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Resumen 

En Ecuador el cultivo de banano representa un pilar económico y social de alta 

importancia, sin embargo, su sostenibilidad depende directamente de la supervivencia de las 

plantas para sobrevivir a enfermedades fitosanitarias que reducen en gran porcentaje su 

productividad lo que genera pérdidas económicas significativas. El presente trabajo propone un 

desarrollo de un sistema web basado en visión por computador y aprendizaje profundo para la 

detección automatizada de enfermedades en las hojas del banano a partir de imágenes. El 

aplicativo emplea técnicas de deep learning con arquitecturas como YOLOv8 y EfficientNet 

utilizando imágenes de hojas de banano sanas y con sintomatología asociada a enfermedades 

como Sigatoka negra, fusarium R4T y moko bacteriano, cordana, pestalotiopsis. El desarrollo del 

proyecto sigue un enfoque cualitativo y experimental, validando los modelos con métricas 

importantes como matriz de confusión, exactitud, precisión, recall y F1-score, este último cuando 

sea el caso.Estos modelos se integran en una arquitectura modular compuesta por back-end de 

inferencia implementado en Python y una interfaz web para la interacción del usuario, esta demo 

fue desplegada en un entorno local y expuesto mediante túneles seguros como ngrok, 

permitiendo la demostración funcional del sistema. Los resultados obtenidos evidencian un buen 

desempeño en la clasificación de enfermedades evaluadas, dejando en evidencia el potencial 

como herramienta de apoyo para evitar el diagnóstico tardío.  

Palabras clave: 

Visión por computador, aprendizaje profundo, enfermedades del banano, YOLOv8, EfficientNet, 

diagnóstico automatizado. 
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Abstract 

In Ecuador, banana cultivation is an economic and social pillar of great importance. 

However, its sustainability depends directly on the survival of plants against phytosanitary 

diseases that greatly reduce their productivity, leading to significant economic losses. This paper 

proposes the development of a web-based system using computer vision and deep learning for 

the automated detection of diseases in banana leaves from images.The application uses deep 

learning techniques with architectures such as YOLOv8 and EfficientNet, using images of 

healthy banana leaves and leaves with symptoms associated with diseases such as black sigatoka, 

Fusarium R4T and bacterial moko, cordana, and pestalotiopsis. The project's development 

follows a qualitative and experimental approach, validating the models with important metrics 

such as confusion matrix, accuracy, precision, recall, F1-score, the latter when applicable.These 

models are integrated into a modular architecture composed of an inference backend 

implemented in Python and a web interface for user interaction. This demo was deployed in a 

local environment and exposed through secure tunnels such as ngrok, allowing for a functional 

demonstration of the system. The results obtained show good performance in the classification of 

the diseases evaluated, highlighting the potential of this tool as a support for avoiding late 

diagnosis. 

 

Keywords: Computer vision, deep learning, banana diseases, YOLOv8, EfficientNet, automated 

diagnosis. 
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Capítulo 1 

1. Introducción 

1.1.Definición del proyecto 

El proyecto consiste en desarrollar un sistema para la detección automatizada de 

enfermedades en el banano mediante técnicas de visión por computadora y modelos de 

aprendizaje profundo. El sistema se entrena con imágenes de hojas y plantas, provenientes de 

repositorios públicos y adquiridas directamente en cultivos de banano. El enfoque considera una 

preparación del dataset mediante depuración y aumentación, el etiquetado manual de las clases, 

la delimitación de regiones de interés y la segmentación de imágenes. Posteriormente, se 

comparan dos modelos de detección: el primero un CNN basado en arquitecturas disponibles en 

timm y el segundo un modelo YOLOv8, validados mediante métricas estándar. Estos modelos se 

integran en una arquitectura modular compuesta por un back-end y una interfaz de usuario, los 

cuales se implementan en un prototipo desplegado en un entorno local expuesto mediante túneles 

seguros con ngrok, como demostración funcional del proyecto. 

1.2. Justificación e importancia del trabajo de investigación 

El banano es un pilar económico y social alrededor del mundo debido a su gran aporte en 

la seguridad alimentaria. La cadena de producción proviene principalmente de países de 

Centroamérica, Sudamérica y Filipinas representando el 90% de las exportaciones de este 

producto a nivel mundial (Food and Agriculture Organization of the United Nations [FAO], s. 

f.). 

Estos cultivos son los responsables de generar millones de empleos directos e indirectos 

en países tropicales o del neotrópico (Jones, 2000, como se citó en Churchill, 2011), este cultivo 
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adquiere alta relevancia, ya que representa el 60% del banano importado en el 2022 desde 

Sudamérica (Munhoz et al., 2024). Para Ecuador es uno de los principales productos de 

exportación. Los cultivos de las musáceas representan alrededor de 345.765 hectáreas de cultivo 

(Agencia de Regulación y Control Fito y Zoosanitario, 2025, p.1). Durante el 2024 se reportaron 

cerca de USD 1.94 mil millones (Corporación Financiera Nacional [CFN], 2024) representando 

un producto de importancia no solo agrícola, sino también productiva. Según datos del MAGAP 

(2023, p. 1) la actividad bananera contribuye alrededor de 25.4% al VAB agropecuario; Sin 

embargo, la sostenibilidad del cultivo se ve comprometida por las presencias de fitopatologías 

que son de especial atención, ya que enfermedades como; sigatoka negra, el Fusarium 

oxysporum f. El Sp cubense raza 4 tropical (Foc R4T) y el moko bacteriano representan una 

amenaza directa para los cultivos (Churchill, 2011; Pinzón-Núñez et al., 2024), la sigatoka negra 

Pseudocercospora fijiensis, es reconocida como una de las principales amenazas, ya que reduce 

la capacidad fotosintética de la planta y con ello el rendimiento de la cosecha (Noar et al., 2022). 

 Por otro lado, el moko es causada por Ralstonia solanacearum raza 2 es una de las 

plagas más destructivas contra la producción, ya que pueden representar hasta el 100% de la 

pérdida y la sintomatología principal es la afectación al sistema vascular empezando por el 

amarillamiento de las hojas, este se encuentra entre los responsables más relevantes de la 

marchitez en esta especie de cultivo (Grajales-Amorocho et al., 2024).  Por otro lado, Fusarium 

oxysporum f. sp. cubense Raza 4 Tropical (Foc TR4), representa una amenaza latente para los 

cultivos, aunque actualmente no hay evidencia de que esté presente en el país ecuatoriano se ha 

confirmado su presencia en 21 países, el contagio empieza por el suelo y su manejo resulta difícil 

y costoso (Agencia de Regulación y Control Fito y Zoosanitario, 2024). 
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En la actualidad el diagnóstico de estas enfermedades se realiza mediante la inspección 

personal y manual con personal capacitado, y una confirmación posterior mediante pruebas 

moleculares, lo que representa un proceso demorado y costoso en especial frente a grandes 

hectáreas de cultivo (Blandón et al., 2024). Además de estar sujetos a sesgos. Las soluciones 

basadas en IA permiten diagnósticos más rápidos y consistentes, apoyando la agricultura de 

precisión y la sostenibilidad de la industria (Jiménez et al., 2025; Romero-García et al., 2025, pp. 

68-70). 

1.3.Alcance 

Detección automatizada mediante visión computarizada de tres enfermedades infecciosas 

de banano: sigatoka negra, el Fusarium oxysporum f. El Sp cubense raza 4 tropical (Foc TR4) y 

moko bacteriana, mediante técnicas de deep learning para clasificación y detección de imágenes 

con la comparación de dos modelos YOLOv8 y EfficientNet. La metodología parte de la 

construcción de dos datasets a partir de imágenes públicas y capturas obtenidas en campo, las 

cuales fueron sometidas a procesos de etiquetado, transformación y organización. 

Posteriormente, se realiza el entrenamiento de modelos y la validación cuantitativa con métricas 

estándar. El producto final consiste en un despliegue del prototipo en entorno local expuesto 

mediante túneles seguros con ngrok a modo de demostración, por lo que los resultados se 

orientan a la validación experimental y académica del enfoque propuesto. 

1.4.Objetivos 

1.4.1. Objetivo general. 

Desarrollar un sistema de visión por computadora e inteligencia artificial para la 

detección de sigatoka negra, fusarium raza 4 tropical (Foc R4T), cordana, pestalotiopsis y moko 

bacteriano en banano ecuatoriano. 
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1.4.2. Objetivos específicos. 

Construir un dataset de imágenes con sintomatología de sigatoka negra, fusarium raza 4 

tropical (Foc R4T) y moko bacteriano, así como imágenes de plantas sanas, a partir de fuentes 

públicas y capturas de campo, mediante procesos de etiquetado, limpieza y transformación. 

Implementar dos arquitecturas de deep learning, YOLOv8 y EfficientNet, para la detección de 

las tres enfermedades a partir del conjunto de datos anteriormente generados. 

Comprobar el desempeño de las arquitecturas mediante métricas de evaluación. 

Desplegar un prototipo funcional en entorno local expuesto mediante túneles seguros con 

ngrok como demostración del sistema desarrollado. 
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Capítulo 2 

2. Revisión de literatura 

2.1.Estado del arte 

Durante la última década, la visión por computadora y, en particular, el aprendizaje 

profundo, han representado una vía práctica para el diagnóstico de fitopatologías a partir de 

imágenes, impulsadas por la disponibilidad de bases de datos abiertas y el rendimiento de las 

redes neuronales convolucionales (CNN). Un hito ampliamente citado es el uso de PlantVillage, 

repositorio que habilitó la investigación masiva de clasificación de enfermedades de hojas 

mediante aprendizaje profundo (Mohanty et al., 2016). 

Sin embargo, la evidencia acumulada señala que los modelos entrenados y evaluados en 

condiciones controladas pueden degradar su desempeño en campo por cambios de dominio 

(iluminación, fondo, variabilidad de cámaras, oclusiones y ruido). Esto se documenta tanto en 

análisis experimentales sobre limitaciones del reconocimiento en condiciones reales (Barbedo, 

2018) como en estudios específicos sobre sesgos del dataset PlantVillage, donde variables no 

relacionadas con el síntoma pueden contribuir al desempeño, como fondos o patrones engañosos 

(Noyan, 2022). En conjunto, este tipo de evidencia desplaza el enfoque desde “alta exactitud en 

laboratorio” hacia “robustez y generalización en condiciones reales”, que constituye uno de los 

retos centrales del área. 

A nivel metodológico, el campo ha evolucionado desde la clasificación de hojas 

completas hacia tareas más específicas y operativas: (i) detección y (ii) segmentación de lesiones 

para localizar síntomas, (iii) estimación de severidad para aproximarse a escalas fitopatológicas, 

y (iv) integración con georreferenciación y plataformas móviles o UAV (drones) para monitoreo 
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y agricultura de precisión. Específicamente en el cultivo de banano, esta progresión se observa 

en trabajos que exploran detección temprana (p. ej., con imágenes hiperespectrales para sigatoka 

negra) y en propuestas que buscan despliegue en dispositivos móviles para asistencia al 

agricultor (Ugarte Fajardo et al., 2020; Sanga et al., 2020).  

En paralelo, se ha incrementado la disponibilidad de conjuntos de datos específicos para 

el banano; por ejemplo, se han publicado datasets para clasificación de enfermedades foliares, 

como BananaLSD con sigatoka, cordana y pestalotiopsis; así como datasets más recientes con 

mayor variedad, orientados a escenarios de captura menos controlados (Arman et al., 2023; 

Mduma & Elinisa, 2025). Este avance es especialmente relevante porque habilitan evaluaciones 

más cercanas al uso real y reduce la dependencia exclusiva de PlantVillage. 

2.2.Marco teórico 

2.2.1. Cultivo de banano 

El banano es uno de los cultivos de mayor relevancia económica y alimentaria a nivel 

mundial, ocupando el cuarto lugar entre los productos alimenticios básicos en términos de 

volumen de producción. En Ecuador es muy importante para la parte agrícola, además, es un 

sector estratégico (Cervantes-Álava et al., 2023). Según Cervantes-Álava et al. (2023, p. 2), el 

banano aporta directamente el 2 % del Producto Interno Bruto (PIB) en el ámbito comercial y 

social, y la industria bananera genera aproximadamente 1 millón de familias y beneficia a 2,5 

millones de personas, lo que representa el 6% de la población total del país.  

La industria bananera genera aproximadamente 1 millón de empleos directos e indirectos, 

lo que representa el 6 % de la población total del país, incluyendo productores, trabajadores de 

plantaciones, transportistas, personal de empacadoras, y trabajadores de servicios auxiliares. 
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Además, el sector concentra cerca del 45 % de las exportaciones agrícolas totales y genera 

ingresos superiores a los 3.000 millones de dólares anuales, lo que convierte a Ecuador en el 

mayor exportador mundial de banano, con una participación del 28-30 % del mercado global. 

2.2.2. Enfermedades del banano 

El cultivo de banano es altamente susceptible a diversas enfermedades causadas por 

patógenos fúngicos, bacterianos y virales, las cuales representan una de las principales limitantes 

para su productividad y sostenibilidad. De acuerdo con Arunkumar y Suthin Raj (2021), estas 

enfermedades no solo afectan el rendimiento y la calidad del fruto, sino que también incrementan 

los costos de producción debido a la necesidad de implementar medidas de control constantes y, 

en muchos casos, intensivas. El control químico de enfermedades como la sigatoka negra puede 

incrementar los costos de producción en más del 30% (Cervantes-Álava et al., 2023, p. 2). 

Entre las enfermedades más relevantes se encuentran la marchitez por Fusarium y la 

sigatoka negra, consideradas las más devastadoras a nivel mundial (Arunkumar & Suthin Raj, 

2021). Estas patologías se caracterizan por su rápida diseminación, persistencia en el suelo y 

dificultad de erradicación una vez establecidas. Asimismo, enfermedades bacterianas como la 

pudrición blanda y virales como el Banana bunchy top virus generan pérdidas significativas, 

especialmente en sistemas de producción con bajo manejo fitosanitario (Arunkumar & Suthin 

Raj, 2021). 

