones complejas y datos de distintos formatos; entre ellos se destacan 
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métodos basados en árboles, máquinas de soporte vectorial, redes neuronales multicapa y 

sistemas neuro difusos. Modelos de DL, como LSTM y Transformers, capturan dependencias 

temporales y permiten integrar grandes volúmenes de datos.  

 Inteligencia artificial explicable (XAI): El uso de XAI permite interpretar como 

los modelos complejos llegan a una predicción. Técnicas como SHAP o LIME cuantifican la 

contribución de cada variable y facilitan la adopción de modelos para agricultores. La 

interpretabilidad es esencial cuando se busca influenciar en prácticas de manejo o producción. 

Estado de Arte 

En los últimos años, la aplicación de la inteligencia artificial y el Machine Learning en la 

agricultura ha cobrado fuerza debido a su capacidad para mejorar la precisión en la predicción de 

rendimientos y ser un apoyo en la toma de decisiones. La literatura reciente muestra una 

transición clara desde métodos estadísticos tradicionales hacia enfoques computacionales más 

robustos, capaces de capturar relaciones no lineales y patrones complejos en sistemas agro-

productivos. 

Modelos estadísticos clásicos. Por muchos años la relación clima-rendimiento se modeló 

mediante regresiones lineales (LR) y modelos econométricos. Estos modelos suelen asumir 

relaciones lineales o polinomiales. Estudios recientes como el de Sidhu et al. (2023), comparan 

LR con boosted regression tres (BRT) para estimar el impacto del clima en arroz, mostrando que 

LR subestima la complejidad de las interacciones y BRT mejora considerablemente la precisión 

del modelo. Sin embargo, los autores advierten que modelos demasiado flexibles pueden 

confundir efectos temporales con variables climáticas.  Crane-Droesch (2018) demostró que las 

redes neuronales semiparamétrica superan en precisión a modelos estadísticos y neural networks 
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no paramétricas, además de mostrar proyecciones menos pesimistas de impactos del cambio 

climático. Este trabajo marca una transición hacia modelos de ML. 

Adopción de modelos de aprendizaje. A partir del aumento de datos climáticos y 

computacionales, la década de 2020 vio un auge en modelos de árboles de decisión, bosques 

aleatorios, gradient boosting y métodos ensemble. Estos modelos son capaces de capturar 

relaciones no lineales. La investigación de Clercq y Mahdi (2022) sobre arroz en la india entrenó 

diecinueve modelos de ML, incluyendo CatBoost, LightGBT y Extra Trees, utilizando datos 

climáticos y satelitales. Los mejores modelos alcanzaron coeficientes de determinación de hasta 

0,82 y errores medios absolutos por debajo de 0,29; estos resultados superan a estudios previos 

demostrando la viabilidad de aplicar modelos de ML. En Mohan et al. (2025) integran modelos 

de árboles (Decision Tree Regressor, Random Forest Regressor, LightGBM Regressor) y análisis 

exploratorio de datos para pronosticar rendimientos en un entorno de agricultura de precisión. 

Los modelos lograron un R2=0,92 con errores cuadráticos medio (MSE) de 0,02 y errores 

absolutos promedios de 0,015. 

Aprendizaje profundo y series de tiempo. Para cultivos como arroz, Thirumal y Latha 

(2023) emplearon un modelo multiplicative LSTM integrado con simulaciones DSSAT para 

evaluar impactos de variaciones climáticas en arroz, mostrando que las series temporales 

permiten representar anomalías de temperatura y precipitación. La formalización de la predicción 

como problemas de series temporales fue abordada por Tamayo-Vera et al. (2024) para el caso 

de la papa en Prince Edward Island. El estudio demostró que incluir dependencias temporales 

mejora sustancialmente la precisión y permite proyectar reducciones de rendimiento de hasta 

70% bajo escenarios de altas emisiones SSP5-8.5. Estos estudios resaltan que los modelos 
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tradicionales tienen a tratar variables climáticas como entradas estáticas y omiten la variabilidad 

del rendimiento. 

Otro aporte en DL es el de Vignesh et al. (2023), quienes proponen un modelo híbrido de 

Deep Belief Network (DBN) con una red VGG optimizado mediante un algoritmo Chicken 

Swarm Optimization (CSO) para clasificar y predecir la producción agrícola. El modelo procesa 

parámetros ambientales y de manejo en múltiples capas, alcanzando una precisión de 97% 

superando modelos existentes. Este tipo de arquitectura evidencia como las redes neuronales 

profundas pueden extraer características complejas, mejorando la predicción del rendimiento. 

Modelos híbridos y metamodelos. Además de modelos ML y DL, se han desarrollado 

modelos híbridos que acoplan simuladores biogeofísicos con algoritmos de aprendizaje, Xiao et 

al. (2022) utilizaron un modelo de simulación APSIM, y entrenaron emuladores de ML que 

replicaron las predicciones de APSIM sobre rendimiento y dinámica de carbono del suelo con 

mucha menos información y costo computacional. Los emuladores les permitieron explorar 

rápidamente miles de escenarios de manejo de riego y determinar combinaciones óptimas para 

maximizar rendimientos. Este enfoque demuestra como los metamodelos pueden ampliar la 

aplicabilidad en modelos de cultivos. 

Avances recientes, interpretabilidad y sostenibilidad. En los últimos años la atención 

se ha centrado hacia la explicabilidad (XAI), integración de nuevas tecnologías y sostenibilidad. 

El trabajo de Mohan et al. (2025) utiliza XAI para interpretar los factores que más influyen en 

los modelos de regresión basados en árboles, demostrando que la temperatura y la precipitación 

son los principales determinantes del rendimiento de un cultivo.  

Paralelamente, las revisiones de documentación indican que en una base de 125 artículos 

de rendimiento entre 2016 y 2025, la mayoría se enfocan en DL (42 trabajos) y ML (36), 
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mientras que 24 se enfocan en metamodelos. Esta revisión enfatiza que las variables más 

influyentes son: variables meteorológicas, propiedades del suelo e índices vegetativos de satélite.  

Una de las conclusiones más importantes es que los modelos boosting muestran un mejor 

equilibrio entre precisión, estabilidad y capacidad para manejar datos heterogéneos. Esto es útil 

para regiones donde la producción agrícola presenta grandes variaciones entre años, como ocurre 

en las provincias de la Costa ecuatoriana en periodos afectados por fenómenos externos como el 

terremoto de 2016 o la pandemia COVID-19. 

Turpo Mamani (2024) revisa 15 estudios y concluye que el uso combinado de modelos 

predictivos, sensores IoT y algoritmos de optimización son esenciales para la gestión de recursos 

y acceso a información frente a cambios climáticos. El artículo destaca tecnologías emergentes 

como blockchain o big data para mejorar la resiliencia agrícola. 

Brechas de estudio. A pesar de estos avances, persisten brechas significativas: 

 Falta de estudios en cultivos tropicales perennes: la mayoría de las investigaciones 

se centran en cultivos como arroz, trigo y papa. Hay escasez de modelos aplicados a cultivos de 

la región andino-amazónica como el banano. 

 Escala regional y contexto local: pocos trabajos utilizan datos de América Latina o 

integran estadísticas oficiales con productos climáticos de reanálisis. Existe un vacío en estudios 

que combinen datos de estaciones locales, bases satelitales (NASA POWER) y registros de 

rendimientos (ESPAC/INEC) para el banano en la Costa Ecuatoriana.  

 Exploración de escenarios de cambio climático: aunque estudios como el de 

Tamayo-Vera et al. (2024) utilizan escenarios SSP para la papa, no existen proyecciones 

equivalentes para el banano en la región costa ecuatoriana.  
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 Exploración y análisis de escenarios socioeconómicos históricos que hayan 

afectado al rendimiento del banano en el periodo (2012-2024). 

Estas brechas justifican el presente proyecto: aplicar y comparar modelos de ML, integrando 

datos climáticos regionales y rendimientos de banano, bajo diferentes escenarios de cambio 

climático. Además, de incorporar técnicas de explicabilidad para que agricultores y técnicos 

puedan comprender la influencia de cada variable y resultados obtenidos para la toma de 

decisiones. 

En la Tabla 1 se resumen los principales artículos consolidados, mostrando de forma sintética el 

título, autores, cultivos, modelos utilizados y su aporte principal. 

Tabla 1 

Comparación de artículos científicos 

Título del artículo Autores (año) Cultivo y 

Región 

Método/Algoritmo Hallazgos 

Machine learning methods for crop 

yield prediction and climate change 

impact assessment in agriculture 

Crane-Droesch A. (2018) Multicultivo SNN, DNN, regresión, 

ML 

Propone modelos 

semiparamétricos y 

regresiones para mejorar la 

predicción de rendimiento  

Machine Learning Algorithms for 

Modelling Agro‑Climatic Indices for 

Crop Yield Forecasting, Monitoring 

and Management 

Satapathy S.C. et al. (2021) Multicultivo Regresión, ML Introduce índices 

agroclimáticos como 

variables de entrada para 

ML 

Recent Trends in Machine Learning, 

Deep Learning, Ensemble Learning, 

and Explainable Artificial Intelligence 

Techniques for Evaluating Crop Yields 

Under Abnormal Climate Condition 

Múltiples autores (2024) Multicultivo ML, DL, XAI Revisión amplia que 

sintetiza tendencias de ML, 

DL y XAI en la predicción 

de rendimiento 

Next‑gen agriculture: integrating AI 

and XAI for precision crop yield 

prediction 

Mohan R.N.V.J. et al. (2025) Multicultivo Decision Tree, Random 

Forest, LightGBM + XAI 

 

Demuestra que combinar 

modelos avanzados de 

regresión con técnicas 

XAI (SHAP, LIME) 

mejora la precisión (R² ≈ 

0,92) 

AI‑Driven Predictive Analytics in 

Precision Agriculture 

Diversos autores (2023) Multicultivo / 

Agricultura de 

precisión 

ML + DL Presenta flujos de analítica 

predictiva integrando 

sensores y datos climáticos  
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Predictive Analysis and Optimization 

in Sustainable Agriculture Facing 

Climate Change with Emerging 

Technological Approaches 

Diversos autores (2023) Multicultivo ML, optimización Revisa tecnologías 

emergentes aplicadas a la 

optimización de sistemas 

agrícolas 

Adaptive neuro-fuzzy inference system 

based multicrop yield prediction in the 

semi-arid region of India 

Borse K. et al. (2025) Arroz, maíz, 

maní, caña 

ANFIS, ANN y árboles Muestra que ANFIS supera 

a ANN en precisión y 

permite integrar múltiples 

variables climáticas 

Machine Learning–Based Predictive 

Assessments of Impacts of Influential 

Climatic Conditions for the Sustainable 

Productivity of Paddy Crops 
Thirumal S., Latha R. (2023) Paddy (India) mLSTM + DSSAT 

Combina mLSTM con 

DSSAT para evaluar 

paddy bajo RCP4.5 y 

RCP8.5, identificando 

variables y periodos 

críticos. 