El manejo de estas enfermedades requiere un enfoque integral que combine prácticas 

culturales, uso de material vegetal sano, variedades resistentes y control químico racional 

(Arunkumar & Suthin Raj, 2021). El Manejo Integrado de Enfermedades (MID) se presenta 

como la estrategia más efectiva, ya que permite reducir la dependencia de agroquímicos, 
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minimizar el impacto ambiental y mantener la viabilidad económica del cultivo. Este enfoque se 

fundamenta en la prevención, el monitoreo constante y la aplicación oportuna de medidas de 

control basadas en el conocimiento del patógeno y su interacción con el ambiente y el hospedero 

(Arunkumar & Suthin Raj, 2021). 

Tabla 1 

Principales enfermedades foliares y sistémicas del banano 

Enfermedad Tipo Órgano 

afectado 

Síntomas representativos 

Cordana Fúngica Hoja Manchas ovaladas a 

alargadas, de color marrón 

claro con bordes oscuros, 

generalmente rodeadas por 

halos amarillos 

Pestalotiopsis Pestalotiopsis spp Hoja Manchas irregulares de 

color marrón oscuro con 

bordes definidos, necrosis 

progresiva del tejido foliar 

Sigatoka 

(negra/amarilla) 

Pseudocercospora 

fijiensis / 

Mycosphaerella 

musicola 

Hoja Estrías cloróticas iniciales 

que evolucionan a manchas 

necróticas oscuras; 

reducción del área 

fotosintética 

Fusarium TR4 Fusarium oxysporum 

f. sp. cubense raza 

Tropical 4 

Hoja Amarillamiento progresivo, 

marchitez, necrosis vascular 

interna, colapso de la planta 

Moko negro Ralstonia 

solanacearum 

Sistema 

vascular 

Marchitez, exudado 

bacteriano, pudrición 

interna del pseudo tallo y 

frutos 

Pudrición 

bacteriana 

Bacteriana Sistema 

vascular y fruto 

Pudrición blanda, mal olor, 

colapso de tejidos 

Banana bunchy 

top 

Viral  Hojas erectas y estrechas, 

crecimiento atrofiado, 

reducción del racimo 

 

Nota. Adaptado de "Evaluación de fungicidas utilizados en el manejo de sigatoka negra en el 

cultivo de banano", por A. Cervantes-Álava et al. (2023). 
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2.2.3. Redes neuronales convolucionales 

Las Redes Neuronales Convolucionales (CNN) se fundamentan en principios 

matemáticos y estructurales que explican su alta capacidad para el análisis de datos visuales. 

Estas arquitecturas aprovechan la estructura espacial de las imágenes mediante operaciones de 

convolución, permitiendo capturar patrones locales y relaciones jerárquicas de manera eficiente. 

A diferencia de modelos tradicionales, las CNN reducen la complejidad del aprendizaje gracias 

al uso de conectividad local y pesos compartidos, lo que mejora su generalización y desempeño 

en tareas de visión por computador (Taye, 2023).  

Las capas convolucionales actúan como extractores automáticos de características, donde 

los primeros niveles aprenden patrones simples como bordes y contornos, mientras que las capas 

más profundas representan estructuras de mayor nivel semántico (Taye, 2023). Esta organización 

jerárquica permite que las CNN sean robustas frente a variaciones espaciales, ruido y 

transformaciones menores en las imágenes de entrada. Además, el uso de funciones de 

activación no lineales incrementa la capacidad del modelo para aproximar funciones complejas 

(Taye, 2023).  

Las CNN pueden interpretarse como sistemas que combinan principios de invariancia, 

estabilidad y composicionalidad, lo cual explica su éxito en problemas de clasificación y 

reconocimiento visual (Taye, 2023). Estas propiedades hacen que las CNN sean especialmente 

adecuadas para aplicaciones donde la información espacial es relevante, como el análisis de 

imágenes médicas o agrícolas, incluyendo la detección automática de enfermedades en hojas de 

plantas. 
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Figura 1 

Arquitectura de CNN 

 

 

Nota. La arquitectura muestra el flujo de procesamiento desde la imagen de entrada, pasando por 

la capa convolucional, la capa de pooling, hasta la capa totalmente conectada y la función de 

activación. Adaptada de Taye (2023). 

 

2.3.El cultivo de banano y la problemática fitosanitaria 

El banano (Musa spp.) es un cultivo de amplia distribución en regiones tropicales y 

subtropicales y constituye un eje económico para múltiples países productores. En sistemas 

orientados a exportación predomina el subgrupo Cavendish, apreciado por rendimiento y 

características comerciales, aunque con susceptibilidades relevantes ante enfermedades foliares y 

vasculares (Churchill, 2011; Ploetz, 2015). 

Desde la perspectiva fitosanitaria, este trabajo se enfoca en tres problemas frecuentes y de 

alto impacto: Sigatoka negra, marchitez por fusarium oxysporum f. sp. cubense (con énfasis en 

TR4) y Moko del banano asociado a Ralstonia solanacearum. Estas enfermedades reducen 

rendimiento y calidad comercial, incrementan costos de control y monitoreo, y en escenarios de 
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alta presión de patógeno pueden comprometer la viabilidad de plantaciones completas 

(Churchill, 2011; Ploetz, 2015). 

2.3.1. Sigatoka negra 

La sigatoka negra (black leaf streak disease) es causada por Pseudocercospora fijiensis 

anteriormente clasificada como Mycosphaerella fijiensis y se reconoce como una de las 

enfermedades foliares más importantes del banano a nivel mundial (Churchill, 2011). El 

patógeno coloniza el tejido foliar y produce estrías cloróticas que progresan a lesiones necróticas, 

como se aprecia en la Figura 2. Con la pérdida de área fotosintética funcional reduce la 

productividad y puede forzar cosechas anticipadas.  

En el control, además de prácticas culturales, se han empleado programas intensivos de 

fungicidas. Para estandarizar evaluación y reducir variabilidad entre observadores, se proponen 

escalas diagramáticas de severidad, aunque el proceso sigue siendo esencialmente visual y 

dependiente del evaluador (Pinzón-Núñez et al., 2024). 

 

 

 

 

 

 

 

 

 

https://bsppjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1364-3703.2010.00672.x?utm_source=chatgpt.com
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Figura 2 

Síntomas en hoja producidos por sigatoka negra en banano (Musa spp) 

 

 
 

Nota. Reproducida de Linero-Ramos et al. (2024), Figura 7B, Drones, 8(9), 503. 

 

2.3.2. Marchitez por Fusarium y relevancia de TR4 

La marchitez por Fusarium en banano es causada por Fusarium oxysporum f. sp. cubense 

(Foc), patógeno de suelo que invade raíces y xilema Figura 3. La variante conocida como 

tropical race 4 (TR4) es particularmente crítica por su capacidad de afectar Cavendish y por su 

persistencia en suelo, lo que limita estrategias curativas y desplaza la gestión hacia medidas 

preventivas, bioseguridad y detección temprana (Ploetz, 2015). 

En años recientes, la literatura ha enfatizado la expansión y gestión de TR4, destacando la 

necesidad de vigilancia, contención, y prácticas integradas de manejo, especialmente en regiones 

productoras de alto peso exportador (Munhoz et al., 2024; Ploetz, 2015). 
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Figura 3 

Síntomas en hoja producidos por Fusarium TR4 en banano (Musa spp.) 

 

Nota. Fotografía de dominio público obtenida de Flickr (Nelson, 2011) 

 

2.3.3. Cordana 

También llamada mancha foliar diamante, es causada por un complejo fúngico 

especialmente por Neocordana musae, los signos están asociados con son lesiones necróticas con 

anillos concéntricos y halo amarillo brillante Figura 4, esta fitopatología se asocia a otras 

similares y pueden caer en infecciones mixtas (Fu et al., 2021) 
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Figura 4 

Síntomas en hoja producidos por Cordana en banano (musa spp.) 

 

 
 

Nota. Adaptado de P9140533, por (Nelson, 2011), Flickr 

 

2.3.4. Pestalotiopsis 

Este nombre recibe las enfermedades causadas por hongos de la familia pestalotiopsis, 

entre los signos que presenta la hoja enferma son manchas, tizones y necrosis Figura 5, por lo 

que la presencia de estos puede causar un impacto directo en la sanidad vegetal (Cui et al., 2024). 
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Figura 5 

Síntomas en hoja producidos por Pestalotiopsis en banano (musa spp.) 

 

Nota. Tomado de BananaLSD (Arman et al., 2023) 

 

2.3.5. Moko del banano 

El Moko del banano es una marchitez bacteriana asociada a Ralstonia solanacearum en 

varios documentos técnicos se reporta en términos de “razas” o “patotipos” según el enfoque 

institucional. La diseminación puede ocurrir por suelo, agua, herramientas, vectores y material de 

propagación, y el manejo se centra en erradicación temprana, desinfección rigurosa y uso de 

material certificado, dada la severidad del impacto y la velocidad de propagación en finca 

(Agencia de Regulación y Control Fito y Zoosanitario, 2024). 
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Figura 6 

Síntomas en hoja producidos por moko en banano (Musa spp.) 

 
 

Nota. Adaptada de la Figura 4 de Blomme et al. (2017), *Frontiers in Plant Science*. Artículo de 

acceso abierto bajo licencia Creative Commons Attribution (CC BY). 

 

2.3.6. Diagnóstico visual y motivación para automatización 

En los tres casos descritos, la inspección visual es el punto de partida operacional en 

campo. No obstante, presenta limitaciones: alta dependencia de experiencia, costo de cobertura 

en grandes superficies, variabilidad por condiciones de luz y heterogeneidad del entorno, y 

dificultad para detectar estadios tempranos. Estas restricciones justifican el interés por sistemas 

de apoyo basados en imágenes y análisis automático, especialmente cuando las capturas pueden 

provenir de teléfonos inteligentes, cámaras convencionales o plataformas UAV (Barbedo, 2018; 

Upadhyay et al., 2025). 
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2.4.Fundamentos de visión por computador y aprendizaje profundo 

La visión por computador busca dotar a sistemas automáticos de la capacidad de 

interpretar información visual para resolver tareas como clasificación, detección de objetos y 

segmentación. Con el auge del aprendizaje profundo, estas tareas han mejorado sustancialmente 

al aprender representaciones directamente desde datos, evitando depender exclusivamente de 

descriptores diseñados manualmente (Goodfellow et al., 2016). 

2.4.1.1. Imágenes digitales y preprocesamiento 

Una imagen RGB puede representarse como una matriz de píxeles con tres canales. Antes 

del entrenamiento, se aplican transformaciones típicas: redimensionamiento, normalización y 

aumento de datos rotaciones, cambios de brillo, recortes, etc. En sanidad vegetal, el aumento de 

datos contribuye a robustez ante cambios habituales en campo (iluminación, ángulo, fondo), 

aunque no reemplaza la necesidad de datos representativos del dominio real (Barbedo, 2018). 

2.4.2. Redes neuronales convolucionales 

Las CNN aplican filtros convolucionales para capturar patrones locales (bordes, texturas), 

y en capas profundas aprenden estructuras más abstractas asociadas a la clase. Su entrenamiento 

ajusta parámetros para minimizar una función de pérdida, usualmente entropía cruzada, mediante 

variantes de descenso de gradiente sobre imágenes etiquetadas. En fitopatología, esto se traduce 

en aprender texturas, clorosis, necrosis y patrones de lesión en lámina foliar (Mohanty et al., 

2016). 

2.4.3. Transfer learning y modelos preentrenados 

Dado que los datasets agrícolas suelen ser más pequeños que repositorios masivos, se 

emplea transfer learning: se parte de modelos preentrenados (comúnmente sobre ImageNet) y se 

ajustan a la nueva tarea. Este enfoque es dominante en el diagnóstico de enfermedades por hoja 
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por su eficiencia y desempeño con datos moderados (Mohanty et al., 2016; Russakovsky et al., 

2015). 

2.4.4. Métricas de evaluación e interpretabilidad 

La evaluación utiliza métricas como accuracy, precisión, recall, F1 y matrices de 

confusión, poniendo atención a desempeño por clase relevante por el costo asimétrico de falsos 

negativos en enfermedad. Además, la interpretabilidad ha ganado importancia: Grad-CAM 

permite visualizar regiones que contribuyen a la decisión del modelo, facilitando validación 

técnica y comunicación con expertos agronómicos (Selvaraju et al., 2020). 

2.5.Detección de enfermedades de plantas mediante deep learning 

El uso de deep learning para enfermedades de plantas se ha expandido rápidamente, 

apoyado en revisiones sistemáticas que reportan mejoras sostenidas en desempeño y 

proliferación de arquitecturas eficientes. Estas revisiones también resaltan retos persistentes: 

sesgo de datasets, desbalance de clases, robustez en campo y necesidad de interpretabilidad (Liu 

& Wang, 2021; Upadhyay et al., 2025). 

En particular, el caso PlantVillage consolidó la línea de clasificación con CNN, 

mostrando niveles altos de desempeño en pruebas internas (Mohanty et al., 2016). No obstante, 

trabajos posteriores evidencian que parte del desempeño puede explicarse por correlaciones 

espurias (p. ej., fondos, condiciones controladas), reforzando el argumento de que la evaluación 

debe incluir escenarios realistas y protocolos de generalización (Barbedo, 2018; Noyan, 2022). 

2.6.Arquitecturas YOLOv8 Y EfficientNet en segmentación y etiquetado foliar 

El deep learning se emplea dentro del diagnóstico de fitopatologías para; la segmentación 

foliar y el etiquetado, entre las familias más utilizadas destacan YOLO que usan un problema de 
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regresión directa sobre la imagen completa y permite procesar la información en tiempo real 

(Redmon et al., 2016) y las redes convolucionales eficientes como EfficientNet que optimiza los 

factores precisión con costo computacional (Tan & Le, 2019). 

2.6.1. YOLOv8 

Arquitectura desarrollada y mantenida por Ultralytics, incorpora un backbone 

optimizado, variantes orientadas a la detección como a segmentación y clasificación, adopta un 

enfoque simplificando los anchos con lo que se mejora la localización, mientras mantiene 

velocidades de inferencia para sistemas en tiempo real (Ultralytics, 2023). 

2.6.2. EfficientNet 

EfficienteNet está diseñada a partir de una búsqueda de arquitectura y un sistema que 

ajusta ancho, profundidad y resolución en red mediante un solo coeficiente de escala, por lo que 

comprende una familia de redes convulsiones (Tan & Le, 2019) 
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Capítulo 3 

3. Desarrollo 

3.1.Metodología del desarrollo del proyecto 

El desarrollo del presente proyecto se fundamenta dentro de un enfoque metodológico 

mixto que combina elementos cuantitativos y cualitativos, orientado a la construcción de un 

sistema de clasificación de enfermedades en hojas de banano mediante técnicas de aprendizaje 

profundo. La metodología adoptada sigue un modelo iterativo e incremental, característico del 

desarrollo de sistema de inteligencia artificial, donde cada fase permite refinamientos sucesivos 

basados en los resultados obtenidos. 

El proceso metodológico se estructura en seis fases principales interconectadas: (1) 

adquisición y preparación del conjunto de datos, (2) diseño de la arquitectura del sistema, (3) 

implementación de los modelos de clasificación, (4) entrenamiento y optimización de 

hiperparámetros, (5) evaluación y validación del desempeño, y (6) desarrollo e integración del 

prototipo funcional. Cada fase incorpora ciclos de retroalimentación que permiten ajustes 

basados en métricas de rendimiento y observaciones cualitativas. 

La validación cuantitativa del sistema se realiza mediante métricas estándar de 

clasificación multiclase, incluyendo exactitud (accuracy), precisión (precision), exhaustividad 

(recall) y puntuación F1 (F1-score). Adicionalmente, se emplean matrices de confusión para el 

análisis detallado del comportamiento del clasificador por clase, permitiendo identificar patrones 

de confusión entre enfermedades con sintomatología visual similar. 

El enfoque experimental contempla la comparación sistemática de dos familias de 

arquitecturas de redes neuronales profundas: redes convolucionales tradicionales basadas en 
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EfficientNet , y arquitecturas de detección de objetos adaptadas para clasificación mediante 

YOLOv8. Esta comparación permite evaluar no solo el rendimiento e n términos de exactitud, 

sino también aspectos críticos para el despliegue como velocidad de inferencia, consumo de 

memoria y tamaño del modelo. 

3.2.Arquitectura general del sistema 

El sistema desarrollado implementa una arquitectura de software modular basada en el 

patrón cliente-servidor, diseñada para facilitar escalabilidad, el mantenimiento y la evolución 

independiente de sus componentes. Esta arquitectura separa claramente las responsabilidades 

entre la interfaz del usuario, la lógica del negocio, los servicios de inferencia y la capa de 

persistencia de datos. 

La arquitectura del sistema se compone de cuatro capas fundamentales que operan de 

manera coordinada para proporcionar el servicio de clasificación de enfermedades. 

Capa de presentación (Front-end): Implementada como una aplicación web estática 

utilizando tecnologías HTML5, CSS3 y JavaScript vanilla. Esta capa proporciona la interfaz de 

usuario para la carga de imágenes, visualización de resultados de clasificación y consulta del 

historial de predicciones. El diseño responsivo garantiza accesibilidad desde dispositivos 

móviles, considerando que los usuarios finales podrían utilizar smartphones directamente en 

campo. 

Capa de servicios (API REST): Desarrollada con el framework FastAPI de Python, esta 

capa expone endpoints RESTful que gestionan las solicitudes del cliente. FastAPI fue 

seleccionado por su alto rendimiento, soporte nativo para operaciones asíncronas, generación 

automática de documentación OpenAPI y validación de tipos mediante Pydantic. Los principales 
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endpoints incluyen: /predict para clasificación de imágenes, \history para consulta de 

predicciones anteriores, \feedback para retroalimentación del usuario, y \stats para estadísticas 

agregadas. 

Capa de inferencia (Motor de clasificación): Constituye el núcleo del sistema donde 

residen los modelos de aprendizaje profundo entrenados. Esta capa encapsula toda la lógica de 

preprocesamiento de imágenes, ejecución del modelo y posprocesamiento de resultados. Se 

implemente como un módulo independiente que puede cargar diferentes arquitecturas de modelo 

(EfficientNet, YOLOv8) según la configuración, facilitando la experimentación y actualización 

de modelos sin modificar otras capas del sistema. 

Capa de persistencia (Base de datos): Implementada con PostgreSQL, esta capa almacena 

el historial de predicciones, retroalimentación de usuarios y metadatos del sistema. El esquema 

de base de datos está diseñado para soportar análisis posteriores del comportamiento del modelo 

en producción y facilitar procesos de mejora continua mediante el etiquetado de nuevas 

muestras. 

3.3.Flujo de datos del sistema  

El flujo de procesamiento de una solicitud de clasificación sigue una secuencia bien 

definida que garantiza la trazabilidad y reproducibilidad de los resultados: 

Paso 1 – Captura de imagen: El usuario carga una imagen de hoja de banano a través de 

la interfaz web. El frontend valida el formato del archivo (JPEG, PNG) y el tamaño máximo 

permitido antes de enviar la solicitud al servidor. 
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Paso 2 – Recepción y validación: El endpoint /predict de la API recibe la imagen 

codificada en formato multipart/form-data. Se realizan validaciones adicionales incluyendo 

verificación de integridad del archivo y detección del tipo MIME real. 

Paso 3 – Preprocesamiento: La imagen se decodifica y transforma según los 

requerimientos del modelo, redimensionando a 224x224 píxeles, normalización de valores de 

pixeles al rengo [0,1], y aplicación de las trasformaciones específicas del modelo preentrenado 

(normalización ImageNet para EfficientNet). 

Paso 4 – Inferencia: El tensor preprocesado se pasa al modelo de clasificación. El motor 

de inferencia ejecuta el forward pass y obtiene las probabilidades de cada una de las seis clases: 

Cordana, Fusarium R4T, Healthy (sana), Moko, Pestalotiopsis y Sigatoka. 

Paso 5 – Postprocesamiento: Se aplica la función sofmax para normalizar las salidas y se 

identifica la clase con mayor probabilidad. Se construye el objeto de respuesta incluyendo la 

clase predicha, el nivel de confianza y opcionalmente las probabilidades de todas las clases. 

Paso 6 – Persistencia y respuesta: El resultado se almacena en la base de datos junto con 

metadatos (timestamp, hash de imagen, tiempo de inferencia) y se retorna al cliente en formato 

JSON. 

La selección de tecnologías para el desarrollo del sistema se realizó considerando 

criterios de rendimiento, madurez del ecosistema, documentación disponible y compatibilidad 

con hardware de aceleración GPU. La Tabla 2 presenta el stack tecnológico completo del 

proyecto. 

 



 
 
 

 

 

37 

QUITO – ECUADOR | 2024 

 

Tabla 2 

Stack tecnológico del sistema 

Componente Tecnología Justificación 

Dee Learning PyTorch 2.0+ Flexibilidad para 

investigación, soporte 

dinámico y amplio 

ecosistema 

Modelos preentrenados Timm, Ultralytics Acceso a arquitecturas 

SOTA con pesos ImageNet 

API Backend FastAPI Alto rendimiento asíncrono, 

documentación automática 

OpenAPI 

Base de datos PostgreSQL Robustez, soporte JSON 

nativo, escalabilidad 

Frontend HTML5, CSS3, JS Simplicidad, compatibilidad 

universal, sin dependencias 

Contenedores Docker Portabilidad, aislamiento de 

dependencias, despliegue 

consistente 

Augmentation Albumentations Transformaciones 

optimizadas para imágenes, 

integración con PyTorch 

 

3.4. Recolección y preprocesamiento del dataset  

Para el entrenamiento se construyó un conjunto de datos compuesto por imágenes 

provenientes de repositorios públicos y obtenidos en campo. El dataset incluye imágenes 

correspondientes a hojas de banano afectadas por distintas enfermedades, así como hojas 

saludables, abarcando clases como cordona (mancha foliar por Cordona musae), Pestalotopisis 

(mancha foliar por Pestalotiopsis), sigatoka negra y amarilla (Mycosphaerella fijiensis), 

Fusarium raza 4 tropical (Fusarium T4), moko negro, además de la clase saludable, que 

corresponde a hojas sin síntomas visibles. Las imágenes se organizaron siguiendo una estructura 

de carpetas diferenciando entre conjuntos de entrenamiento, validación y prueba. 
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El preprocesamiento de imágenes sigue un pipeline estandarizado diseñado para 

garantizar la consistencia entre las fases de entrenamiento e inferencia. Este aspecto es crítico, ya 

que discrepancias en el preprocesamiento constituyen una causa frecuente de degradación del 

rendimiento al desplegar modelos en producción. 

El pipeline de preprocesamiento implementa las siguientes transformaciones 

secuenciales: 

Redimensionamiento: Todas las imágenes se escalan a una resolución de 224x224 

píxeles, dimensión estándar compatible con arquitecturas preentrenadas en ImageNet. Se utiliza 

interpolación bilineal para preservar la calidad visual mientras se mantiene la eficiencia 

computacional. 

Normalización: Los valores de píxeles se transforman del rango [0, 255] al rango [0, 1] 

mediante división por 255. Posteriormente, se aplica la normalización específica de ImageNet 

utilizando media µ = [0.485, 0.456, 0.406] y desviación estándar σ = [0.229, 0.224, 0.225] por 

canal RGB. Esta normalización es esencial para aprovechar los pesos preentrenados de las 

arquitecturas base. 

Conversión de formato: Las imágenes se convierte al formato de tensor PyTorch con 

disposición de canales (C, H, W) requerida por las operaciones de convolución. 

En lo que respecta a la aumentación de datos (data augmentation) constituye una técnica 

fundamental para mejorar la capacidad de generalización del modelo, especialmente crítica dado 

el tamaño limitado del dataset. Las transformaciones de aumentación se aplican exclusivamente 
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durante el entrenamiento, simulando variaciones naturales que el modelo podría encontrar en 

escenario reales de campo. 

La biblioteca Albumentations fue seleccionada para implementar el pipeline de 

aumentación debido a su alto rendimiento (operaciones optimizadas en C++) y su amplio 

catálogo de transformación especializadas para imágenes. 

Las transformaciones de color (HueSaturationValue, RandomBrightnessContrast) son 

particularmente relevantes para este dominio, ya que simulan las variaciones de iluminación 

natural encontradas en campo y las diferencias entre dispositivos de captura. CoarseDropout 

(también conocido como CutOut o Random Erasing) ha demostrado mejorar la robustez del 

modelo al forzar el aprendizaje de características redundantes y distribuidas en lugar de depender 

de regiones específicas de la imagen.  

 Durante esta etapa se realizaron diversas operaciones, entre ellas el redimensionamiento 

del tamaño para hacer compatibles las imágenes con las arquitecturas utilizadas, la 

normalización de valores de los pixeles y la aplicación de técnicas de aumento de datos (data 

augmentation), tales como rotaciones, variaciones de brillo y recortes, como se aprecia en la 

Figura 7. 
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Figura 7 

Imágenes de hojas de banano correspondientes a las clases del conjunto de datos 

 
 

Nota. Imágenes de hojas de banano procesadas a partir de diferentes conjuntos de datos públicos, 

organizadas en las clases Cordana, Healthy, Pestalotiopsis, Sigatoka, Fusarium T4 y Moko negro. 

Las imágenes fueron redimensionadas, normalizadas y sometidas a técnicas de aumento de datos 

(data augmentation). 

3.5.Implementación de los modelos de aprendizaje profundo 

El desarrollo del sistema contempla la implementación y comparación de dos familias de 

arquitecturas de redes neuronales profundas: redes convolucionales modernas (EfficientNet) 

orientadas a clasificación de imágenes, y arquitecturas de detección adaptadas para clasificación 

(Yolov8). Esta aproximación dula permite evaluar el trade-off entre precisión y eficiencia 

computacional, aspecto crítico para aplicaciones en dispositivos con recursos limitados. 

3.5.1. Arquitectura del clasificador 

La arquitectura de EfficientNet representa una generación de redes convoluciones que 

han establecido nuevos estándares de rendimiento en tareas de clasificación de imágenes. 
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EfficientNet, propuesta por (Tan y Le, 2019), introduce el concepto de escalado compuesto que 

optimiza simultáneamente profundidad, ancho y resolución de la red. 

La implementación se realiza utilizando la biblioteca timm (PyTorch Image Models), que 

proporciona acceso a más de 700 arquitecturas preentrenadas con pesos de ImageNet. Esta 

biblioteca es ampliamente utilizada en la comunidad de investigación por su implementación 

optimizada y consistente de arquitecturas. 

3.5.2. Transfer learning y fine-tuning 

La estrategia de transfer learning empleada aprovecha los pesos preentrenados en 

ImageNet, un dataset de más de 14 millones de imágenes en 1000 categorías. Estos pesos 

proporcionan representaciones de bajo y medio nivel (bordes, texturas, patrones) que son 

transferibles a dominios específicos con la clasificación de enfermedades foliares. 

El proceso de fine-tuning se implementa en dos fases. La primera fase, el blackbone se 

congela completamente y solo se entrenar los pesos de la cabeza de la clasificación durante 5 

épocas. Esta fase permite adaptar la cabeza al nuevo espacio de salida sin degradas las 

representaciones aprendidas. En la segunda fase, se descongela el blackbone y se entrena el 

modelo completo con una tasa de aprendizaje reducida para realizar ajustes finos de las 

características sin olvidar catastróficamente el conocimiento previo. 