Feasibility of Machine Learning‑Based 

Rice Yield Prediction in India at the 

District Level Using Climate 

Reanalysis Data 

Diversos autores (2023) Arroz (India) 
Random Forest, SVM, 

ANN, regresión 

Demuestra la viabilidad de 

predecir el rendimiento de 

arroz a nivel distrital con 

datos climáticos de 

reanálisis y modelos ML. 

Forecasting the Impact of Climate 

Change on Rice Crop Yields under 

RCP4.5 and RCP8.5 in Central Luzon, 

Philippines, Using Machine Learning 

Algorithms 

Baltazar R.G. (2024) 
Arroz 

(Filipinas) 

Random Forest, 

Gradient Boosting, ANN, 

regresión 

Integra escenarios 

RCP4.5/8.5 con ML para 

proyectar rendimientos de 

arroz y cuantificar 

pérdidas climáticas. 

How can machine learning help in 

understanding the impact of climate 

change on crop yields? 

Sidhu B.S. et al. (2022) 
Arroz, trigo, 

mijo perla 

Boosted Regression 

Trees, regresión 

Compara BRT con 

regresiones lineales y 

muestra mejoras en 

precisión pero advierte 

sobre la necesidad de 

cautela para inferencia 

causal. 

Projecting future changes in potato 

yield using machine learning 

techniques: a case study for 

Prince Edward Island, Canada Tamayo-Vera D. et al. (2024) Papa (Canadá) 
Ensembles, series 

temporales, OMP 

Predice rendimientos de 

papa usando series 

temporales y proyecta 

fuertes caídas bajo 

escenarios SSP1/2/5-8.5, 

evidenciando sensibilidad 

al clima. 

Crop yield prediction in agriculture: A 

comprehensive review of machine 

learning and deep learning approaches, 

with insights for future research and 

sustainability 

Diversos autores (2023) Papa 

Random Forest, 

ensambles, análisis de 

riesgo 

Cuantifica el riesgo de 

pérdidas de rendimiento 

de papa bajo escenarios 

climáticos mediante ML y 

análisis probabilístico. 

Climate‑driven projections of 

sunflower yield across the United States Majumder S., Mason C.M. (2025) 
Girasol 

(EE. UU.) 
Árboles + XAI 

Identifica temperatura 

máxima y precipitación 

estival como variables 
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using machine‑learning and explainable 

artificial intelligence 

críticas y proyecta 

descensos de rendimiento; 

utiliza XAI para explicar 

umbrales. 

Machine Learning Integrated 

Climate‑Agriculture Forecasting: A 

Transformer‑Based Approach to 

Predict Precipitation and Wheat 

Production Amidst Climate Change 

Diversos autores (2023) Trigo Transformers, DL 

Integra modelos tipo 

transformer para predecir 

precipitación y 

rendimiento de trigo, 

demostrando capacidad 

para procesar múltiples 

series climáticas. 

A Eurasian Case Study on 

Climate Change and Agricultural Land 

Suitability Using Interpretable Machine 

Learning 
Ramesh B. et al. (2025) 

Aptitud de 

tierras (Eurasia) 
Clasificadores ML + XAI 

Usa datos CMIP6 y 

modelos interpretables 

para evaluar la aptitud de 

tierras bajo SSP1-2.6/2-

4.5/5-8.5 y señala regiones 

vulnerables. 

Mitigating climate change impacts on 

agriculture through AI-driven crop 

improvement Diversos autores (2023) 
Mejoramiento 

genético 
ML/DL  

Revisa el uso de IA en 

mejoramiento de cultivos 

y su potencial para 

incrementar tolerancia al 

estrés climático. 

Optimized Deep Learning Methods for 

Crop Yield Prediction 

Diversos autores (2022) Multicultivo 
Redes neuronales 

profundas optimizadas 

Presenta arquitecturas de 

DL optimizadas para 

mejorar la predicción de 

rendimiento con grandes 

volúmenes de datos. 

Optimizing Agricultural Yields with 

Artificial Intelligence 

Diversos autores (2024) Multicultivo ML/DL + optimización 

Explora la integración de 

modelos predictivos con 

esquemas de optimización 

de manejo para maximizar 

rendimientos. 

Coupling agricultural system models 

with machine learning to facilitate 

regional predictions of management 

practices and crop production 
Xiao L. et al. (2022) Maíz (China) 

APSIM + ML 

(emuladores) 

Acopla modelos de 

procesos (APSIM) con 

ML, mostrando que los 

emuladores reproducen 

con precisión las 

predicciones. 

Nota. Elaboración propia a partir de la revisión de literatura científica.  
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Marco Teórico 

Bases teóricas de la producción de banano. El banano constituye un eje transversal en 

la economía ecuatoriana. Ecuador se ha consolidado como uno de los mayores exportadores de 

dicho cultivo, siendo una fuente económica vital para el país. La producción se concentra 

mayormente en la región Costa, donde las condiciones climáticas son óptimas para su desarrollo. 

El rendimiento de banano es altamente sensible a condiciones ambientales, se requiere rangos 

específicos de temperatura, precipitación y radiación solar para optimizar su cultivo. Entre las 

variables más influyentes tenemos: 

 Temperatura: Según la literatura, una de las variables mas influyentes para su 

producción. Variaciones de temperatura pueden retrasar la maduración del cultivo. 

 Precipitación: Determina la disponibilidad de agua. Excesos o déficits pueden 

afectar directamente el rendimiento del cultivo.  

 Radiación solar: Es la energía que permite la fotosíntesis. Sin la suficiente 

radiación, el cultivo no se produce adecuadamente.  

 Humedad: Ayuda a regular el intercambio de agua y nutrientes. 

 

Datos y fuentes de información agrícola. El estudio emplea datos oficiales provenientes 

de la Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC). La elección de una 

periodicidad anual (2012-2024) obedece a criterios metodológicos que buscan: 

 Observar tendencias estructurales a largo plazo 

 Reducir el ruido o la estacionalidad de corto plazo propia de los ciclos de cosecha 

mensuales 

 Alinearse con la disponibilidad de datos oficiales del país 
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Ante la falta de información nacional específica sobre las condiciones meteorológicas 

terrestres en ciertas zonas rurales, la teledetección se presente como una solución robusta. Los 

datos meteorológicos históricos son adquiridos de NASA POWER (Prediction of Worldwide 

Energy Resources). Fuente que proporciona registros continuos de variables agroclimáticas 

como temperatura, precipitación, humedad, entre otras, permitiendo modelar patrones en zonas 

de interés. 

Aprendizaje supervisado y algoritmos de regresión. El aprendizaje automático 

supervisado consiste en construir un modelo a partir de datos de entrada y salida que permiten 

predecir valores de variables continuas o discretas. Los algoritmos de RL fueron los primeros en 

emplearse para analizar relaciones entre clima y rendimiento, pero su limitante es la necesidad de 

asumir una forma funcional especifica o lineal. Para evitar esta limitante, se adoptan métodos 

más flexibles como los árboles de decisión, bosques aleatorios o métodos de boosting. Estos 

modelos permiten generar estructuras que segmenten los atributos de manera recursiva, 

permitiendo identificar interacciones más complejas y no lineales. 

Algoritmos de predicción relevantes. Basado en el estado del arte, los algoritmos más 

eficientes para el rendimiento de cultivos son: 

 Árboles de decisión y random forest: Métodos de ensamblaje que construyen 

múltiples arboles de decisión durante su entrenamiento. Son muy robustos frente el overfitting y 

manejan bien datos no lineales como lo son los datos climáticos. 

 Gradient Boosting (XGBoost, LightGBM, CatBoost): Son modelos 

secuenciales, donde cada nuevo modelo busca corregir los errores del anterior. Tienen un alto 

desempeño en estudios agrícolas debido a su equilibrio entre precisión y velocidad. 
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 Support Vector Regression (SVR): Modelos útiles para conjuntos de datos más 

pequeños, que buscan un hiperplano que mejor se ajuste a lo datos de entrada. 

Análisis de predicción, validación y métricas. Un elemento clave para el aprendizaje 

automático es la validación cruzada, utilizada para evaluar el desempeño de los modelos. Las 

métricas como error cuadrático medio (MSE), error absoluto medio (MAE) y coeficientes de 

determinación (R2) son utilizados para cuantificar la precisión de los modelos de predicción. 

Análisis de escenarios y modelado climático. Para evaluar el impacto del cambio 

climático en la producción agrícola se utilizan escenarios climáticos generados por modelos de 

circulación general (GCM) y resumidos en trayectorias de concentraciones representativas (RCP) 

y sus versiones socioeconómicas (SSP). Estos escenarios representan posibles variaciones 

climáticas hasta finales de siglo. Por ejemplo, como se trabajó en el estudio de Tamayo-Vera et 

al. (2024), se proyectó rendimientos bajo escenarios SSP1 (bajas emisiones), SSP2 (intermedio) 

y SSP5-8.2 (altas emisiones). El uso de distintos escenarios permite cuantificar la incertidumbre 

asociada a las proyecciones. 

Anomalías y eventos atípicos. Un modelo predictivo robusto debe considerar no solo 

variables climáticas, sino también situaciones que alteren la capacidad productiva. Es importante 

contemplar la influencia de eventos atípicos en los periodos de estudio: 

 Eventos geofísicos (Terremoto 2016): desastres naturales que afectan la 

infraestructura logística y productiva de zonas de producción. 