 

3.5.3. Implementación de YOLOv8 

Para la clasificación de enfermedades en hojas de banano se utilizó YOLOv8-cls, la 

variante de clasificación de la arquitectura YOLO versión 8 desarrollada por Ultralytics. A 

diferencia de las versiones tradicionales de YOLO orientadas a la detección de objetos, esta 
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variante está optimizada específicamente para tareas de clasificación de imágenes, permitiendo 

asignar una etiqueta diagnóstica a cada imagen de entrada. 

Se seleccionó la variante YOLOv8s-cls (small), debido a que presenta un equilibrio 

adecuado entre velocidad de inferencia y precisión. Esta arquitectura cuenta con 

aproximadamente 3.2 millones de parámetros, lo que la convierte en un modelo ligero y 

adecuado para su implementación en sistemas con recursos computacionales limitados. El 

modelo fue configurado para clasificar seis categorías correspondientes a las enfermedades 

Cordana, Pestalotiopsis, Sigatoka, Moko, Fusarium R4T y hojas sanas. Las imágenes de entrada 

fueron redimensionadas a una resolución de 224 × 224 píxeles y se emplearon pesos 

preentrenados sobre ImageNet, lo que permitió aprovechar el aprendizaje por transferencia para 

mejorar la convergencia del entrenamiento y el desempeño general del modelo tal como se 

muestra en la tabla 2. 

Tabla 2 

Parámetros principales del modelo YOLOv8-cls 

Parámetro Valor Descripción 

Variante YOLOv8s-cls (small) Balance entre velocidad y 

precisión 

Número de parámetros 3.2 millones Modelo ligero para 

despliegue eficiente 

Clases de salida 6 Enfermedades + hojas sanas 

Tamaño de imagen 224 x 224 px Dimensión de entrada del 

modelo 

Preentrenamiento Sí (ImageNet) Uso de aprendizaje por 

transferencia 

Nota. Se seleccionó la variante YOLOv8s-cls (small) debido a su equilibrio entre precisión y 

velocidad de inferencia, lo que la hace adecuada para aplicaciones con restricciones 

computacionales. 
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El entrenamiento del modelo se configuró mediante un archivo de parámetros que define 

las rutas de los datos, el conjunto de clases y los hiperparámetros de optimización, como se 

muestra en la tabla 3. Se utilizó el optimizador AdamW con una tasa de aprendizaje de 0.001 y 

un tamaño de lote de 32 imágenes, durante un total de 100 épocas. Con el fin de prevenir el 

sobreajuste, se implementó una estrategia de early stopping con una paciencia de 20 épocas, 

junto con técnicas de regularización como label smoothing y mixup, ambas configuradas con un 

valor de 0.1. 

Tabla 3 

Hiperparámetros de entrenamiento del modelo YOLOv8-cls 

Parámetro Valor 

Optimizador AdamW 

Learning rate 0.0001 

Batch size 32 

Épocas 100 

Early stopping Sí (patience=20) 

Label smoothing 0.1 

Mixup 0.1 

Nota. Los hiperparámetros presentados corresponden a la configuración utilizada durante el 

entrenamiento del modelo YOLOv8-cls y fueron seleccionados con el objetivo de optimizar el 

rendimiento del modelo y mejorar su capacidad de generalización. 

Durante el entrenamiento se aprovechó el sistema de aumento de datos integrado de 

YOLOv8, el cual aplica de forma automática diversas transformaciones a las imágenes. Estas 

incluyen rotaciones, cambios de escala, ajustes de color y variaciones de brillo, con el objetivo 

de simular diferentes condiciones de captura y aumentar la robustez del modelo frente a 

variaciones en el entorno. 
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Como resultado del proceso de entrenamiento, se obtuvo el mejor modelo de acuerdo con 

la métrica de validación, así como las curvas de aprendizaje correspondientes a la pérdida y la 

precisión a lo largo de las épocas. En términos de desempeño, el modelo alcanzó una precisión 

Top-1 del 96.67 % y una precisión Top-5 del 100 %, lo que indica que, en todos los casos 

evaluados, la clase correcta se encontró dentro de las cinco predicciones más probables 

generadas por el modelo. 

3.5.4. Implementación de EfficientNet 

Se implementó un modelo basado en EfficientNet, una arquitectura de red neuronal 

reconocida por su eficiencia y alto rendimiento en clasificación de imágenes. Esta arquitectura 

más robusta, al igual que YOLOv8, está orientada a identificar los patrones visuales de las 

enfermedades foliares en el banano. Se utilizaron pesos preentrenados en ImageNet, aplicando 

transfer learning con fine-tuning para adaptar el modelo a la identificación de enfermedades 

foliares en banano. 

Tabla 4 

Parámetros principales del modelo EfficientNet 

Parámetro Valor Descripción 

Arquitectura ConvNeXt Base Backbone preentrenado en 

ImageNet 

Clases de salida 6 Enfermedades + hojas sanas 

Tamaño de imagen 224 x 224 px Dimensión de entrada 

estándar 

Dropout 0,2 Regularización para evitar 

sobreajuste 

Nota. Los pesos preentrenados permiten aprovechar características visuales aprendidas de 

millones de imágenes. 
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Se configuró una cabeza de clasificación personalizada adaptada al número de clases del 

problema, con capas de Dropout y BatchNorm para regularización. La arquitectura incluye capas 

fully-connected para reducción de dimensionalidad, normalización por lotes para estabilizar el 

entrenamiento, Dropout (30%) para prevenir sobreajuste, y una capa final con 6 neuronas de 

salida. 

El entrenamiento se realizó con el optimizador AdamW como se detalla en la Tabla 5, 

considerando early stopping. Las imágenes fueron normalizadas y aumentadas mediante 

transformaciones de Albumentations, incluyendo rotaciones y volteos aleatorios, variaciones de 

brillo, contraste y color, simulación de ruido y desenfoque, y sombras aleatorias que simulan 

condiciones de campo. Estas transformaciones permiten al modelo generalizar mejor ante 

imágenes capturadas en diferentes condiciones de iluminación y ángulos. 

Tabla 5 

Hiperparámetros de entrenamiento 

Parámetro Valor 

Optimizador AdamW 

Learning rate 0.0001 

Batch size 32 

Épocas 50 - 100 

Early stopping Sí (patience=10) 

Nota. El early stopping detiene el entrenamiento automáticamente cuando el modelo deja de 

mejorar, evitando el sobreajuste. 

El entrenamiento generó el mejor modelo según la métrica de validación, obteniéndose 

las curvas de aprendizaje y las métricas estándar de clasificación (accuracy, precision, recall, F1-

score), alcanzando una exactitud del 96.94% en el conjunto de evaluación. 



 
 
 

 

 

46 

QUITO – ECUADOR | 2024 

 

3.5.5. Interpretabilidad del modelo mediante Grad-Cam 

La interpretabilidad de los modelos de aprendizaje profundo constituye un aspecto crítico 

para su adopción en dominios agrícolas, donde los usuarios expertos requieren comprender el 

razonamiento detrás de las predicciones. Para abordar esta necesidad, se implementó Gradient-

weighted Class Activation Mapping (Grad-CAM), una técnica de visualización que genera 

mapas de calor indicando las regiones de la imagen más influyentes en la decisión del 

clasificador. 

Grad-CAM opera calculando los gradientes de la clase predicha respecto a los mapas de 

activación de la última capa convolucional. Estos gradientes se promedian globalmente para 

obtener pesos de importancia por canal, que luego se combinan linealmente con los mapas de 

activación para producir un mapa de calor de la misma resolución espacial. La implementación 

se realizó mediante la biblioteca Captum de PyTorch, que proporciona una interfaz unificada 

para múltiples técnicas de interpretabilidad. 

3.6.Pipeline de entrenamiento 

El pipeline de entrenamiento implementa un flujo de trabajo sistemático y reproducible que 

abarca desde la carga de datos hasta la selección del mejor modelo. Este pipeline incorpora las 

mejores prácticas de entrenamiento de redes neuronales profundas, incluyendo técnicas de 

regularización, optimización del learning rate y monitoreo de métricas. 

3.6.1. Función de pérdida y manejo de desbalance 

La función de pérdida utilizada es la entropía cruzada categórica (Cross-Entropy Loss), 

estándar para problemas de clasificación multiclase. Para mitigar el impacto del desbalance de 
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clases, particularmente la subrepresentación de Fusarium R4T, se implementó la técnica de 

ponderación de clases (class weighting). 

3.6.2. Técnicas de regularización 

El pipeline implementa múltiples técnicas de regularización para prevenir el sobreajuste: 

Dropout: Se aplica con probabilidad 0.2 en la cabeza de clasificación, desactivando 

aleatoriamente neuronas durante el entrenamiento para forzar la distribución del conocimiento a 

través de múltiples caminos de la red 

Weight Decay: Regularización L2 aplicada a través del optimizador AdamW con factor 1e-

4, penalizando pesos de gran magnitud que podrían indicar sobreajuste. 

Early Stopping: Monitoreo de la pérdida de validación con paciencia de 15 épocas. El 

entrenamiento se detiene automáticamente si no hay mejora en la métrica objetivo, y se restauran 

los pesos de mejor checkpoint. 

Data Augmentation: Las transformaciones descritas en la sección 3.4 actúan como 

regularización implícita al generar variaciones de los datos de entrenamiento, previniendo la 

memorización de ejemplos específicos. 

3.6.3. Monitoreo y tracking de experimentos 

El seguimiento de experimentos se implemente mediante dos herramientas 

complementarias: 

TensorBoard: Utilizado para visualización en tiempo real de métricas de entrenamiento 

incluyendo curvas de pérdida, exactitud, learning rate y distribución de pesos. TensorBoard 

permite identificar rápidamente problemas como gradientes explosivos o aprendizaje estancada. 

Weights & Biases (opcional): Para experimentos más extensos, se integra W&B que 

proporciona tracking centralizado, comparación automática de runs, y visualización de métricas 

agregadas. Esta herramienta facilita la colaboración y reproducibilidad de experimentos. 
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3.7.Desarrollo del prototipo y despliegue  

El prototipo se realizó en una arquitectura modular, el cual nos ayuda a la integración de 

los modelos entrenados con una interfaz de usuario accesible. El objetivo de este desarrollo fue 

demostrar la viabilidad operativa del sistema propuesto en un entorno simulado de uso en campo. 

El sistema se estructuró en dos componentes principales: 

Back-end de Inferencia y API: Este componente es el núcleo lógico del sistema. Contiene 

los modelos entrenados y expone una API REST que recibe las imágenes cargadas por el 

usuario. Su función es ejecutar el algoritmo de predicción y retornar el diagnóstico, el nivel de 

confianza. 

Front-end: Se desarrolló una interfaz web accesible mediante navegadores. Esta capa es 

responsable de gestionar la interacción del usuario: permitir la carga de imágenes, enviar la 

solicitud a la API del back-end y presentar de forma clara los resultados del diagnóstico, 

incluyendo la visualización de las cajas delimitadoras y un registro histórico de los análisis 

 

3.7.1. Configuración automática del entrenamiento 

Una vez definido el componente de inferencia, el enfoque se centró en el proceso de 

entrenamiento del modelo, el cual para la clasificación de enfermedades en plantas de banano 

requiere no solo una arquitectura de red neuronal adecuada, sino también un conjunto de datos de 

alta calidad y una configuración óptima de los hiperparámetros de entrenamiento. Esta 

configuración se realiza automáticamente a través de un pipeline que optimiza el entrenamiento 

basándose en las capacidades del equipo en donde se ejecuta el modelo y de las características 

específicas del dataset. La selección de hiperparámetros como el tamaño del modelo, el batch 

size, la tasa de aprendizaje y la intensidad de data augmentation tradicionalmente requiere 
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experimentación extensiva y conocimiento experto. Este módulo automatiza dicho proceso 

aplicando reglas heurísticas derivadas de la literatura científica y de experimentación empírica. 

En este caso se utiliza ConvNeXt-Tiny enfocado en datasets pequeños con menos de 500 

imágenes por clase, el uso en conjunto de esta arquitectura más ligera con las diferentes técnicas 

de data augmentation permiten compensar la escasez de datos. Para datasets más grandes, se 

pueden emplear arquitecturas más profundas que tienen mayor capacidad de aprendizaje. La 

importancia de seleccionar el modelo adecuado determina que los resultados no sean engañosos, 

ya que así podrá tener la capacidad de distinguir entre las diferentes enfermedades y no 

memorizar ejemplos de entrenamiento.  

3.7.2. Número de épocas y prevención del sobreajuste 

Uno de los hiperparámetros que influye directamente en la capacidad del modelo para 

evitar la memorización es el número es el número de épocas, una época representa una pasada 

completa por todo el conjunto de datos de entrenamiento. Es decir, si el dataset contiene 2000 

imágenes, una época significa que el modelo ha visto y aprendido de cada una de esas 2000 

imágenes exactamente una vez. El número de épocas determina cuántas veces el modelo revisará 

el dataset completo durante el entrenamiento. 

Determinar el número óptimo de épocas es un balance delicado. Muy pocas épocas 

significan que el modelo no ha tenido suficiente exposición a los datos para aprender los 

patrones relevantes, resultando en un rendimiento deficiente (subajuste o underfitting). 

Demasiadas épocas pueden causar que el modelo comience a memorizar características 

específicas de las imágenes de entrenamiento que no se generalizan a nuevas imágenes, un 

fenómeno conocido como sobreajuste (overfitting). 
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En este caso, el sistema de configuración automática selecciona el número de épocas de 

entrenamiento basándose principalmente en el tamaño del conjunto de datos, con el objetivo de 

lograr un equilibrio entre un aprendizaje suficiente y la prevención del sobreajuste.  

3.7.3. Tamaño de lote y limitaciones de hardware 

De forma complementaria, se considera el tamaño del lote de entrenamiento, conocido 

como batch size, el cual determina cuántas imágenes son procesadas simultáneamente antes de 

que el modelo actualice sus parámetros internos. Este valor se encuentra directamente limitado 

por la memoria disponible en la tarjeta gráfica (GPU), ya que cada imagen procesada ocupa 

espacio en la memoria de video (VRAM), por lo que dispositivos con mayor capacidad permiten 

el uso de lotes más grandes. El sistema implementado detecta automáticamente la cantidad de 

VRAM disponible y ajusta el batch size en consecuencia, evitando configuraciones que puedan 

generar inestabilidad en el entrenamiento o errores por falta de memoria. Un tamaño de lote 

demasiado pequeño puede provocar un aprendizaje lento y ruidoso, mientras que un valor 

excesivamente grande puede interrumpir el proceso de entrenamiento debido a limitaciones de 

hardware.  

Adicionalmente, se implementó un mecanismo de parada temprana (early stopping) que 

monitorea el desempeño del modelo sobre el conjunto de validación y detiene el entrenamiento 

cuando no se observa mejora durante un número determinado de épocas consecutivas, incluso si 

no se ha alcanzado el número máximo de épocas configurado, contribuyendo así a reducir el 

riesgo de sobreajuste y a mejorar la capacidad de generalización del modelo. 

3.7.4. Tasa de aprendizaje y optimización adaptativa 

De manera complementaria a estos mecanismos de control del entrenamiento, resulta 

fundamental regular la magnitud de los ajustes que el modelo realiza en cada iteración, aspecto 
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que se encuentra directamente determinado por la tasa de aprendizaje (learning rate). Este 

hiperparámetro controla qué tan grandes son los cambios que el modelo aplica a sus parámetros 

internos durante el proceso de optimización, influyendo de forma decisiva en la estabilidad y 

velocidad del entrenamiento. Una tasa de aprendizaje elevada permite que el modelo realice 

ajustes más drásticos, lo que puede acelerar la convergencia inicial, pero también incrementa el 

riesgo de inestabilidad o de que el proceso de optimización salte por encima de una solución 

óptima. Por el contrario, una tasa de aprendizaje demasiado baja produce ajustes pequeños y 

graduales, favoreciendo un aprendizaje más estable, aunque potencialmente más lento y 

susceptible de quedar atrapado en configuraciones subóptimas. 

En el caso del clasificador de enfermedades del banano, se empleó una tasa de 

aprendizaje inicial de 1×10⁻⁴ (0.0001), valor que ha demostrado ser adecuado para arquitecturas 

ConvNeXt entrenadas bajo esquemas de transfer learning. Adicionalmente, se integró un 

scheduler de tasa de aprendizaje con el fin de adaptar dinámicamente este valor a lo largo del 

entrenamiento. En particular, se utilizó el método Cosine Annealing, el cual reduce 

progresivamente la tasa de aprendizaje siguiendo una curva suave en forma de coseno. Este 

enfoque permite iniciar el entrenamiento con pasos relativamente grandes que facilitan la 

exploración del espacio de soluciones y, posteriormente, disminuir gradualmente la magnitud de 

los ajustes para realizar un refinamiento más preciso del modelo en las etapas finales. 

3.7.5. Aumento de datos (Data Augmentation) 

La correcta configuración de la tasa de aprendizaje se complementa con el uso de 

técnicas de aumento de datos (data augmentation), las cuales buscan mejorar la capacidad de 

generalización del modelo al exponerlo a una mayor diversidad de ejemplos durante el 

entrenamiento. El aumento de datos consiste en generar artificialmente nuevas muestras a partir 
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de las imágenes originales mediante transformaciones como rotaciones, cambios de escala, 

ajustes de brillo y contraste, volteos y recortes aleatorios. Estas transformaciones simulan 

variaciones que pueden presentarse en condiciones reales de uso, permitiendo que el modelo 

aprenda representaciones más robustas y menos dependientes de patrones específicos del 

conjunto de entrenamiento. 

El sistema implementado contempla tres niveles de intensidad de aumento de datos: 

ligero, medio e intenso. El nivel ligero aplica transformaciones mínimas y resulta adecuado 

cuando se dispone de datasets grandes y variados. El nivel medio introduce transformaciones 

más notorias, ofreciendo un equilibrio entre diversidad y preservación de las características 

originales de las imágenes. Finalmente, el nivel intenso incorpora transformaciones agresivas y 

técnicas avanzadas como CutOut y MixUp, siendo especialmente útil en escenarios donde el 

número de imágenes disponibles es reducido. La selección del nivel de aumento de datos se 

realiza de forma automática y se encuentra inversamente relacionada con el tamaño del dataset, 

de manera que conjuntos pequeños requieren estrategias más agresivas para compensar la 

escasez de datos. 

3.7.6. Precisión mixta y optimización computacional 

Para sostener computacionalmente estas estrategias de entrenamiento, especialmente en 

escenarios con data augmentation intenso y modelos de mayor complejidad, se incorporó el uso 

de precisión mixta (mixed precision). Esta técnica combina cálculos en punto flotante de 16 bits 

(FP16) y 32 bits (FP32), aprovechando la capacidad de las GPUs modernas para acelerar 

operaciones y reducir el consumo de memoria sin afectar significativamente la precisión del 

modelo. En las pruebas realizadas, la activación de precisión mixta permitió disminuir el tiempo 

de entrenamiento en aproximadamente un 30% y el uso de memoria en cerca de un 40%, lo que a 
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su vez habilitó el uso de batch sizes más grandes dentro de las limitaciones del hardware 

disponible. 

3.7.7. Desarrollo del front-end 

Como complemento al componente de inferencia y con el fin de materializar la 

interacción del sistema con el usuario final dentro de la arquitectura modular propuesta, se 

desarrolló un front-end web accesible mediante navegadores, concebido como la capa de 

presentación del prototipo. Aunque no se utilizó un framework MVC (Model-View-Controller) 

formal, la estructura del código del front-end sigue una separación lógica de responsabilidades 

que facilita su comprensión y mantenimiento. Esta organización implícita permite que cada 

archivo tenga una función específica y bien definida dentro del sistema como se describe en la 

tabla 6. 

Tabla 6 

Separación de responsabilidades en el front-end 

Componente Lógico Archivo Comportamiento 

vista (View)  index.html  Define la estructura semántica del 

documento HTML. 

Contiene los elementos visuales que el 

usuario ve e interactúa.  

presentación  styles.css  Controla la apariencia visual de todos los 

elementos.  

 

controlador 

(Controller) 

app.js  Implementa toda la lógica de la 

aplicación. Gestiona los eventos 

del usuario, coordina la comunicación 

con el back-end, procesa las respuestas, 

actualiza la interfaz. 

Nota. Esta separación sigue el patrón de diseño MVC (Modelo-Vista-Controlador), que facilita el 

mantenimiento del código al dividir las responsabilidades en componentes independientes. 



 
 
 

 

 

54 

QUITO – ECUADOR | 2024 

 

La interfaz fue diseñada con el objetivo de proporcionar una experiencia de uso clara e 

intuitiva, permitiendo al usuario cargar imágenes de hojas de plantas de banano, gestionar el 

envío de dichas imágenes al back-end a través de la API REST y visualizar de manera 

comprensible los resultados del diagnóstico generado por el modelo de aprendizaje profundo. 

Este componente se encarga de orquestar el flujo completo de interacción usuario–sistema, desde 

la captura de los datos de entrada hasta la presentación de la información procesada, incluyendo 

la visualización gráfica de las cajas delimitadoras sobre las regiones de interés detectadas en las 

imágenes y la identificación de la enfermedad asociada. Adicionalmente, el front-end incorpora 

un registro histórico de los análisis realizados, lo que permite consultar diagnósticos previos y 

facilita la trazabilidad de los resultados, aspecto relevante para escenarios de monitoreo continuo 

en campo. La comunicación entre el front-end y el back-end se realiza de forma asíncrona 

mediante solicitudes HTTP, garantizando una separación clara de responsabilidades entre las 

capas del sistema y favoreciendo la escalabilidad y mantenibilidad de la solución. El prototipo 

fue desplegado inicialmente en un entorno local durante la fase de desarrollo; sin embargo, con 

el objetivo de superar las restricciones asociadas a una demostración exclusivamente presencial y 

habilitar instancias de prueba y validación más cercanas a un entorno real, se empleó la 

herramienta ngrok para establecer un túnel seguro que expusiera la aplicación local a través de 

una URL pública temporal. Esta estrategia permitió el acceso al sistema desde diferentes 

dispositivos y ubicaciones, posibilitando la evaluación del comportamiento del prototipo bajo 

diversas condiciones de uso y conectividad. El proceso de despliegue y prueba del front-end 

permitió verificar la correcta integración e interoperabilidad de todos los componentes del 

sistema, abarcando desde la interacción del usuario con la interfaz web, el envío de datos hacia la 

API de inferencia, la ejecución del modelo entrenado y la posterior entrega del diagnóstico 
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automatizado. En conjunto, el desarrollo del front-end y su exposición en un ambiente local 

controlado constituyen un elemento clave para demostrar la viabilidad operativa del sistema 

propuesto, evidenciando que la solución no solo es funcional desde el punto de vista algorítmico, 

sino también utilizable y comprensible para usuarios finales en un contexto simulado de uso en 

campo. 

3.7.8. Exposición mediante ngrok 

Para facilitar demostraciones y pruebas remotas sin configuración de infraestructura de 

nube, se utiliza ngrok como solución de túnel seguro. Ngrok crea un endpoint HTTPS público 

que redirige el tráfico al servidor local, permitiendo; demostración del sistema a los usuarios 

finales sin necesidad de accesos a la red local, pruebas entre dispositivos móviles reales en 

condiciones de campo, validación de la interfaz con usuarios beta geográficamente distribuidos, 

el comando para iniciar el túnel es simple: ngrok http 8000, que genera una URL temporal del 

tipo https://abc123.ngrok.io accesible desde cualquier lugar con conexión a internet con el 

particular que el dispositivo donde se ejecuta el sistema siempre debe estar disponible simulando 

ser un servidor. 

3.8. Consideraciones técnicas y limitaciones  

El desarrollo del sistema estuvo condicionado por diversas limitaciones técnicas 

asociadas principalmente a la capacidad de los recursos del dispositivo en donde se ejecuta el 

sistema como el procesamiento disponible y a la memoria de la GPU que es utilizada durante las 

etapas de entrenamiento y validación de los modelos. Estas restricciones influyeron directamente 

en aspectos clave del proceso, como el tamaño de los lotes de entrenamiento (batch size), el 

número máximo de épocas, la resolución de las imágenes de entrada y la selección de 

arquitecturas más ligeras en escenarios con recursos limitados. En este contexto, el sistema fue 

https://abc123.ngrok.io/
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diseñado para operar de manera adaptativa, ajustando automáticamente dichos parámetros en 

función de los recursos de hardware disponibles, con el objetivo de garantizar la estabilidad del 

entrenamiento y evitar errores asociados a la falta de memoria o a tiempos de ejecución 

excesivos. Si bien estas decisiones implicaron compromisos técnicos, como la reducción de la 

resolución de las imágenes o el uso de modelos de menor complejidad en determinados 

escenarios, permitieron completar el entrenamiento en tiempos razonables sin afectar la 

coherencia metodológica ni la validez experimental del proyecto. Adicionalmente, el uso de 

técnicas como la precisión mixta, el aumento de datos y la parada temprana contribuyó a mitigar 

las limitaciones de hardware, optimizando el uso de los recursos disponibles y mejorando la 

capacidad de generalización del modelo. En conjunto, estas consideraciones buscan un enfoque 

practico orientado a la viabilidad operativa del sistema en entornos reales, donde las restricciones 

computacionales son comunes, y como resultado la solución propuesta puede ser reproducida y 

escalada progresivamente en infraestructuras con mayores capacidades. El flujo general que 

sigue el usuario se describe en la Figura 8. 
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Figura 8 

Diagrama de flujo de los principales procesos de prototipo final 

 

Nota. El diagrama representa la secuencia lógica de los principales procesos que conforman el 

funcionamiento del prototipo final, desde la entrada de datos hasta la generación de resultados. 

3.8.1. Limitaciones del dataset 

El dataset presenta limitaciones inherentes que afectan la generalización del modelo: 

Desbalance de clases: La clase Fusarium R4T cuenta con pocas muestras, lo que 

compromete la capacidad del modelo para aprender patrones robustos sobre esta enfermedad. 

Esta limitación refleja la realidad de que Fusarium R4T solo tiene una detección en el Ecuador. 

Dominio limitado: Las imágenes provienen principalmente de condiciones semi-

controladas, lo que podría afectar el rendimiento en escenarios de campo con mayor variabilidad 

de iluminación, fondos y calidad de la imagen. 

Confusión entre clases: Algunas enfermedades presenta sintomatología visual similar 

(especialmente Cordana y Pestalotiopsis en etapas tempranas), lo que representa un límite 

superior al rendimiento alcanzable mediante clasificación puramente visual. 
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3.8.2. Consideraciones del despliegue 

El prototipo actual está diseñado como demostración de concepto y presenta limitaciones 

para un despliegue productivo a escala: 

Escalabilidad: El servidor desarrollado no está optimizado para manejar múltiples 

solicitudes concurrentes. Un despliegue productivo requeriría balanceo de carga y múltiples 

instancias. 

Disponibilidad: Ngrok proporciona URLs temporales que cambian cada reinicio. Un 

sistema productivo requeriría dominio propio y configuración DNS. 

Seguridad: El prototipo no implementa autenticación ni rate limiting. Un sistema 

productivo requeriría medidas de seguridad adicionales. 

Estas limitaciones son conocidas y aceptables dado el alcance académico y demostrativo 

del proyecto. Las recomendaciones para trabajo a futuro incluyen estrategias específicas para 

abordar cada una de estas restricciones. 
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Capítulo 4  

4. Análisis de resultados 

4.1. Pruebas de concepto  

Las pruebas de concepto constituyen una fase fundamental en el desarrollo de sistemas de 

inteligencia artificial aplicados al sector agrícola, ya que permiten validar la viabilidad técnica de 

la solución propuesta antes de su implementación en entornos productivos reales. En esta sección 

se describen los procedimientos llevados a cabo para preparar los datos de entrada y evaluar el 

rendimiento del modelo de clasificación desarrollado. 