 Crisis sanitarias globales (COVID-19): Factores que impactan la producción 

debido a interrupciones de la cadena de suministros, mano de obra y restricciones de logística.  

 Transición y calentamiento (El niño 2023): Cambios abruptos que generan estrés 

térmico y un aumento en la nubosidad y precipitaciones. El exceso de humedad incrementa 
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exponencialmente la presión de enfermedades fúngicas, las cuales impactan el rendimiento final 

del cultivo. 

Aplicación al caso del banano ecuatoriano. El banano es un cultivo fundamental para la 

economía ecuatoriana y requiere de un análisis específico de sus factores de producción y 

respuesta al clima. El trabajo de investigación se apoyará en los modelos ML para desarrollar 

predicciones de rendimiento de banano a escala provincial. Se consideran variables climáticas 

(temperatura máxima/mínima, precipitación, humedad relativa). Además, se utilizarán escenarios 

de validación para evaluar el rendimiento del banano. 
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Capítulo 3 

Desarrollo 

Metodología 

El estudio adopta un enfoque cuantitativo y correlacional, estructurado bajo un flujo de 

trabajo secuencial (pipeline) orientado a la construcción de modelos predictivos de rendimiento 

agrícola. Cada fase está diseñada para asegurar coherencia temporal, integridad del conjunto de 

datos y entrenamiento adecuado de los modelos. En la Figura 1 se presenta un diagrama de flujo 

general de la metodología, donde se visualizan las etapas principales del proceso. 

 

 

 

 

 

 

 

 

 

 

 

Nota. Elaboración propia 

El proceso se articula en las siguientes fases: 

Fase 1: Adquisición y caracterización del conjunto de datos. Esta etapa establece la 

base empírica del estudio mediante la extracción de datos de fuentes primarias y oficiales. 

Figura 1 

Descripción del proceso metodológico 
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 Componente Agronómico: Se recopilan las estadísticas anuales y superficie 

(plantada y cosechada) del cultivo a partir de la Encuesta de Superficie y Producción 

Agropecuaria Continua (Instituto Nacional de Estadística y Censos, s.f.).  

 Componente Climático: Se obtienen series temporales de variables 

meteorológicas mediante API de NASA POWER (National Aeronautics and Space 

Administration [NASA, s.f.]), asegurando cobertura espacial continua sobre las zonas de estudio. 

Fase 2: Limpieza, integración y preparación del conjunto de atributos. Esta etapa 

corresponde al procesamiento de la base de datos, donde se incluye: 

 Identificación de valores atípicos, inconsistentes y diferencias de formato entre 

fuentes. 

 Estandarización de unidades, tipos de datos y nomenclaturas. 

 Evaluación de anomalías en la serie temporal de producción para identificación de 

valores atípicos que no correspondan a variabilidad climática. 

 Integración de valores anuales a mensuales utilizando método proporcional 

basado en los meses productivos del cultivo. 

Fase 3: Modelado y entrenamiento del sistema predictivo. En esta fase se 

implementan los modelos de aprendizaje automático orientados a estimar el rendimiento 

equivalente del cultivo. 

Selección de algoritmos:  

 Selección de modelos robustos y no lineales ampliamente reconocidos y 

ejecutados por su precisión en estudios agroclimáticos. 
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División del dataset: 

 División del conjunto de datos en subconjuntos de entrenamiento y prueba. 

 Validación cruzada para evitar sobreajuste y evaluar estabilidad del modelo. 

Entrenamiento del modelo: 

 Ajuste de hiperparámetros. 

 Entrenamiento de múltiples configuraciones para comparación y selección de 

alternativa con mejor desempeño. 

Fase 4: Evaluación y validación del modelo. Una vez entrenados los modelos, se 

evalúan mediante métricas estadísticas estándar. 

Métricas utilizadas: 

 Error cuadrático medio (RMSE). 

 Coeficiente de determinación (R2). 

Proceso de validación: 

 Evaluación de modelos sobre el conjunto de prueba. 

 Comparación de resultados para selección de mejor modelo. 

Fase 5: Interpretación de resultados y análisis de importancia de variables. Una vez 

seleccionado el modelo, se realizará: 

 Evaluación de la contribución de las variables climáticas. 

 Análisis técnico de la relación entre clima y productividad agrícola. 

Fase 6: Proyecciones agroclimáticas y escenarios. El modelo final será utilizado para: 

 Generar predicciones bajo condiciones climáticas históricas. 

 Simular variaciones climáticas y evaluar posibles impactos en la producción. 

 Explorar escenarios agroclimáticos orientados a toma de decisiones. 
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Síntesis final, conclusiones y recomendaciones. Se consolidarán los resultados 

obtenidos en el estudio y se formularán recomendaciones técnicas para investigaciones futuras y 

aplicaciones en gestión agrícola. 

 

Fuentes primarias de información 

Instituto Nacional de Estadística y Censos (INEC) y la ESPAC. El Instituto Nacional 

de Estadística y Censos (INEC) es el órgano oficial encargado de levantar y difundir estadísticas 

económicas, demográficas y agropecuarias del Ecuador. Correspondiente el área agrícola, la 

Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC) se considera la principal 

fuente de información oficial del sector a nivel nacional. La ESPAC sigue un marco de muestreo 

diseñado conforme a recomendaciones de la Organización de las Naciones Unidas para la 

Alimentación y la Agricultura (FAO); en este marco se recopila anualmente información como 

superficie sembrada y cosechada, producción y ventas de 52 productos agrícolas, además de 

información sobre ganado, producción regional y empleo agrícola.   

La relevancia de la ESPAC radica en que es una fuente censal anual que garantiza 

consistencia y representatividad estadística de la producción agropecuaria del país. Sin embargo, 

es importante recalcar que la información proporcionada en los tabulados de la ESPAC mantiene 

un formato de informe consistente a partir del año 2018, en años previos los informes contienen 

menos información. 

Datos climáticos NASA POWER. Los datos climáticos se obtuvieron de NASA 

POWER (Prediction of Worldwide Energy Resources), un servicio brindado por la NASA que 

provee de parámetros meteorológicos y de radiación derivados de observaciones satelitales y de 

modelos de reanálisis. Según la página oficial, NASA POWER ofrece “conjuntos de datos de 
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libre acceso, de baja latencia y alta precisión”, permiten una libre elección de variables, unidades 

y formatos personalizables. Estos datos están orientados a usuarios del sector energético, de 

infraestructura y agro climatología.   

Los datos meteorológicos provienen del modelo de asimilación atmosférica MERRA-2 

del Goddard Space Flight Center con una resolución de 0,5° x 0,625°. Los datos son procesados 

diariamente y su disponibilidad es casi en tiempo real. La combinación de mediciones y modelos 

permite obtener estimaciones de datos continuas de variables como temperatura, precipitación, 

humedad relativa, radiación solar y velocidad del viento, las cuales resultan de gran utilidad para 

modelos de rendimiento agrícola. 

Obtención de datos 

Extracción de datos de la ESPAC. La ESPAC publica sus informes de resultados anules 

en archivos Excel titulados “Tabulados de la Encuesta de Superficie y Producción Agropecuaria 

Continua”. A partir del año 2018 los tabulados presentan una estructura homogénea, con 

múltiples hojas (pestañas) de cada cultivo, presentando una tabla consolidada con variables de 

superficie, producción y ventas del cultivo, de manera regional y provincial.  

Para el periodo 2018-2024, se desarrolló un script en Python que automatiza la extracción 

de la información relevante. El algoritmo navega por las pestañas de interés, identificando la fila 

y columna correspondiente a la información del banano y seleccionando valores de variables 

como: 

 Superficie plantada (Has.) 

 Superficie cosechada (Has.) 

 Producción (Tm.) 

 Ventas (Tm.) 
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Únicamente se extrajo los registros anuales pertenecientes a las provincias de la región 

Costa (El Oro, Esmeraldas, Guayas, Los Ríos, Santa Elena y Manabí), ya que son las zonas 

productoras evaluadas en este proyecto. Los datos fueron consolidados en un único archivo, 

facilitando su unión posterior con la información climática.  

Para los años 2012-2017 la ESPAC no proporciona tabulados en formato Excel sino 

reportes en formato PDF, con tablas incrustadas en un único documento. A diferencia de los 

tabulados del periodo 2018-2024, estos informes no cuentan con información consistente de 

diversos cultivos, únicamente se centran en los más representativos a nivel nacional: banano, 

palma africana, caña de azúcar. Dada la estructura de estos archivos y la ausencia de un formato 

estructurado, se optó por extraer manualmente las cifras de producción, superficie plantada y 

cosechada correspondientes a cada provincia de interés. Estos valores se digitalizaron y 

estandarizaron para mantener una consistencia histórica.    

Adquisición de datos NASA POWER. La adquisición de variables climáticas se realizó 

mediante la API de NASA POWER, la cual permite definir coordenadas geográficas, periodos 

de interés, parámetros a recuperar y formatos de exportación de datos. Para representar las 

condiciones climáticas de cada zona, se seleccionó un punto geográfico central por provincia. En 

la Tabla 2 se resumen las coordenadas empleadas: 

Tabla 2 

Coordenadas geográficas utilizadas por provincia para la obtención de variables climáticas 

mediante la API NASA POWER 

Provincia (Costa) Latitud Longitud 

El Oro -3.5278 -79.8383 

Esmeraldas 0.8718 -79.4098 

Guayas -2.0391 -80.0433 



24 

 
 

QUITO – ECUADOR | 2025 

Santa Elena -2.1609 -80.5874 

Manabí -0.6415 -80.0671 

Los Ríos -1.4891 -79.6478 

Nota. Las coordenadas geográficas de los puntos de muestreo fueron seleccionadas y extraídas 

mediante la plataforma NASA POWER. 