4.1.1. Preparación del dataset 

La preparación del conjunto de datos representa una etapa crítica en el desarrollo de 

modelos de aprendizaje profundo, dado que la calidad y representatividad de los datos de 

entrenamiento influyen directamente en la capacidad de generalización del modelo resultante 

(Goodfellow et al., 2016). En el contexto del presente trabajo, se implementó una estrategia de 

organización estructurada que facilitara tanto el proceso de entrenamiento como la 

reproducibilidad de los experimentos.  

4.1.1.1. Organización estructural de dataset 

El dataset se organizó siguiendo una estructura jerárquica de directorios, donde cada 

carpeta principal corresponde a una clase específica de enfermedad o condición del cultivo de 

banano. Esta organización resulta compatible con las bibliotecas de aprendizaje profundo más 

utilizadas, como TensorFlow y PyTorch, las cuales permiten cargar imágenes de manera 

eficiente mediante generadores de datos que infieren las etiquetas de clase a partir de la 

estructura de carpetas. 
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Las clases incluidas en el conjunto de datos corresponden a las principales enfermedades 

que afectan los cultivos de banano en la región, así como una clase de referencia que representa 

hojas sanas. Esta diversidad de categorías permite al modelo aprender a discriminar entre 

diferentes patologías con base en las características visuales distintivas de cada una. 

4.1.1.2. Problemática del desbalance de clases 

Un aspecto relevante que se identificó durante la construcción del dataset fue el 

desbalance significativo entre las diferentes clases, particularmente para la categoría 

correspondiente a la enfermedad de Fusarium (conocida también como Mal de Panamá o 

Fusarium oxysporum f. sp. cubense). Este desbalance se debe a circunstancias epidemiológicas 

específicas: la enfermedad de Fusarium Raza 4 Tropical (Foc R4T) no había sido detectada 

oficialmente en el país hasta diciembre de 2025, lo que limitó considerablemente la 

disponibilidad de muestras locales para esta categoría. 

El desbalance de clases representa un desafío fundamental en el aprendizaje automático, 

manifestándose cuando la distribución de ejemplos entre las categorías del conjunto de datos 

presenta disparidades significativas. Esta asimetría en la representación de clases puede inducir 

sesgos sistemáticos en los modelos predictivos, favoreciendo la clasificación hacia las categorías 

mayoritarias mientras se deteriora el rendimiento en las minoritarias. Investigaciones previas han 

demostrado que los algoritmos de aprendizaje supervisado tienden a optimizar la precisión 

global, lo que resulta en una predisposición inherente hacia las clases con mayor representación 

muestral. Este fenómeno adquiere particular relevancia en contextos donde las clases 

minoritarias poseen valor crítico para la aplicación, como en diagnósticos médicos, detección de 

fraudes o sistemas de reconocimiento de patrones poco frecuentes. 
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Para contrarrestar los efectos adversos del desbalance de clases, se implementó una 

estrategia metodológica multifacética que aborda el problema desde diferentes perspectivas 

complementarias. En primera instancia, se aplicaron técnicas de aumento de datos mediante la 

generación sintética de muestras adicionales para las clases subrepresentadas. Esta aproximación 

consistió en la aplicación sistemática de transformaciones geométricas y fotométricas sobre las 

imágenes originales, incluyendo rotaciones aleatorias dentro de rangos angulares predefinidos, 

reflexiones especulares en los ejes horizontal y vertical, modificaciones controladas de los 

parámetros de brillo y contraste, así como recortes aleatorios que preservan las características 

distintivas de los objetos de interés. Estas operaciones de aumento permiten expandir 

artificialmente el volumen del conjunto de entrenamiento sin incurrir en los costos asociados a la 

adquisición de nuevos datos, mientras se incrementa simultáneamente la capacidad de 

generalización del modelo al exponerlo a variaciones realistas de las muestras existentes. 

Complementariamente, se incorporó un mecanismo de ponderación diferencial de clases 

durante el proceso de optimización del modelo. Esta técnica asigna pesos específicos a cada 

categoría de forma inversamente proporcional a su frecuencia relativa en el conjunto de 

entrenamiento, garantizando que los errores de clasificación en las clases minoritarias ejerzan 

una influencia proporcionalmente mayor sobre la función de pérdida. De esta manera, el 

algoritmo de optimización se ve compelido a prestar mayor atención a los patrones 

característicos de las clases menos representadas, mitigando la tendencia natural hacia la 

predicción mayoritaria. Adicionalmente, se empleó muestreo estratificado en la partición del 

conjunto de datos, asegurando que la distribución proporcional de clases se mantuviera 

consistente entre los subconjuntos de entrenamiento, validación y prueba. Esta práctica 

metodológica resulta esencial para garantizar que las métricas de evaluación reflejen fielmente el 
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rendimiento esperado del modelo en escenarios de aplicación real, evitando sesgos introducidos 

por particiones no representativas. 

4.1.1.3. Partición de dataset 

La segmentación del conjunto de datos constituye una práctica metodológica fundamental 

en el desarrollo de sistemas de aprendizaje automático, permitiendo una evaluación rigurosa y no 

sesgada del rendimiento del modelo. Siguiendo los estándares establecidos en la literatura 

especializada, el dataset completo se fraccionó en tres subconjuntos mutuamente excluyentes, 

cada uno cumpliendo funciones específicas y complementarias dentro del proceso de 

entrenamiento y validación. Esta división tripartita garantiza que las diferentes fases del 

desarrollo del modelo se realicen sobre datos independientes, evitando el sobreajuste y 

proporcionando estimaciones confiables de la capacidad predictiva del sistema. 

El conjunto de entrenamiento, representando el 70% de los datos totales, se destinó al 

ajuste iterativo de los parámetros internos del modelo mediante algoritmos de optimización. 

Durante esta fase, el modelo examina repetidamente estos datos, modificando progresivamente 

sus pesos sinápticos para minimizar la función de pérdida y mejorar su capacidad de capturar los 

patrones subyacentes en las características de entrada. El conjunto de validación, constituyendo 

el 15% del dataset, desempeña un rol crítico en el monitoreo del proceso de entrenamiento y en 

la calibración de hiperparámetros. Este subconjunto permite evaluar el rendimiento del modelo 

en datos no utilizados durante el ajuste de parámetros, facilitando la detección temprana de 

sobreajuste y guiando decisiones relativas a la arquitectura de red, tasas de aprendizaje, 

regularización y otros aspectos configurables del sistema. Finalmente, el conjunto de prueba, 

también representando el 15% de los datos, se reserva estrictamente para la evaluación final del 

modelo una vez completado todo el proceso de desarrollo. Este subconjunto no participa en 
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ninguna decisión de diseño, ajuste de hiperparámetros o modificación arquitectónica, 

preservando su carácter de datos completamente no vistos que permiten estimar de manera no 

sesgada el rendimiento esperado del modelo en condiciones de operación real. Esta segregación 

rigurosa resulta esencial para obtener métricas de desempeño confiables que reflejen 

genuinamente la capacidad de generalización del sistema ante instancias nuevas, constituyendo 

un pilar fundamental en la validación científica de modelos de clasificación. 

4.1.2. Entrenamiento y evaluación del modelo  

Mediante la matriz de confusión. Muestra un modelo robusto, donde el mayor desafío es 

la separación de clases que tienen similitudes visuales; sin embargo, el entrenamiento muestra 

una convergencia cercana al 100% y la evaluación un 96.94, lo que revela una buena 

generalización  

El proceso de entrenamiento constituye la fase en la cual el modelo de aprendizaje 

profundo ajusta sus parámetros internos con el objetivo de minimizar una función de pérdida que 

cuantifica la discrepancia entre las predicciones y las etiquetas verdaderas. La evaluación del 

modelo se realizó mediante la matriz de confusión y un conjunto de métricas estándar que 

permiten caracterizar el rendimiento desde múltiples perspectivas. 

Durante el proceso de entrenamiento, el modelo mostró un aprendizaje progresivo y 

estable. En la fase de entrenamiento, el modelo alcanzó una precisión cercana al 100%, lo que 

indica que aprendió correctamente a reconocer las enfermedades en las imágenes utilizadas para 

enseñarle. 

Al evaluarlo con imágenes nuevas que no había visto antes (conjunto de validación), el 

modelo mantuvo una precisión del 96.94%. Este resultado es positivo porque demuestra que el 
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modelo no simplemente "memorizó" las imágenes de entrenamiento, sino que aprendió a 

identificar las características visuales distintivas de cada enfermedad, permitiéndole clasificar 

correctamente imágenes nuevas. 

La pequeña diferencia entre ambos valores (aproximadamente 3%) se encuentra dentro 

de rangos aceptables y confirma que el modelo está listo para ser utilizado en escenarios reales 

de diagnóstico. 

La matriz de confusión constituye una herramienta analítica fundamental para la 

evaluación exhaustiva del desempeño de modelos de clasificación multiclase, proporcionando 

una representación visual comprehensiva de la correspondencia entre las predicciones generadas 

por el sistema y las etiquetas verdaderas de las muestras. Esta representación matricial permite 

identificar no solamente la tasa global de aciertos, sino también los patrones específicos de 

errores cometidos por el clasificador, revelando confusiones sistemáticas entre pares o grupos 

particulares de categorías. Mediante el análisis detallado de esta matriz, es posible discernir con 

precisión cuáles clases son clasificadas correctamente con mayor frecuencia y cuáles tienden a 

confundirse entre sí, información crítica para comprender las fortalezas y limitaciones inherentes 

del modelo desarrollado. 

Los resultados experimentales obtenidos evidencian un desempeño sobresaliente del 

sistema de clasificación implementado, demostrando tanto robustez en su arquitectura como 

confiabilidad en sus predicciones. El modelo alcanzó una precisión de entrenamiento cercana al 

100%, indicando una óptima capacidad de aprendizaje de los patrones presentes en el conjunto 

de datos de entrenamiento. Más significativamente, se obtuvo una precisión de evaluación del 

96.94% sobre el conjunto de prueba, lo cual representa un indicador robusto de la capacidad de 
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generalización del sistema. Esta métrica de validación resulta particularmente relevante dado que 

refleja el rendimiento del modelo ante instancias completamente nuevas que no participaron en 

el proceso de entrenamiento, proporcionando una estimación realista de su eficacia esperada en 

escenarios de aplicación práctica. La diferencia moderada entre las precisiones de entrenamiento 

y evaluación sugiere que el modelo ha logrado capturar efectivamente los patrones 

generalizables de las enfermedades sin incurrir en memorización excesiva de particularidades 

específicas del conjunto de entrenamiento. 

Tabla 7 

Resultados de Evaluación del Modelo 

 

Métrica Valor 

accuracy 0.9721 

precision 0.9190 

recall 0.9703 

F1-Score 0.9381 

Nota. Accuracy representa la precisión general del modelo; Precision indica la proporción de 

predicciones positivas correctas; Recall mide la proporción de casos positivos reales identificados 

correctamente; F1-Score es la media armónica entre Precision y Recall. 

4.1.3. Análisis de rendimiento por clase 

Para obtener una comprensión más detallada del comportamiento del modelo, se 

calcularon las métricas de evaluación de manera individual para cada una de las clases de 

enfermedades incluidas en el sistema de clasificación. Este análisis granular permite identificar 

fortalezas y debilidades específicas del modelo, así como orientar futuras mejoras. 
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Tabla 8 

Métricas por Clase 

 

Clase Precision Recall F1 Support 

cordana 1.0000 0.9375 0.9677 32 

healthy 1.0000 0.9615 0.9804 26 

pestalotiopsis 0.9714 1.0000 0.9855 34 

sigatoka 0.9808 0.9808 0.9808 104 

moko 0.8889 0.9412 0.9143 17 

fusatium_r4t 0.6667 1.000 0.8000 2 

Nota. Las métricas muestran el rendimiento del modelo de clasificación para cada clase de 

enfermedad del banano. Support indica el número de muestras por clase en el conjunto de 

evaluación. 

4.1.4. Interpretación detallada por clase 

4.1.4.1. Cordana (Cordana musae) 

La clase cordana presentó un rendimiento excepcional con una precisión perfecta de 

1.0000, lo que indica que todas las predicciones realizadas por el modelo para esta categoría 

fueron correctas, sin presencia de falsos positivos. El recall de 0.9375 señala que el 93.75% de 

las muestras reales de cordana fueron identificadas correctamente, con aproximadamente 2 

muestras de las 32 totales clasificadas erróneamente como otra categoría (falsos negativos). El 

F1-Score de 0.9677 refleja un excelente equilibrio entre ambas métricas. 

Esta enfermedad, causada por el hongo Cordana musae, se caracteriza por lesiones 

foliares con patrones de coloración distintivos que el modelo fue capaz de aprender de manera 

efectiva. 

4.1.4.2. Healthy (Hojas sanas) 

La categoría de hojas sanas alcanzó igualmente una precisión perfecta de 1.0000 y un 

recall de 0.9615, resultando en un F1-Score de 0.9804, el segundo más alto del conjunto. Este 
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resultado es particularmente relevante ya que demuestra la capacidad del modelo para distinguir 

de manera confiable entre tejido vegetal sano y afectado por alguna patología. 

La alta precisión en esta clase minimiza el riesgo de falsos positivos (diagnosticar 

enfermedad en hojas sanas), mientras que el alto recall asegura que la mayoría de las hojas sanas 

sean correctamente identificadas como tales. 

4.1.4.3. Pestalotiopsis 

La clase pestalotiopsis exhibió el mejor F1-Score del conjunto (0.9855), con un recall 

perfecto de 1.0000 y una precisión de 0.9714. El recall perfecto indica que el modelo identificó 

correctamente el 100% de las muestras de esta enfermedad, sin ningún falso negativo. La 

precisión ligeramente inferior a 1.0 sugiere la presencia de aproximadamente un falso positivo 

entre las 34 muestras. 

Esta enfermedad, causada por hongos del género Pestalotiopsis, produce lesiones 

características que el modelo aprendió a reconocer con alta fidelidad. 

4.1.4.4. Sigatoka 

La sigatoka representa la clase con mayor número de muestras en el conjunto de 

evaluación (104 muestras), lo que proporciona una estimación estadísticamente más robusta de 

su rendimiento. El modelo alcanzó valores balanceados de precisión y recall (ambos 0.9808), 

resultando en un F1-Score de 0.9808. 

Este resultado es significativo considerando que la Sigatoka (particularmente la sigatoka 

negra causada por Mycosphaerella fijiensis) es una de las enfermedades más relevantes y 

económicamente devastadoras en los cultivos de banano a nivel mundial. La capacidad del 
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modelo para detectar esta enfermedad con alta precisión tiene implicaciones prácticas directas 

para el sector bananero. 

4.1.4.5. Moko (Ralstonia solanacearum) 

La enfermedad de moko, causada por la bacteria Ralstonia solanacearum, presentó 

métricas ligeramente inferiores a las demás clases, con una precisión de 0.8889 y un recall de 

0.9412, resultando en un F1-Score de 0.9143. La precisión más baja indica que 

aproximadamente el 11% de las predicciones de moko correspondieron a falsos positivos. 

Este comportamiento puede atribuirse a las similitudes visuales que presentan los 

síntomas del moko con otras enfermedades bacterianas o condiciones de estrés abiótico, lo que 

genera confusión en el modelo. No obstante, el recall de 0.9412 indica que la mayoría de los 

casos reales de moko fueron detectados correctamente, lo cual es prioritario desde una 

perspectiva fitosanitaria dado el carácter devastador de esta enfermedad. 

4.1.4.6. Fusarium R4T (Fusarium oxysporum f. sp. cubense Raza 4 Tropical) 

 

La clase fusarium R4T presentó el rendimiento más bajo del conjunto, con una precisión 

de 0.6667 y un F1-Score de 0.8000. Sin embargo, este resultado debe interpretarse con cautela 

considerando el contexto específico de esta categoría. El conjunto de evaluación contiene 

únicamente 2 muestras de fusarium R4T, lo que hace que las métricas sean estadísticamente poco 

confiables, ya que una sola predicción errónea tiene un impacto desproporcionado en los 

porcentajes calculados. A pesar de la baja precisión, el modelo alcanzó un recall de 1.0000, lo 

que significa que ambas muestras de fusarium fueron correctamente identificadas. En el contexto 

de una enfermedad cuarentenaria de alta peligrosidad como el fusarium R4T, la detección de 

todos los casos positivos resulta crítica para evitar la propagación de la enfermedad. Como se 
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mencionó anteriormente, la escasez de muestras se debe a la ausencia documentada de esta 

enfermedad en el país hasta diciembre de 2025, lo que limitó la disponibilidad de datos de 

entrenamiento y evaluación. La precisión de 0.6667 indica que, de cada 3 predicciones de 

fusarium, aproximadamente 2 fueron correctas y 1 fue un falso positivo. Aunque esto representa 

un porcentaje relativamente alto de falsos positivos, en el contexto de una enfermedad 

cuarentenaria es preferible tener falsos positivos, que pueden descartarse mediante análisis de 

laboratorio, que falsos negativos, que podrían permitir la propagación de la enfermedad. 

4.1.5. Análisis comparativo y discusión 

El análisis de las métricas por clase revela una correlación entre el número de muestras 

disponibles (Support) y la estabilidad de las métricas de rendimiento. Las clases con mayor 

representación en el dataset (Sigatoka con 104 muestras, Pestalotiopsis con 34, Cordana con 32) 

muestran métricas más balanceadas y consistentes, mientras que la clase con menor 

representación (fusarium R4T con 2 muestras) exhibe mayor variabilidad. 

Tabla 9 

Relación entre Support y F1-Score 

Categoría de Support Clase F1-Score promedio 

Alto (>50 muestras) Sigatoka 0.9808 

Medio (15-50 muestras) Cordana, Healthy, 

Pestalotiopsis, Moko  

0.9620 

Bajo (<15 muestras) Fusarium R4T 0.8000 

Nota. La tabla evidencia la relación directa entre la cantidad de muestras disponibles para entrenar 

(Support) y el rendimiento del modelo (F1-Score). Las clases con mayor número de muestras 

obtienen mejores resultados, mientras que las clases con pocas muestras, como fusarium R4T, 

presentan un rendimiento inferior debido a la limitada información disponible para el aprendizaje 

del modelo 
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El análisis de la matriz de confusión completa permitió identificar los siguientes patrones 

de error. Se observó cierta tendencia del modelo a confundir síntomas de moko con fusarium, lo 

cual es comprensible dado que ambas enfermedades pueden producir marchitez vascular y 

amarillamiento foliar en etapas avanzadas. Un pequeño porcentaje de muestras de cordana 

(6.25%) y Healthy (3.85%) fueron clasificadas erróneamente, posiblemente debido a condiciones 

de iluminación o calidad de imagen subóptimas en esas muestras específicas. La baja precisión 

de fusarium indica que algunas muestras de otras clases fueron erróneamente clasificadas como 

fusarium, lo cual podría deberse a la limitada representación de esta clase durante el 

entrenamiento. 

Los resultados obtenidos tienen implicaciones importantes para el uso del sistema en 

entornos reales. Con un F1-Score promedio superior a 0.93, el modelo demuestra ser una 

herramienta confiable para el diagnóstico preliminar de enfermedades en banano. Dado el bajo 

número de muestras y la importancia cuarentenaria del fusarium R4T, se recomienda que 

cualquier predicción de esta enfermedad sea verificada mediante análisis de laboratorio antes de 

tomar medidas de control. El excelente rendimiento en la clase sigatoka, que representa la 

enfermedad más común y con mayor impacto económico, sugiere que el sistema puede ser 

particularmente útil para el monitoreo rutinario de esta patología. A medida que se recopilen más 

muestras, especialmente de las clases minoritarias como fusarium R4T, se recomienda reentrenar 

el modelo para mejorar su rendimiento en estas categorías. 

4.1.6.  Entrenamiento y evaluación del modelo (YOLOv8-cls) 

 

Con el objetivo de validar los resultados obtenidos y explorar arquitecturas alternativas, 

se implementó un segundo modelo de clasificación basado en YOLOv8-cls, una adaptación del 
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popular detector de objetos YOLO para tareas de clasificación de imágenes desarrollada por 

Ultralytics. Esta arquitectura ofrece un balance óptimo entre precisión y velocidad de inferencia, 

incorporando avances recientes en diseño de redes neuronales convolucionales. La decisión de 

implementar YOLOv8-cls se fundamentó en su eficiencia computacional para despliegue en 

dispositivos móviles o sistemas embebidos, su facilidad de entrenamiento mediante el framework 

Ultralytics, y la posibilidad de realizar validación cruzada de resultados con una arquitectura 

diferente a EfficientNet. 

Tabla 10 

Configuración de hiperparámetros del modelo YOLOv8-cls 

Hiperparámetro Valor/Configuración 

EfficientNet Clasificación 

YOLOv8s-cls Clasificación 

Nota. EfficientNet y YOLOv8s-cls son arquitecturas de redes neuronales diseñadas para 

clasificación de imágenes. Aunque utilizan métricas con nombres diferentes (accuracy y Top-1 

respectivamente), ambas representan el porcentaje de predicciones correctas del modelo. 

El modelo fue entrenado utilizando los mismos conjuntos de datos y particiones 

empleados con EfficientNet, garantizando una comparación justa entre ambas arquitecturas. Los 

hiperparámetros principales se detallan en la Tabla 10, donde se observa que se mantuvo 

consistencia metodológica con el entrenamiento previo. 
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Tabla 11 

Resultados de evaluación del modelo YOLOv8-cls 

Métrica Valor Interpretación 

Top-1 Accuracy 96.67% Porcentaje de predicciones 

correctas en la primera 

opción 

Top-5 Accuracy 100% La clase correcta siempre 

está entre las 5 predicciones 

principales 

Nota. El Top-5 de 100% garantiza que la enfermedad correcta siempre aparece entre las cinco 

opciones más probables sugeridas por el modelo, lo cual resulta útil para asistir al usuario en el 

diagnóstico final. 

El modelo YOLOv8-cls reporta su rendimiento mediante las métricas Top-1 y Top-5 

accuracy, estándares ampliamente utilizados en benchmarks de clasificación como ImageNet. 

Como se observa en la Tabla 11, el Top-1 accuracy de 96.67% es directamente comparable con 

la métrica accuracy tradicional y confirma un desempeño similar al obtenido con EfficientNet. 

El Top-5 accuracy perfecto de 100% significa que, en todas las imágenes evaluadas, la clase 

verdadera siempre apareció entre las cinco opciones más probables. Este resultado tiene 

implicaciones prácticas significativas, ya que permite diseñar un sistema que presente al usuario 

las cinco enfermedades más probables, garantizando que la correcta siempre esté incluida como 

herramienta de apoyo al diagnóstico. 

 

 

 

 

 



 
 
 

 

 

73 

QUITO – ECUADOR | 2024 

 

 

Tabla 12 

Principales patrones de confusión identificados en YOLOv8-cls 

Confusión observada Clases involucradas Explicación 

Confusión primaria Moko ↔ Pestalotiopsis Similitudes visuales en 

lesiones foliares con bordes 

necróticos y halos 

amarillentos 

Inestabilidad predictiva Fusarium R4T Desbalance muestral debido 

a la reciente aparición de la 

enfermedad 

Nota. Estas confusiones son esperables dado que algunas enfermedades comparten características 

visuales similares, y la clase fusarium R4T cuenta con muy pocas muestras de entrenamiento. 

El análisis de las predicciones reveló patrones específicos de confusión detallados en la Tabla 12. 

Se observó tendencia a confundir moko con pestalotiopsis, atribuible a similitudes visuales en 

lesiones foliares con bordes necróticos y halos amarillentos en ciertas etapas de desarrollo. La 

clase fusarium R4T exhibió nuevamente inestabilidad predictiva, consistente con los resultados 

de EfficientNet, debido al desbalance muestral causado por las circunstancias epidemiológicas. 

La convergencia de estos patrones entre ambas arquitecturas sugiere que las dificultades están 

relacionadas con las características intrínsecas de los datos más que con limitaciones de una 

arquitectura específica, fortaleciendo la validez de las conclusiones del estudio. 

4.1.7. Despliegue del prototipo. 

El despliegue del prototipo constituye una fase esencial en el ciclo de desarrollo de 

sistemas de inteligencia artificial, ya que permite validar la integración de los diferentes 

componentes del sistema en un entorno que simula las condiciones reales de operación. Esta 

etapa trasciende la evaluación aislada del modelo de clasificación y abarca la verificación del 
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funcionamiento integral del sistema, incluyendo la interfaz de programación de aplicaciones 

(API), la persistencia de datos y la interacción con el usuario final a través de la interfaz gráfica. 

El objetivo principal del despliegue del prototipo fue demostrar la viabilidad técnica de la 

solución propuesta como un sistema funcional de extremo a extremo (end-to-end), capaz de 

recibir imágenes de hojas de banano, procesarlas mediante el modelo de clasificación entrenado, 

y presentar los resultados de manera comprensible para usuarios sin conocimientos técnicos 

especializados. 

4.1.7.1. API. 

Para la validación técnica integral del proyecto, las pruebas de concepto fueron diseñadas 

con el propósito de verificar el correcto funcionamiento de cada componente del sistema de 

manera individual y en conjunto. Los aspectos evaluados incluyeron el funcionamiento del 

modelo de clasificación, la API de inferencia, la persistencia en base de datos y la interacción 

desde la interfaz de usuario. 

El proceso de validación se estructuró en fases secuenciales que permitieron identificar y 

corregir problemas de manera sistemática. En primer lugar, se validó el modelo de clasificación 

ejecutando ciclos de entrenamiento y evaluación para verificar que fuera capaz de distinguir 

correctamente las diferentes clases de enfermedades. Las métricas obtenidas, incluyendo 

accuracy, precision, recall y F1-score, sirvieron como indicadores cuantitativos del rendimiento 

del modelo, tal como se describió en secciones anteriores. Posteriormente, se implementó y 

probó el endpoint /predict de la API, el cual constituye el punto de entrada principal para las 

solicitudes de clasificación. Las pruebas verificaron que la API fuera capaz de recibir imágenes 

en diferentes formatos como JPEG y PNG, ejecutar el preprocesamiento requerido incluyendo 
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redimensionamiento y normalización de las imágenes, realizar la inferencia mediante el modelo 

entrenado, y retornar la predicción de la clase junto con el nivel de confianza asociado. 

Finalmente, se verificó que los resultados de las predicciones se almacenaran correctamente en la 

base de datos PostgreSQL, incluyendo metadatos relevantes como la fecha y hora de la consulta, 

la imagen procesada, la clase predicha y el porcentaje de confianza. 

Tabla 13 

Estructura de la respuesta JSON de la API 

Campo Tipo de dato Descripción 

prediction string Nombre de la clase de 

enfermedad predicha 

confidence float Nivel de confianza de la 

predicción (0-1) 

processing_time_ms integer Tiempo de procesamiento en 

milisegundos 

timestamp date Fecha y hora de la 

predicción 

Nota. Esta estructura permite que las aplicaciones cliente reciban información completa sobre el 

diagnóstico, incluyendo no solo la enfermedad detectada sino también el grado de certeza del 

modelo, facilitando la toma de decisiones por parte del usuario. 

La API fue diseñada para retornar respuestas en formato JSON con la estructura detallada 

en la Tabla 13. Esta estructura proporciona información suficiente para que las aplicaciones 

cliente puedan presentar los resultados al usuario de manera informativa, incluyendo no solo la 

clase predicha sino también el nivel de certeza del modelo, lo cual resulta fundamental para la 

toma de decisiones en contextos agrícolas. El campo prediction contiene el nombre de la 

enfermedad identificada, mientras que confidence expresa numéricamente qué tan seguro está el 

modelo de su predicción mediante un valor entre 0 y 1. El tiempo de procesamiento se incluye 
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para monitorear el rendimiento del sistema, y el timestamp permite mantener un registro 

cronológico de todas las consultas realizadas. 