La selección de variables climáticas se fundamentó en la literatura científica reciente, la 

cual identifica los factores que más influyen en el desarrollo de cultivos tropicales. Las variables 

extraídas son: 

 Temperatura máxima (°C) 

 Temperatura mínima (°C) 

 Temperatura media (°C) 

 Precipitación (mm) 

 Presión superficial (kPa) 

 Humedad del suelo (adimensional) 

 Humedad capa superficial (adimensional) 

 Humedad específica (g/kg) 

 Radiación (kW/m^2) 

 Velocidad del viento (m/s) 

NASA POWER permite obtener datos en frecuencias diarias, mensuales o anuales. En 

este caso se empleó la frecuencia mensual, ya que: 

 Facilita la integración con datos productivos anuales. 

 Reduce la presencia de ruido y variabilidad. 

 Es compatible con modelos ML que requieren series suavizadas. 
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Integración de bases productivas y climáticas. La integración de datos requirió un 

proceso de unificación temporal y estructural, con la finalidad de generar un conjunto de datos 

consistente. Los registros de producción del INEC están disponibles únicamente en formato 

anual, mientras que las variables climáticas extraídas de NASA POWER tienen una resolución 

mensual. Para compatibilizar ambas fuentes se aplicó una metodología de armonización 

temporal. En el caso del banano, cuya cosecha es continua durante todo el año, la producción se 

dividió de manera uniforme entre los doce meses. Esta aproximación permite mantener el valor 

total reportado por el INEC y evita introducir variaciones estacionales que no correspondan al 

comportamiento real del cultivo. Metodologías similares se utilizan en estudios agroclimáticos 

cuando se deben combinar datos con diferentes granularidades temporales y es necesario 

mantener coherencia en las series.  

El proceso de integración permitió construir una matriz de análisis donde cada registro 

mensual combina las condiciones climáticas del periodo con el rendimiento equivalente mensual 

del cultivo, facilitando el uso de técnicas de aprendizaje automático que requieren series 

homogéneas y alineadas temporalmente. Como resultado, se obtuvo un registro con 780 filas y 

19 columnas, dando un total de 14820 datos en el dataset final. Es importante recalcar que el 

algoritmo de extracción de datos nos permitió adquirir la información correspondiente a banano, 

palma africana y caña de azúcar (cultivos más representativos de la costa ecuatoriana), dando un 

total de 27588 datos, útiles para futuros trabajos o investigaciones. 

Depuración, análisis preliminar y tratamiento de valores atípicos 

Análisis preliminar de la serie de producción. Como parte del proceso de depuración 

se realizó un análisis exploratorio inicial utilizando la serie anual de producción total del banano 
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para el periodo 2012-2024. En la Figura 2 se muestra la producción de la región costa, la cual 

constituye la gran mayoría de la producción nacional de banano en Ecuador. 

 

 

 

 

 

 

 

 

 

Nota. Elaboración propia con datos provenientes de la Encuesta de Superficie y Producción 

Agropecuaria Continua (ESPAC).  

El comportamiento histórico evidencia una dinámica no lineal con fluctuaciones 

marcadas por eventos atípicos. En términos generales, el volumen productivo se ha mantenido en 

un rango entre los 5.0 y 6.9 millones de toneladas métricas anuales. Sin embargo, la serie 

temporal revela un punto de inflexión critica en el periodo 2016-2017, donde se registra la caída 

más severa. Tras este evento, se observa una tendencia de recuperación sostenida que 

experimenta variaciones durante los años 2020 y 2022. Para el cierre del periodo analizado 

(2023-2024), la producción consolidada de la Costa muestra una estabilización al alza, superando 

Figura 2 

Producción total anual de banano en la región Costa del Ecuador durante el periodo 2012–2024 
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los 6.8 millones de toneladas, lo que muestra la capacidad de resiliencia del sector frente a 

anomalías registradas en la última década.   

Anomalías y eventos estructurales en la serie temporal anual (2012-2024). Para el 

desarrollo de un modelo predictivo robusto es necesario identificar y caracterizar eventos 

atípicos que generan ruido en los datos históricos. Durante el periodo de estudio, la producción 

de banano no solo respondió a la variabilidad climática estacional, sino que fue impactada por 

situaciones atípicas de diversa naturaleza. Dichas caídas de producción se identificaron como 

valores atípicos dentro de la seria anual.  

Aunque en menor magnitud que afectaciones posteriores, el año 2014 registró una leve 

disminución del volumen de producción, descendiendo a 6.38 millones de toneladas frente a los 

6.67 millones reportados en 2012. Esta variación negativa representa una fluctuación cíclica 

propia de la dinámica de mercado y variabilidad climática estándar, la cual fue revertida 

rápidamente con la recuperación productiva evidenciada en 2015 

El periodo 2016-2017 constituye el punto de inflexión más complejo de la serie temporal, 

caracterizado por la combinación de eventos climáticos, económicos y geofísicos. 

Climáticamente, el ciclo 2015-2016 estuvo influenciado por el fenómeno de El Niño, cuyas 

lluvias torrenciales en la región Costa generaron preocupaciones por estrés hídrico y 

proliferación de enfermedades en cultivos. Las proyecciones agronómicas de la época estimaban 

que el exceso de humedad podría reducir la producción bananera entre un 20% y 30% 

(Swissinfo.ch, 2016, párr. 16). Paralelamente, los principales mercados de exportación 

presentaban frenos, destacándose la devaluación del rublo en Rusia y su reducción de poder de 

compra (Swissinfo.ch, 2016). En este contexto, el terremoto del 16 de abril actuó como 

catalizador de crisis. El sismo provocó una ruptura severa en la actividad agrícola costera, 
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combinado con choques de oferta y demanda. Las consecuencias económicas fueron 

devastadoras, con pérdidas estimadas de USD 525 millones y destrucción de aproximadamente 

21.823 empleos (Banco Mundial, 2021, párr. 4), afectando directamente ingresos de exportación 

agrícola. Los efectos fueron particularmente en las provincias de Manabí y Esmeraldas, 

territorios donde más del 60% de la población depende económicamente de actividades 

agropecuarias (Pacheco Gil, 2017). Evaluaciones post-desastre indican que el 80% de los 

productores rurales en Manabí sufrieron daños, afectando a cultivos clave como cacao (24%), 

palma africana (23%), maíz (17%) y plátano (7%) (Pacheco Gil, 2017). Si bien estos eventos 

ocurrieron en el año 2016, los datos de producción relevan que la caída más profunda se 

materializó en 2017, comportamiento que responde al efecto de rezago agronómico. 

A diferencia de la ruptura estructural causada por el terremoto de 2016, el año 2020 

presentó un escenario de estabilidad climática que contrasta con una pandemia global. Los 

registros meteorológicos indicaron que las condiciones se mantuvieron dentro de patrones 

estacionales habituales, y a pesar de que hubo reportes de inundaciones, no existieron riesgos de 

alto impacto que justificaran agronómicamente una caída del rendimiento del banano (Pesantes, 

2020). La pandemia COVID-19 provocó una recesión global que afecto cadenas de suministro y 

demanda de productos. Sin embargo, es importante mencionar que la agricultura costera se 

fortaleció en exportaciones de Banano, a pesar de tener una caída del 6% con respecto al 2019. 

El banano, siendo el principal producto no petróleo de país, alcanzo un récord histórico de 

exportación: en total se embarcaron 380 millones de cajas de banano, 7% en volumen y 15% en 

valor respecto al 2019 (Cámara Marítima del Ecuador, 2021, párr. 2).  

El caso del 2020 en la costa ecuatoriana ilustra perfectamente la complejidad 

multidimensional de la data agrícola. Mientras que las variables meteorológicas y operativas 
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(como las restricciones por pandemia) pueden explicar una caída del 6% en el volumen físico 

cosechado, las variables comerciales responden a dinámicas globales de demanda y logística que 

pueden moverse en dirección opuesta, generando récords de exportación.  

Esto demuestra que el análisis agrícola no puede ser lineal; requiere un análisis que cruce 

dos escenarios distintos: 

 Agronómico: Donde variables meteorológicas, condiciones de suelo y 

estacionalidad dictan el rendimiento del cultivo. 

 Económico: Donde el stock, precio y demanda internacional dictan el éxito 

financiero. 

El año 2022 representa un caso de estudio caracterizado por anomalías meteorológicas de 

larga duración y una alta inestabilidad sociopolítica. Este año estuvo marcado por el prolongado 

fenómeno climático de La Niña (2020-2023), el más largo en 66 años, el cual generó anomalías 

climáticas en zonas costeras. La Niña ocasiono un déficit hídrico y un descenso de temperatura, 

creando escenarios opuestos a los requerimientos fisiológicos del banano para un crecimiento 

optimo. El impacto fue determinante, según la Asociación de Comercialización y Exportación de 

Banano (ACORBANEC), cerca del 80% de la caída del volumen de exportaciones bananeras de 

2022 se debió al impacto de La Niña (González, 2023, párr. 15). A la presión climática se 

sumaron factores internacionales, el estallido del conflicto bélico entre Rusia y Ucrania alteró 

uno de los mercados más importantes para la fruta ecuatoriana, generando problemas logísticos y 

de pago. El desempeño agrícola se vio finalmente fracturado por la inestabilidad política interna. 

El “Paro Nacional” de junio de 2022 paralizó las actividades productivas del país durante 18 

días. Según diversos medios de prensa, los bloqueos estratégicos en vías de la Costa y Sierra 

rompieron la cadena de suministros, impidiendo la cosecha, empaquetado y transporte de la fruta 



30 

 
 

QUITO – ECUADOR | 2025 

(Roa Chejín, 2022). La Asociación de Exportadores de Banano del Ecuador (AEBE) estimó 

perdidas sectoriales cercanas a los USD 2 millones derivadas de esta combinación de factores: 

guerra, condiciones climáticas y conflictividad interna (EFEAgro, 2023).   

Análisis provincial: Identificación de datos atípicos.  

La Figura 3 muestra la producción anual del banano en las distintas provincias más 

representativas de la región costa.  

 

 

 

 

 

 

 

 

 

 

Nota. Elaboración propia con base en los registros provinciales de producción de la ESPAC.  

El análisis consolidado para el periodo 2012-2024 indica cierta resiliencia ante desastres 

por parte de ciertas provincias, teniendo una capacidad de recuperación tras eventos críticos, 

mientras que otras son más vulnerables a periodos de crisis.  

Los datos permiten identificar ciertos roles: 

Figura 3 

Producción anual de banano por provincia en el Ecuador (2012–2024) 
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 La provincia de Los Ríos muestra una tendencia creciente y sostenida, actuando 

como amortiguador productivo. Su ubicación geográfica le ha permitido mitigar impactos 

directos a eventos atípicos. 

 La provincia de Guayas tiene variaciones más pronunciadas, particularmente en el 

2020.  

 Esmeraldas muestra un comportamiento estable con una anomalía evidente en 

2016, caída asociada al terremoto y factores presentados anteriormente. 

 Santa Elena y Manabí son las provincias con menor participación, mantienen 

niveles de producción reducidos, pero reflejan patrones coherentes. Sus fluctuaciones no ejercen 

mayor impacto sobre valores totales, pero aportan información útil para la caracterización del 

cultivo.  

La identificación de valores atípicos en este estudio se realizó en base al conocimiento e 

investigación del contexto agro-productivo y socioeconómico, y no exclusivamente mediante 

criterios estadísticos automáticos como el rango intercuartílico (IQR) o medidas de dispersión. 

Esta decisión se fundamenta en que las anomalías detectadas corresponden a eventos 

extraordinarios ampliamente documentados (como el terremoto de 2016 y la pandemia de 

COVID-19 en 2020) que no reflejan la relación agroclimática natural entre variables 

meteorológicas y producción de banano 

Selección y depuración del conjunto de datos. Para garantizar estabilidad y 

convergencia de los modelos predictivos, se aplica una limpieza y depuración de datos para 

minimizar el ruido generado por inconsistencias en la serie temporal. A partir del análisis 

exploratorio sobre las seis provincias costeras, se determinó acotar el alcance del modelamiento a 
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las tres provincias más significativas de producción de banano ecuatoriano: Los Ríos, Guayas y 

El Oro. Esta selección se sustenta bajo los siguientes criterios: 

 Representatividad: En conjunto, estas tres provincias concentran el 98.2% de la 

producción histórica registrada en el periodo de análisis.  

 Continuidad de la serie: Presentan registros completos en el periodo de análisis 

(2012-2024), a diferencia de provincias como Manabí o Santa Elena que exhiben vacíos de 

información o series truncadas. 

 Estabilidad volumétrica: Se excluye a la provincia de Esmeraldas debido a su 

colapso estructural (caída del 90% de su producción), comportamiento que representa una 

anomalía irreversible y no un patrón climático ajustable. 

Filtrado de datos. Con el objetivo de integrar la relación Clima-Producción, se procedió 

a excluir del set de entrenamiento aquellos periodos afectados por disrupciones físicas o 

logísticas. Es importante aclarar que la reducción de datos no busca maximizar métricas, sino 

validar la naturaleza estructural del sistema productivo. La configuración temporal de 

información se detalla en la Tabla 3. 

Tabla 3 

Configuración temporal del filtrado de datos por provincia y muestras finales 

Provincia Años 

seleccionados 

Periodos 

excluidos 

Justificación técnica de la 

exclusión 

N° de 

muestras 

finales 

(Meses) 

Los Ríos 2012-2015, 

2018-2019, 

2021-2024 

2016, 2017, 

2020 

2016: Sismo 

2017: Rezago agronómico  

2020: Pandemia 

108 
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Guayas 2012-2015, 

2018-2019, 

2021-2024 

2016, 2017, 

2020 

2016: Sismo 

2017: Rezago agronómico  

2020: Pandemia 

108 

El Oro 2012-2015, 

2017, 2018-

2019, 2021-

2024 

2016, 2020 2016: Sismo 

2020: Pandemia 

(Se mantiene 2017 por 

evidenciar recuperación 

normal) 

120 

Nota. Se excluyeron años con valores atípicos atribuidos a factores no climáticos documentados, 

garantizando así la robustez estadística del análisis. 

El dataset de entrenamiento quedó conformado por 336 registros mensuales. Este 

volumen de datos garantiza un balance adecuado entre cantidad de muestras necesarias para 

convergencia y pureza de la influencia climática.  

La Figura 4 muestra una caída pronunciada en el año 2017, por lo cual es importante 

aclarar que eso no representa una caída en la producción, sino una reducción de la disponibilidad 

de muestras válidas para el modelo durante dicho año. Esto es debido a la disponibilidad de datos 

y acceso a información. 
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Figura 4 

Volumen total de producción del dataset de entrenamiento considerando años y provincias con 

datos válidos 

 

 

 

 

 

 

 

 

Nota. Elaboración propia 

En la Figura 5 notamos la distribución de la producción mensual en las tres principales 

provincias utilizando el dataset depurado. Se evidencia una clara jerarquía productiva donde Los 

Ríos presenta la mediana más alta, consolidándose como la zona de mayor volumen, seguida por 

Guayas, que exhibe un rendimiento intermedio con una dispersión considerable, similar a la 

primera, lo que refleja su sensibilidad a las variaciones estacionales. En el caso de El Oro se 

exhibe una distribución más compacta, lo que denota una producción más estable y menos 

propensa a oscilaciones drásticas mes a mes. 

 

 

 



35 

 
 

QUITO – ECUADOR | 2025 

 

 

 

 

 

 

 

 

 

 

Nota: Elaboración propia 

Interpretación y análisis de importancia de variables 

Estrategias de selección. En esta fase, el objetivo es no se limita a la capacidad 

predictiva de los modelos, sino a la interpretación agronómica de los resultados, identificando las 

variables climáticas que explican la variabilidad productiva en las provincias de Los Ríos, 

Guayas y El Oro.  

Con el fin de reducir el sesgo asociado a un único método de selección, se adopta una 

estrategia de análisis que contraste tres perspectivas: 

 Análisis Estadístico Univariante: Se aplica la prueba F-test para evaluar la 

dependencia lineal individual de cada variable climática respecto a la producción, 

complementando con coeficientes de correlación de Spearman. 

 Optimización de Redundancia (MRMR): Se utiliza el algoritmo de Mínima 

Redundancia y Máxima Relevante, el cual selecciona el subconjunto óptimo de predictores que 

Figura 5 

Producción anual por provincia en el dataset final de entrenamiento 
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maximiza la correlación con la variable objetivo mientras penaliza la colinealidad entre variables 

explicativas.  

 Importancia no lineal y Explicabilidad (SHAP): Se examina la importancia de 

características basada en la reducción de impureza mediante Random Forest, y se integra el 

análisis de valores SHAP (Shapley Additive exPlanations), el cual permite cuantificar la 

contribución individual de cada variable. 

Justificación del enfoque SHAP. A diferencia de métodos tradicionales, el análisis 

SHAP permite descomponer la predicción para entender la direccionalidad del impacto de cada 

variable. Esto permite identificar no únicamente la magnitud de importancia, sino también la 

dirección del impacto (favorecer o afectar), permitiendo discernir si valores altos de determinada 

variable actúan como estimulantes o limitantes para el rendimiento. 

Métricas de evaluación climáticas. En la Figura 6, se observa la convergencia entre los 

distintos algoritmos evaluados. Las barras representan la relevancia de cada variable climática 

escalada entre 0 y 1. A pesar de las diferencias matemáticas de cada algoritmo, existe cierta 

similitud entre las variables dominantes. Las variables con valores cercanos a 1 indican una 

influencia fuerte en el rendimiento del cultivo. 
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Nota. Comparación de la relevancia de las variables climáticas según los métodos Random 

Forest, F-Test, MRMR y correlación de Spearman, con valores normalizados entre 0 y 1.  

La gráfica SHAP debe interpretarse bajo tres dimensiones: 

 Jerarquía (eje Y): Las variables se ordenan de mayor a menor importancia global. 

 Magnitud de impacto (eje X): La dispersión horizontal indica que tanto altera la 

variable la predicción del rendimiento del cultivo. Los puntos alejados del centro representan un 

fuerte impacto (De forma positiva a la derecha, y negativa a la izquierda). 

 Relación de valor: El gradiente de color revela el tipo de relación. 

La distribución de puntos evidencia la no linealidad del sistema. Esto sugiere que, para 

ciertas variables, los valores pueden tener un efecto desproporcionado en el rendimiento del 

cultivo. El análisis de la Figura 7 revela que la PS (Presión Superficial) tiene el mayor rango de 

dispersión en el eje horizontal, definiéndola como la variable predominante en la varianza del 

modelo. 

 

Figura 6 

Comparación de métodos de interés con variables normalizadas 
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Nota. Representación del impacto y dirección de influencia de variables climáticas.  

Los valores bajos de presión (puntos azules) se asocian con contribuciones positivas al 

rendimiento. Adicionalmente, variables como Humedad y Temperatura muestran una relación 

directa; valores elevados (puntos rojos) de estas variables impulsan el alza en producción.  

Complementando los resultados visuales, la Tabla 4 detalla los valores numéricos 

obtenidos por cada métrica de evaluación. Esta tabulación permite una comparación directa y 

objetiva. 

Tabla 4 

Importancia y correlación de las variables de entrada según los métodos Random Forest, F-

Test, MRMR y Spearman 

Variable Random Forest 

Importancia 

F_Test MRMR Rank 

Score 

Spearman 

Correlación 

PS 0.670714 1.000000 11 0.467508 

Figura 7 

Impacto direccional de variables (SHAP) 
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GWETPROF 0.103818 0.962792 10 0.501107 

T2M_MIN 0.047069 0.880904 7 0.423509 

T2M 0.039052 0.163075 6 0.340780 

T2M_MAX 0.029974 0.042618 2 0.064018 

WS2M 0.025497 0.136548 3 0.187926 

PRECTOTCORR_SUM 0.020507 0.197292 5 0.276823 

ALLSKY_SFC_PAR 0.019677 0.207583 9 0.225169 

ALLSKY_SFC_SW 0.016319 0.154446 4 0.188561 

QV2M 0.014688 0.001607 1 0.021633 

GWETTOP 0.012685 0.797147 8 0.457457 

Nota. Elaboración propia 

Selección del vector de características. Una vez aplicados los métodos de importancia y 

el análisis de su influencia en el rendimiento del cultivo, se procede a realizar una depuración del 

conjunto de datos. Se descartan aquellas variables que presentaron una contribución cercana a 

cero o cierta redundancia. El objetivo es reducir el riesgo de sobreajuste y entrenar el algoritmo 

únicamente con señales climáticas influyentes.  

El vector de características final, vinculando variables de ESPAC y climáticas, será la 

entrada para el entrenamiento de los modelos, conformado por las variables en la Tabla 5: 

Tabla 5 

Características climáticas seleccionadas para el modelo 

Variable Nombre 

Descriptivo 

Tipo de dato Justificación de selección 

PS Presión superficial Valor continuo Variable más influyente. 

Indicador principal de 

estacionalidad ene la costa 

ecuatoriana. 
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T2M Temperatura a 2 

metros 

Valor continuo Esencial para modelar 

caracterizar fisiología del 

cultivo. 

QV2M Humedad 

Específica 

Valor continuo Alta correlación. Crucial 

para representar estrés 

hídrico, muy influyente para 

el cultivo. 

PRECTOTCORR Precipitación 

corregida 

Valor continuo Correlación con humedad 

específica. 

WS2M Velocidad del 

viento 

Valor continuo Define el riesgo físico por 

viento 

T2M_MIN Temperatura 

Mínima 

Valor continuo Permite al algoritmo detectar 

frentes fríos que pausan el 

crecimiento del cultivo.  

GWETPROF Humedad del 

perfil del suelo 

Valor continuo Disponibilidad hídrica real.  

Superficie 

plantada 

N/A Valor continuo Alta relación con variable 

objetivo 

Superficie 

cosechada 

N/A Valor continuo Alta relación con variable 

objetivo 

Nota. Elaboración propia 

Evaluación y validación del modelo 

La evaluación y validación de modelos se realizó con el objetivo de cuantificar su 

capacidad de verificar la estabilidad de las estimaciones frente a datos no utilizados durante el 

entrenamiento. Para ello, se empleó un esquema de validación basado en separar la información 

temporal, utilizando la data histórica hasta el año 2023 para el entrenamiento y la data del 2024 

como conjunto de prueba independiente.  
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El desempeño de los modelos se evaluó mediante métricas como Error Cuadrático Medio 

(RMSE), Error Absoluto Medio (MAE) y el Coeficiente de Determinación (𝑅ଶ). Estas métricas 

proporcionan una evaluación complementaria del modelo, donde el RMSE penaliza errores 

grandes, el MAE ofrece una medida robusta de error promedio y el R^2 cuantifica la proporción 

de varianza.  

Evaluación del modelo 1: Regresión lineal. El primer conjunto de modelos corresponde 

a regresión lineal, utilizados como referencia debido a su interpretabilidad e influencia 

proporcional de las variables productivas incluidas en el estudio. Se implementó un modelo de 

regresión línea simple, y variantes: Ridge, Lasso y ElasticNet.  

En la Tabla 6 se presentan los resultados obtenidos sobre el conjunto de prueba 

correspondiente al año 2024. 

Tabla 6 

Resultados de la evaluación del Modelo 1 y sus variantes sobre el conjunto de prueba 

Modelo RMSE MAE 𝑹𝟐 

Regresión Lineal 13 887.19 11 551.58 0.9422 

Ridge Regression 13 624.99 11 778.07 0.9443 

Lasso Regression 13 831.09 11 508.22 0.9427 

ElasticNet 13 585.24 11 549.05 0.9447 

Nota. Entrenamiento de modelos realizados en Google Colab. 

Los resultados muestran que las variantes de regresión lineal tienen un alto nivel de 

ajuste, con valores de 𝑅ଶ superiores a 0.94. El modelo ElasticNet presenta el mejor desempeño 

global, reflejando la ventaja de combinar penalizaciones L1 y L2 en un contexto caracterizado 

por alta colinealidad entre predictores estructurales, como lo son la superficie plantada y 

cosechada. 
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Como se observa en la Figura 8, se evidencia una relación estrecha y consistente entre 

producción y variables estructurales del sistema productivo (dataset completo). A lo largo de la 

serie temporal, se observa que las variaciones en la producción siguen de manera cercana las 

fluctuaciones de ambas superficies, manteniendo un comportamiento proporcional incluso en 

escenarios de recuperación o expansión del área cultivada.    

 

 

 

 

 

 

 

 

Nota. Comparación temporal entre la producción total del banano y variables estructurales, 

provenientes de datos históricos de la ESPAC.  

Con el fin de analizar la contribución individual de cada variable, se aplica el método de 

interpretabilidad SHAP con variables estructurales y climáticas. Como se muestra en la Figura 

9, la variable de superficie plantada presenta el mayor valor de impacto, seguida de PS y 

superficie cosechada, confirmando su influencia dominante en la predicción del modelo.  

 

 

 

Figura 8 

Evolución de la producción total en contraste con la superficie plantada y cosechada 
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Figura 9 

Impacto de variables en la producción (SHAP Beeswarm) 

 

Nota. Distribución de los valores SHAP entre variables climáticas y estructural. 

Evaluación del modelo 2: Support Vector Regression (SVM). El modelo de Support 

Vector Regression se implementó con un enfoque no lineal con el objetivo de evaluar la 

existencia de relaciones no complejas entre las variables explicativas y el rendimiento del 

banano. En una primera aproximación el modelo se desempeñó de forma deficiente, reflejando 

un valor de coeficiente de determinación negativo. Aplicando un proceso de optimización de 

hiperparámetros, mediante validación cruzada, se mejoró el desempeño del modelo alcanzando 
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un 𝑅ଶ superior al 0.90 en el conjunto de prueba como se puede evidenciar en los valores 

obtenidas en la Tabla 7. 

Tabla 7 

Resultados de la evaluación del modelo Support Vector Regression (SVR) 

Modelo RMSE MAE 𝑹𝟐 

SVR (baseline) 61 471 57 953 -0.13 

SVR (tuned) 17 833 14 508 0.905 

Nota. Modelos entrenados en Matlab 2025b 

En la Tabla 8 se presentan las métricas de desempeño obtenidas para el modelo SVR tras 

el proceso de optimización. 

Tabla 8 

Valores optimizados de los hiperparámetros obtenidos para el modelo Support Vector 

Regression (SVR) 

Parámetro Tipo de parámetro Valor optimizado 

C Controla el equilibrio entre precisión del 

ajuste y la suavidad del modelo 

100 

Épsilon Define la amplitud de la región alrededor 

de la función de regresión. Que tan 

sensible responde el modelo a 

variaciones  

0.01 

Kernel Determina la forma de la relación entre 

las variables de entrada y objetivo. 

Lineal o RBF (no lineal) 

lineal 

Nota. Valores obtenidos en base a resultados de las iteraciones de entrenamiento de modelos.  
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En conjunto, los parámetros optimizados indican que el modelo SVR converge hacia una 

solución cercana a una regresión lineal regularizada, reforzando la evidencia de que el sistema 

productivo analizado responde principalmente a relaciones lineales.  

Evaluación del modelo 3: Random Forest Regressor. Se implementó un modelo 

Random Forest Regressor basado en ensamble de árboles, con el fin de contrastar su capacidad 

predictiva frente a modelos lineales y SVR. Random Forest trabaja directamente con variables 

numéricas y captura interacciones no lineales mediante particiones sucesivas. La optimización de 

hiperparámetros se realizó mediante validación cruzada de 5 particiones, evaluando el 

desempeño con RMSE en el conjunto de entrenamiento. Los parámetros optimizados se 

muestran en la Tabla 9. 

Tabla 9 

Hiperparámetros optimizados para el modelo Random Forest Regressor 

Estimators Min 

Samples 

Split 

Min 

Samples 

leaf 

Max features Bootstrap 

800 5 1 0.8 True 

Nota. Valores obtenidos en base a resultados de las iteraciones de entrenamiento de modelos. 

En la Tabla 10 se muestra el desempeño del modelo en su configuración base y 

optimizada. Se evidencia una reducción de error y un incremento del coeficiente de 

determinación en el modelo ajustado.   
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Tabla 10 

Resultados de la evaluación del modelo Random Forest Regressor en su configuración base y 

optimizada 

Modelo RMSE MAE R2 

RandomForest (tuned) 16 304 13 311 0.9203 

RandomForest (baseline) 16 507 13 432 0.9183 

Nota. Entrenamientos realizados y testeados en Matlab 2025b. 

Reducción de dimensionalidad y validación de modelo estructural en Matlab. Para 

reforzar los resultados obtenidos y verificar la consistencia de los modelos entrenados, se realizó 

un procedimiento de ingeniería de características orientado a una nueva reducción de 

dimensionalidad.  

Se evaluó la dinámica temporal de las variables de entrada climáticas y productivas mediante el 

cálculo del Coeficiente de Variación Interanual (CV) y los Intervalos de Confianza del 95% (IC) 

para el periodo de análisis. Como se observa en la Figura 10 y Figura 11, los resultados revelan: 

 Variables Estáticas (CV < 10%): Variables como Humedad Especifica, 

Radiación solar, velocidad del viento y presión superficial, mostraron un comportamiento 

altamente estable, con bandas de confianza estrechas. 

 Variables Dinámicas (CV > 25%): Variables como superficie plantada y 

cosechada. 
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Figura 10 

Evaluación anual de variables meteorológicas 

 

Nota. La figura muestra el comportamiento interanual de las variables meteorológicas obtenidas. 

Figura 11 

Estabilidad interanual de variables durante el periodo 2012-2024

 

Nota. La figura indica la estabilidad de la variable PS, siendo la más representativa de todas. 
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Dada la evidencia de que las variables climáticas, en su mayoría, actúan como “ruido de 

fondo” constante y no como influencia en el rendimiento anual, se procedió a validar un modelo 

simplificado. Utilizando la herramienta Regression Learner de Matlab, se entrenaron nuevos 

algoritmos predictivos eliminando las variables climáticas secundarias y conservando: 

1. Superficie Plantada 

2. Provincia (Aplicando One-hot Encoding) 

3. Presión Superficial (PS) 

Análisis de escenarios         

Diseño experimental y definición de escenarios de validación. Inicialmente, se 

consideró la exclusión de los periodos 2016 (Terremoto) y 2020 (Pandemia) bajo la premisa de 

que actuaban como Outliers en un modelo climático. Sin embargo, al reorientar el modelo hacia 

un enfoque basado en variables estructurales, justificado por el análisis previo, estos eventos 

dejan de ser ruido y se convierten en puntos de validación crítica.  

Una vez definida la arquitectura del modelo y seleccionadas las variables de mayor 

relevancia (Superficie, Provincia y PS), se estableció un protocolo de pruebas para evaluar la 

precisión del modelo y su utilidad práctica como herramienta de planificación agrícola. 

1. Escenario de validación temporal (Realidad 2024): Se utiliza el conjunto de 

datos correspondientes al año 2024 para comparar las predicciones del modelo frente a los datos 

reales reportados por organizamos oficiales. 

2. Escenario de Sensibilidad Estructural: Dado que la variable de superficie fue 

identificada como el predictora dominante, se simulan escenarios hipotéticos de expansión 

(+10% de superficie) y contracción (-10% de superficie) manteniendo constantes el resto de las 

variables. 
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Arquitectura del sistema web  

El proyecto implementa un sistema web para apoyar el análisis y visualización de 

información agrícola, con énfasis en la producción de banano. El sistema se compone de un 

backend en Python (FastAPI) que expone servicios REST para consulta y predicción, y un 

frontend en React + Vite orientado a la visualización interactiva sobre mapa (MapLibre + 

deck.gl) y elementos 3D (GLB). El despliegue en producción se realizó separando 

responsabilidades: el backend se hospeda en Railway para controlar el runtime de Python y 

dependencias científicas, mientras que el frontend se hospeda en Vercel, plataforma optimizada 

para aplicaciones con Content Delivery Network (CDN) global y despliegue continuo desde 

GitHub. 

Los componentes principales de la arquitectura se describen a continuación: 

 Cliente Web: Desarrollado en React con Vite, responsable de la interfaz de 

usuario, consumo de la API REST y el renderizado de mapas y modelos 3D. 

 API REST: Implementada en FastAPI, encargada de validar las solicitudes, 

prepara las variables, ejecutar el modelo de ML y retornar los valores de 

predicción. 

 Modelo ML: Un pipeline de la librería scikit-learn serializado en formato joblib, 

entrenado con el conjunto de datos histórico. 

 Datos Históricos: Archivos CSV utilizados para listar las opciones de superficie 

y presión superficial por provincia disponibles para el usuario.  

La interfaz del sistema en producción se muestra en la Figura 12.  
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Figura 12 

Interfaz general del sistema de estimación de producción de banano 

 

Nota. La figura indica la captura general de la aplicación web en producción 

Backend 

El Backend está implementado con FastAPI por su rendimiento, tipado y generación 

automática de documentación (OpenAPI/Swagger). El servicio carga inicialmente el modelo 

serializado y el dataset histórico para alimentar las opciones del formulario.  

Frontend 

El Frontend se construyó con React para componer la interfaz en componentes 

reutilizables con Vite como bundler por su rapidez en desarrollo y optimización en build. La 

lógica de la aplicación se distribuye en componentes clave descritos en la Tabla 11.  
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Tabla 11 

Componentes principales del Frontend 

Componente Responsabilidad Detalle técnico 

api.js Cliente HTTP del backend. Gestiona base URL.  

usePrediction.jsx Hook personalizado que maneja 

el estado, la carga de datos y la 

ejecución de la predicción. 

Carga provincias y 

opciones. 

PredictionPanel.jsx Interfaz de usuario para la 

selección de parámetros y 

visualización del resultado de la 

variable objetivo. 

Botones y muestra de 

información de 

predicción. 

EcuadorCropsNoTerrain.jsx Componente encargado de la 

visualización del mapa y la capa 

3D. 

MapLibre, deck.gl, 

ScenegraphLayer 

DropdownMenu.jsx – 

ProfileCard.jsx 

Navegación y perfiles Menu accesible y 

tarjetas con 

información de 

integrantes del 

equipo. 

MobileMenu.jsx Navegación responsive Alternativa para 

pantallas pequeñas 

(md:hidden). 

Nota. Elaboración propia 
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Visualización Geográfica y 3D 

Uno de los componentes centrales del sistema es la visualización geoespacial, 

implementada mediante la integración de MapLibre (como mapa base) y deck.gl para la 

superposición de capas avanzadas.  

El sistema carga un archivo GeoJSON con los límites provinciales de la región de 

estudio, aplicando estilos dinámicos de relleno y extrusión. Para la representación tridimensional 

de los cultivos, se utiliza la capa ScenegraphLayer de deck.gl, la cual renderiza modelos en 

formato GLB distribuidos de manera aleatoria dentro de las regiones provinciales. La Figura 13 

muestra el detalle de la visualización tridimensional sobre una provincia seleccionada.  

Figura 13 

Visualización 3D (GLB) sobre provincia seleccionada. 

 

Nota. La figura muestra la selección de la provincia Los Ríos, en la cual se muestran los objetos 

3D dependiendo del resultado de producción estimada.  

Integración Frontend – Backend 

La comunicación se realiza mediante peticiones HTTP al backend. El Frontend define un 

cliente en api.js que centraliza fetch, parsea JSON y normaliza errores. La URL base se obtiene 

desde la variable VITE_API_BASE (entorno) con fallback a la URL de Railway, permitiendo 
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separar la configuración por ambiente (local, preview, producción). Para garantizar una 

integración fluida y segura, el sistema usa variables de entorno (como VITE_API_BASE) que 

definen la dirección de la API. Adicionalmente, se implementan políticas de seguridad CORS en 

el backend para restringir el acceso a los recursos, autorizando explícitamente solo las peticiones 

que provienen del dominio de producción en Vercel o del entorno loca, lo que previene el 

consumo no autorizado de los servicios.  

Despliegue en la nube 

El despliegue de la infraestructura en la nube se realizó utilizando contenedores Docker 

en la plataforma Railway para el backend, garantizando la reproducibilidad del entorno y la 

compatibilidad binaria de las dependencias (Numpy, Pandas, Scipy) mediante el uso de una 

imagen base Python:3.11-slim ejecutada con un servidor Uvicorn gestionado por Gunicorn. El 

frontend se despliega como un sitio estático construido por Vite. Vercel publica el directorio y 

distribuye el contenido por CDN. Esto reduce latencia y simplifica la operación, manteniendo el 

backend como servicio independiente.   

Seguridad, rendimiento y mantenibilidad 

En términos de seguridad, el sistema web desarrollado adopta prácticas alineadas con 

arquitecturas modernas orientadas a servicios. Se implementaron políticas de control de acceso 

mediante restricción de orígenes permitidos (CORS), junto con esquemas de validación de datos 

de entrada que garantizan la integridad de solicitudes y un manejo controlado de errores HTTP. 

La arquitectura aprovecha las capacidades de FastAPI para operaciones de entrada y salida 

eficientes, cargando el modelo de ML una única vez durante la inicialización del servicio.  
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Estrategia de pruebas y verificación del sistema web 

La estrategia de verificación se organizó en tres niveles. En el primer nivel se implementaron 

pruebas funcionales sobre la interfaz de programación de aplicaciones (API), validando el 

correcto funcionamiento de los endpoints mediante herramientas de documentación interactiva. 

Estas pruebas permitieron comprobar que las solicitudes de predicción se procesan 

adecuadamente cuando se ingresan parámetros válidos.   

En el segundo nivel, se ejecutaron pruebas de integración orientadas a verificar la comunicación 

efectiva entre el backend y el frontend del sistema. En esta etapa se confirmó la recepción de 

datos en la interfaz web. Este nivel de verificación permitió asegurar que los datos generados por 

el modelo predictivo sean correctamente interpretados y presentados al usuario final como se 

muestra en la Figura 14. 

Figura 14 

Verificación de datos presentados en la interfaz web 

 

Nota. Captura de pantalla de los resultados obtenidos en la interfaz web con datos históricos. 
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Finalmente, se llevaron a cabo pruebas de verificación en un entorno de producción, 

enfocadas en evaluar la operatividad del sistema una vez desplegada la infraestructura en la 

nube. Estas pruebas incluyeron validación de las direcciones de acceso a los servicios, la revisión 

de registros de ejecución y el análisis de los tiempos de respuesta, con el objetivo de identificar 

posibles fallos, errores de comunicación o problemas asociados a restricciones de seguridad y 

control de acceso.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 
 

QUITO – ECUADOR | 2025 

Capítulo 4 

Análisis de Resultados 

En este capítulo se presentan los resultados obtenidos tras el entrenamiento, validación y 

prueba de los modelos predictivos para estimar el rendimiento de la producción de banano. El 

análisis se estructura en tres fases: primero, la validación métrica de los algoritmos entrenados 

con la serie histórica completa (2012-2023); segundo, la validación del modelo seleccionado 

frente a datos históricos del 2024; tercero, la simulación de escenarios de sensibilidad para medir 

la respuesta del modelo ante cambios estructurales en la superficie cultivada. 

Evaluación del rendimiento de modelos entrenados (2012-2023)  

Se utilizó la herramienta Regression Learner de Matlab, empleando un enfoque de 

validación cruzada (k-Fold Cross Validation, k=5) para garantizar que los resultados no 

dependen de un sesgo en la partición de datos. Las variables predictoras utilizadas fueron: 

 Superficie cosechada (Ha) 

 Provincia (One-Hot Encoding) 

 Presión superficial (Ps) 

Comparativa de algoritmos y métricas de error. Se sometieron distintas familias de 

algoritmos para evaluar su capacidad de ajuste. Los resultados obtenidos se resumen en la Tabla 

12, donde se contrastan el coeficiente de determinación, error cuadrático medio y el error 

absoluto medio. 
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Tabla 12 

Comparación del desempeño de los algoritmos de regresión mediante R², RMSE y MAE 

Algoritmo Tipo 𝐑𝟐 (Ajuste) RMSE (Tm) MAE (Tm) 

Linear Regression Linear 0.91284 13353 9261.9 

Linear Regression Interactions 

Linear 

0.91531 13162 9401.2 

Linear Regression Robust Linear 0.90305 14082 9748.1 

Stepwise Linear Regression Stepwise 

Linear 

0.91181 13431 9513 

SVM Linear SVM 0.90541 13910 9879.3 

SVM Quadratic 

SVM 

0.90824 13700 10047 

SVM Cubic SVM 0.166 41304 31525 

SVM Fine Gaussian 

SVM 

0.94997 10117 7984.4 

SVM Medium 

Gaussian SVM 

0.89575 14603 10232 

SVM Coarse 

Gaussian SVM 

0.90365 14039 9976 

Ensemble Boosted Trees 0.96581 8363.4 7488.2 

Ensemble Bagged Trees 0.99067 4369 2850.8 

Nota. Los entrenamientos y resultados obtenidos en la tabla fueron realizados en Matlab, 

utilizando el módulo de Regression Learner. 

Los resultados muestran diferencias claras en el desempeño predictivo entre los distintos 

algoritmos evaluados. 

Modelos Lineales 

Las variantes de regresión lineal (lineal, interacciones y stepwise) presentan un 

desempeño estable, con valores de Rଶ entre 0.91 y 0.92, y errores RMSE del orden de 13 000 a 

14 000. Esto confirma que una gran parte de la variabilidad de la producción puede ser explicada 

mediante relaciones aproximadamente lineales, asociadas a variables estructurales. 
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Modelos SVM 

El desempeño de los modelos SVM es altamente dependiente del kernel utilizado. 

Mientras que el Fine Gaussian SVM alcanza un buen ajuste superior al 0.90, otros kernels como 

el cúbico presentan comportamientos deficientes, evidenciando problemas de sobreajuste o poca 

interpretación de los datos.  

Modelos de ensamble 

Los mejores resultados se obtienen con los modelos de ensamble. Particularmente con 

Boosted Trees y Bagged Trees, los cuales superan al resto de modelos entrenados. Esto indica 

una alta capacidad para capturar relaciones lineales.   

Selección del modelo. Los modelos de ensamble demostraron un comportamiento 

superior al resto de arquitecturas. Bagged Trees tiene una capacidad consistente para reproducir 

el rendimiento. Esta estabilidad resulta relevante para la fase de escenarios, en la cual se evalúan 

modificaciones estructurales.  

Los modelos lineales se mantienen como referencia interpretativa del sistema productivo, 

pero no se seleccionan como base para escenarios debido a su menor capacidad para capturar 

variaciones locales. De la misma forma, modelos SVM se descartan debido a su elevada 

dependencia de la configuración e hiperparámetros para mejorar su estabilidad.  

En consecuencia, se selecciona Bagged Trees como modelo principal para la simulación 

de escenarios, al presentar el mejor equilibrio entre precisión predictiva, estabilidad y capacidad 

de generalización, estableciendo una base sólida y confiable para el análisis del rendimiento del 

banano. La Figura 15 presenta la comparación entre los valores reales y predichos del modelo, 

evidenciando una fuerte concordancia. La dispersión reducida indica que el modelo mantiene un 

comportamiento estable tanto para niveles bajos como altos de producción. 
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Figura 15 

Comparación entre valores reales y predichos del modelo 

 

Nota. La Figura muestra el resultado obtenido con el mejor modelo entrenado en Matlab. 

Análisis de Resultados  

Escenario de validación temporal (Realidad 2024). La Figura 16 presenta la 

comparación entre la producción real y la producción predicha para el año 2024, separada por 

provincia, utilizando el modelo Bagged Trees. Los resultados muestran un comportamiento 

diferenciado entre provincias, asociado a su estructura productiva y representatividad histórica de 

los datos utilizados en el entrenamiento. 
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Figura 16 

Comparación entre la producción real y la producción predicha en 2024 por provincia 

utilizando el modelo Bagged Trees. 

 

Nota. Se seleccionaron los datos del año 2024 para realizar el testeo del modelo, tomando en 

cuenta las provincias más relevantes del cultivo en la región. 

En el caso de Los Ríos, el modelo reproduce con alta precisión el nivel de producción, 

con un error porcentual promedio (MAPE) de 1.69%. Este resultado confirma que el modelo 

captura adecuadamente la dinámica productiva de la provincia.  

Para Guayas, la predicción presenta una desviación moderada respecto a los valores 

reales, con un MAPE de 5.57%. Este resultado es aceptable desde el punto de vista predictivo y 

puede atribuirse a una mayor variabilidad histórica en la producción provincial. 

En contraste, El Oro presenta la mayor discrepancia entre valores reales y predichos, con 

un MAPE de 21.96%. Este comportamiento muestra una menor capacidad de predicción del 
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modelo, lo cual es consistente con su menor peso relativo en el conjunto de entrenamiento y una 

estructura productiva distinta.  

De manera general, la validación confirma que el modelo Bagged Trees mantiene una 

alta capacidad predictiva a nivel provincia, especialmente en zonas con mayor estabilidad 

estructural y mayor representatividad histórica.  

Escenario de Sensibilidad Estructural. La Figura 17 presenta el escenario de 

expansión y contracción de la superficie cultivada anualmente, evaluado mediante el modelo 

Bagged Trees. En este análisis se simulan variaciones estructurales en el área productiva, 

manteniendo constantes el resto de las variables del sistema, con el objetivo de cuantificar su 

impacto directo sobre la producción estimada del banano. 

Figura 17 

Análisis de sensibilidad del impacto de la superficie cultivada sobre la producción estimada de 

banano utilizando el modelo Bagged Trees 

 

Nota. Elaboración propia 
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Los resultados evidencian una alta sensibilidad ante cambios de la superficie. En el 

escenario de contracción, la producción estimada se reduce a 5 857 160 toneladas métricas, lo 

que representa una reducción del -8.21%, respecto al escenario base del año 2024. Por el 

contrario, el escenario de expansión alcanza un valor de 7 324 659 toneladas métricas, 

correspondientes a un incremento de +14.79%.  

Los resultados indican que los escenarios de reducción y aumento de superficie no 

presentan una relación estrictamente proporcional, sino que tiene efectos no lineales asociados a 

la estructura productiva y a la interacción de sus variables de entrada. Sin embargo, la tendencia 

se mantiene consistente con la lógica agronómica: el aumento en la superficie se traduce a un 

crecimiento significativo de la producción. 
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Capítulo 5 

Conclusiones  

 El proceso de adquisición e integración de datos constituyó un componente crítico 

del estudio, al requerir la unificación de fuentes productivas oficiales y datos 

climáticos de distinta periodicidad. La información obtenida de la ESPAC y 

NASA POWER consistió en registros anuales y mensuales consistentes y 

estructuralmente homogéneos para el periodo de análisis 2012-2024. 

 El conjunto final de datos utilizados para el entrenamiento del modelo se 

construyó a partir de los años con información completa y estructuralmente 

consistente, lo que dispuso de un volumen suficiente de observaciones para el 

periodo 2012-2023. El año 2024 fue reservado exclusivamente para la validación 

temporal, fortaleciendo la evaluación del modelo.  

 La producción bananera en la Costa ecuatoriana presenta una dinámica estructural 

a escala anual, donde las variables de superficie plantada y cosechada explican la 

variabilidad observada entre el periodo 2012-2024. Este comportamiento fue 

consistente a lo largo de todos los modelos evaluados.  

 Las variables climáticas actúan principalmente como factores moduladores 

secundarios, mostrando baja variabilidad interanual y contribuciones en la 

predicción del rendimiento anual. Su influencia es más relevante a escalas 

temporales menores o en contextos de eventos extremos. 

 Los modelos de ensamble superaron sistemáticamente a los modelos lineales y 

SVM, destacándose Bagged Trees como el algoritmo con mejor equilibrio entre 
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precisión, estabilidad y capacidad de generalización, alcanzando valores de Rଶ > 

0.99 y los menores errores RMSE y MAE.  

 La validación temporal con datos reales del año 2024 confirmó la robustez del 

modelo seleccionado, obteniendo altos niveles de precisión en provincias con 

mayor representatividad histórica (Los Ríos y Guayas), y evidenciando 

limitaciones en provincias con menor peso relativo como El Oro.  

 En conjunto, el estudio demuestra que la combinación de datos oficiales, una 

metodología rigurosa de integración temporal y modelos de ensamble robustos 

permite generar predicciones confiables del rendimiento bananero, aportando una 

base sólida para simulaciones de escenarios y la toma de decisiones en el sector 

agrícola.  

 El sistema web demuestra la viabilidad de integrar un modelo entrenado de ML 

con una interfaz web rica en visualización para apoyar análisis agrícolas. La 

separación de despliegues (Railway/Vercel) mejora la operabilidad y permite 

escalar componentes de forma independiente.  

Recomendaciones 

 Se recomienda que futuras investigaciones incorporen predictores a nivel 

provincial y cantonal de manera sistemática. Aunque el modelo anual mostró un 

desempeño estable, la variabilidad climática y productiva no es homogénea entre 

provincias de la región Costa. Una mayor desagregación permitiría capturar mejor 

los efectos locales.  
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 Se recomienda incorporar en futuros estudios variables que expliquen la dinámica 

de la superficie agrícola. Esto permitiría modelar de manera más integral las 

decisiones de expansión y contracción para escenarios de validación. 

 Se recomienda estructurar futuros modelos en dos etapas: un primer modelo 

orientado a la evolución de la superficie, y un segundo enfocado en la estimación 

del rendimiento a partir de dicha superficie. Esta separación permitiría reducir el 

sesgo estructural y mejorar la interpretación de datos.  

 Se recomienda en futuros trabajos extender la cobertura del sistema web 

incorporando información correspondiente a un mayor número de provincias y 

cultivos. De la misma forma, la integración de múltiples modelos predictivos para 

realizar comparaciones técnicas y mejorar la capacidad de análisis. 

 Se recomienda implementar flujos automatizados de pruebas y validación 

continua que permitan detectar errores de forma temprana y asegurar estabilidad 

del sistema ante futuras modificaciones de la interfaz web.  
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