4.1.7.2. Back-end 

Para la validación del modelo desarrollado en un entorno que simule condiciones de 

producción, se implementó un servidor que expone una API REST orientada específicamente a 

la inferencia del modelo de clasificación. Este componente constituye el núcleo del sistema, 

actuando como intermediario entre la interfaz de usuario y el modelo de aprendizaje profundo. 

La arquitectura del back-end se diseñó siguiendo principios de modularidad y separación 

de responsabilidades, lo que facilita el mantenimiento, la escalabilidad y la evolución futura del 

sistema. Los componentes principales incluyen una capa de presentación implementada mediante 

el framework FastAPI, encargada de recibir las peticiones HTTP, validar los datos de entrada y 

formatear las respuestas. FastAPI fue seleccionado por sus características de alto rendimiento, 

soporte nativo para operaciones asíncronas y generación automática de documentación 

OpenAPI. La capa de lógica de negocio contiene los módulos responsables del preprocesamiento 

de imágenes y la ejecución de la inferencia, incluyendo operaciones como el 

redimensionamiento al tamaño esperado por el modelo (224×224 píxeles), la normalización de 

valores de píxeles al rango [0, 1] y la conversión al formato de tensor requerido. La capa de 

persistencia gestiona la conexión con la base de datos PostgreSQL y las operaciones de 

almacenamiento mediante un ORM que facilita las operaciones y proporciona abstracción sobre 

el motor de base de datos. Finalmente, la capa de modelo encapsula el modelo de clasificación 

entrenado, cargándolo en memoria durante el inicio del servidor para atender múltiples 

solicitudes de manera eficiente. 
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Tabla 14 

Flujo de procesamiento de solicitudes de clasificación 

Paso Descripción 

1 El cliente envía petición HTTP POST al endpoint /predict con la imagen 

(multipart/form-data) 

2 La API valida que la solicitud contenga una imagen en formato soportado 

3 Se aplican transformaciones de preprocesamiento para compatibilidad con el 

modelo 

4 El modelo ejecuta la inferencia y genera probabilidades para cada clase 

5 Se selecciona la clase con mayor probabilidad y se calcula el nivel de confianza 

6 El resultado se almacena en PostgreSQL junto con metadatos asociados 

7 La API retorna respuesta JSON al cliente con la predicción y confianza 

Nota. Este flujo describe el recorrido completo de una imagen desde que el usuario la envía hasta 

que recibe el diagnóstico, garantizando la validación, procesamiento y almacenamiento de cada 

solicitud. 

El procesamiento de una solicitud de clasificación sigue el flujo secuencial detallado en 

la Tabla 14. Este proceso garantiza que cada imagen recibida pase por todas las etapas necesarias 

de validación, transformación e inferencia antes de retornar un resultado al usuario, mientras se 

mantiene un registro completo de la operación en la base de datos. 

Tabla 15 

Tecnologías utilizadas en la implementación del servidor 

Componente Tecnología Justificación 

Framework web FastAPI Alto rendimiento, soporte 

asíncrono, documentación 

automática 

Servidor ASGI Uvicorn Servidor ligero y eficiente 

para aplicaciones asíncronas 

Base de datos PostgreSQL Robustez, soporte ACID, 

escalabilidad 

ORM SQLAlchemy Abstracción de base de 

datos, gestión de 

migraciones 
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ML Framework TensorFlow/Keras Compatibilidad con el 

modelo entrenado 

Nota. La selección de tecnologías priorizó el rendimiento, la escalabilidad y la facilidad de 

mantenimiento, utilizando herramientas de código abierto ampliamente adoptadas en la industria. 

La selección de tecnologías para la implementación del servidor, detallada en la Tabla 15, 

se basó en criterios de rendimiento, compatibilidad y facilidad de desarrollo. Cada componente 

fue elegido considerando tanto las necesidades actuales del sistema como su capacidad de 

escalabilidad futura. 

Durante la fase de validación y pruebas con usuarios externos, se utilizó Ngrok como 

solución para exponer temporalmente el servidor local a través de Internet. Ngrok establece un 

túnel seguro que conecta el servidor de desarrollo local con una URL pública accesible desde 

cualquier dispositivo con conexión a Internet. Esta aproximación ofreció ventajas significativas 

durante las pruebas, incluyendo rapidez de configuración que permite exponer el servidor en 

segundos sin infraestructura de red compleja, seguridad mediante cifrado TLS que garantiza la 

confidencialidad de los datos transmitidos, flexibilidad para facilitar pruebas con usuarios reales 

sin despliegue en producción, y capacidades de monitoreo a través de una interfaz web para 

inspeccionar solicitudes entrantes. Es importante señalar que Ngrok se utilizó exclusivamente 

durante la fase de validación del prototipo. Para un despliegue en producción, se recomienda 

utilizar infraestructura de nube dedicada como AWS, Google Cloud o Azure, con 

configuraciones apropiadas de seguridad, balanceo de carga y alta disponibilidad. 

4.1.7.3. Front-end 

La interfaz de usuario constituye el punto de contacto entre el sistema de clasificación y 

los usuarios finales, por lo que su diseño debe priorizar la usabilidad, la claridad en la 
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presentación de resultados y la accesibilidad para usuarios con diferentes niveles de experiencia 

técnica. El front-end desarrollado permite a los usuarios interactuar con el sistema de manera 

intuitiva, desde la carga de imágenes hasta la visualización de resultados y el acceso al historial 

de consultas. 

Tabla 16 

Funcionalidades principales del front-end 

Funcionalidad Descripción Características 

Carga de imágenes Interfaz para subir imágenes 

de hojas de banano 

Arrastrar y soltar, selector de 

archivos, validación de 

formatos JPEG y PNG 

Visualización de 

predicciones 

Presentación de resultados 

de clasificación 

Nombre de enfermedad, 

porcentaje de confianza, 

indicador visual de color, 

recomendaciones 

preliminares 

Historial de consultas Registro de predicciones 

anteriores 

Seguimiento temporal, 

comparación de múltiples 

muestras 

Retroalimentación visual Indicadores de estado del 

procesamiento 

Spinners, barras de progreso 

durante la inferencia 

Nota. Estas funcionalidades fueron diseñadas para ofrecer una experiencia de uso intuitiva, 

permitiendo que usuarios sin conocimientos técnicos puedan realizar diagnósticos de manera 

sencilla. 

El front-end del prototipo incluye las funcionalidades principales detalladas en la Tabla 

16. Los usuarios pueden cargar imágenes mediante un componente de arrastrar y soltar o un 

selector de archivos tradicional, con validación automática del tipo de archivo antes de enviar la 

solicitud al servidor. Una vez procesada la imagen, el sistema presenta el resultado de la 

clasificación de manera clara, incluyendo el nombre de la enfermedad detectada o la indicación 

de hoja sana, el porcentaje de confianza del modelo, una representación visual mediante 

indicadores de color para interpretación rápida, e información adicional sobre la enfermedad con 
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recomendaciones preliminares. El sistema mantiene un registro de consultas realizadas que 

permite revisar predicciones anteriores, facilitando el seguimiento de la evolución de cultivos a 

lo largo del tiempo. Durante el procesamiento, se proporcionan indicadores visuales que 

informan al usuario sobre el estado de la solicitud, mejorando la experiencia de uso. 

Tabla 17 

Flujo de validación end-to-end del sistema 

Etapa Componente responsable Acción realizada 

carga de imagen Front-end Usuario selecciona o arrastra 

imagen de hoja de banano 

envió al servidor Front-end Transmisión mediante 

petición HTTP POST 

procesamiento Back-end Preprocesamiento de imagen 

y ejecución del modelo 

recepción de resultados Front-end Recibe respuesta JSON con 

predicción y confianza 

presentación Front-end Muestra resultados de 

manera visual e intuitiva 

actualización del historial Front-end + Back-end Registra consulta para 

referencia futura 

Nota. Este flujo describe la interacción completa entre el usuario y el sistema, validando que todos 

los componentes funcionan correctamente de forma integrada. 

La validación del front-end se realizó mediante pruebas de flujo completo que verificaron 

la correcta integración de todos los componentes del sistema. El flujo validado, ilustrado en la 

Figura 9 y descrito en la Tabla 17, comprende desde la carga inicial de la imagen por parte del 

usuario hasta el registro final de la consulta en el historial, pasando por todas las etapas 

intermedias de comunicación entre front-end y back-end. 
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Tabla 18 

Principios de diseño de la interfaz de usuario 

Principio Implementación 

Simplicidad Presentación únicamente de elementos 

necesarios, evitando sobrecarga de 

información 

Retroalimentación inmediata Confirmación visual de acciones del 

usuario (selección de imagen, inicio de 

procesamiento) 

Manejo de errores Mensajes claros y constructivos indicando 

cómo resolver problemas 

Nota. Estos principios garantizan que la interfaz sea accesible para usuarios con diferentes niveles 

de experiencia técnica, priorizando la facilidad de uso en entornos de campo. 

El diseño de la interfaz se fundamentó en los principios detallados en la Tabla 18. La 

simplicidad evita sobrecargar al usuario con opciones innecesarias, mientras que la 

retroalimentación inmediata proporciona confirmación visual de cada acción realizada. El 

manejo de errores presenta mensajes claros como "Formato de imagen no soportado. Por favor, 

utilice archivos JPEG o PNG", orientando al usuario hacia la solución.  

Las pruebas de validación se ejecutaron con el prototipo funcionando de manera local, 

conectando el front-end con el back-end a través de la URL proporcionada por Ngrok. Esta 

configuración permitió simular un escenario de uso real donde el usuario accede al sistema desde 

un dispositivo diferente al servidor, validando la correcta comunicación entre componentes a 

través de la red. Finalmente, se verificó el flujo completo del sistema desde la carga de la imagen 

en el front-end, como se ilustra en la Figura 9, la obtención del resultado y la visualización del 

historial, ejecutando de esta manera el prototipo de manera local. Los resultados confirmaron que 

el sistema es capaz de procesar solicitudes de clasificación de manera exitosa, desde la 
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interacción inicial del usuario hasta la presentación final de los resultados, validando la 

viabilidad técnica de la solución propuesta. 

Figura 9 

Interfaz de Usuario prototipo 

 

Nota. Interfaz de usuario del prototipo funcional desarrollado mediante una API y una UI para la 

visualización de resultados del modelo. 

4.2.Análisis de Resultados 

Se emplearon 1025 imágenes distribuidas en 6 clases como se puede ver en la figura 10, 

con un tamaño de 224x224, el batch size de 64 y una tasa de aprendizaje de 0.001, lo que se 

puede visualizar en la Tabla 19. El resultado es un aprendizaje en un inicio rápido, pero con la 

suficiente estabilidad para no dañar la generalización, lo que establece la estabilidad en la 

convergencia. 
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Figura 10 

Características del conjunto de datos empleado 

 

Nota. La figura muestra la composición del conjunto de datos empleado, incluyendo la cantidad 

de imágenes por clase utilizadas en las etapas de entrenamiento, validación y prueba. 

 

4.2.1. Desempeño global del modelo  

 

El modelo EfficientNet obtuvo las métricas de accuracy 96.94% y F1 macro 96.67%, con 

menos probabilidad de acierto en sigatoka y cordana debido a su origen epidemiológico y la 
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coincidencia visual, mientras que el modelo de YOLOv8-cls alcanzó el 96.67% para el top 1 y el 

100% para el top -5 y, las confusiones aquí se concentraron en moko y Pestalotiopsis, como se 

expresa en la Tabla 8. 

Tabla 20 

Comparación de los dos modelos EfficientNet y YOLOv8s-cls 

Modelo Tipo Métrica principal 

efficientNet Clasificación Accuracy 96.94 

YOLOv8s-cls Clasificación Top1 96.67% y Top5 100% 

Nota. EfficientNet reporta accuracy global; YOLOv8s-cls reporta Top1 (primera predicción 

correcta) y Top5 (correcta entre las cinco primeras predicciones). 

4.2.2. Matriz de confusión  

La matriz de confusión figura 11 normalizada deja en evidencia la alta capacidad en 

discriminación entre clases, los valores reflejados son aproximadamente 0.90 en la mayoría de 

categorías. Las clases sigatoka y Pestalotiopsis muestran los mayores aciertos, mientras que la 

enfermedad de moko registra el menor desempeño relativo cercano a 0.88, presentando 

confusiones principalmente con la clase sigatoka, esto debido a las similitudes que existen entre 

las lesiones foliares. Asimismo, se observan errores puntuales entre Cordana y Pestalotiopsis.  
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Figura 11 

Matriz de confusión del modelo 

 
Nota. Matriz de confusión del modelo de clasificación, que refleja el desempeño del modelo al 

comparar las clases reales frente a las clases predichas durante la fase de evaluación. 

 

4.2.3. Resultados por clase 

 

La figura 12 presenta los resultados del modelo de clasificación por clase, expresados 

mediante las métricas de precision, recall, F1-scrore. En la figura se observa las clases en su 

mayoría alcanzan valores altos y consistentes en las tres métricas, lo que indica un desempeño 

estable del modelo para estas categorías.  
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Figura 12 

Métricas del modelo por clase 

 

Nota. Métricas de precision, recall y F1-score calculadas por clase para el modelo de clasificación, 

considerando las diferentes enfermedades foliares del banano. 

 

4.2.4. Resultados del prototipo  

4.2.4.1. API 

El sistema incorpora una capa de servicio encargada de mediar la comunicación entre el 

front-end y el back-end de inferencia, donde se encuentra desplegado el modelo previamente 

entrenado. Esta capa expone endpoints que permiten el envío de imágenes para su 

procesamiento, gestionando tanto la transferencia de datos como la ejecución del modelo de 

inferencia de manera eficiente. A pesar del costo computacional asociado a la evaluación del 

modelo y a la carga de archivos de imagen, los tiempos de respuesta se mantienen dentro de 
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rangos óptimos, lo que garantiza una experiencia de usuario fluida y adecuada para entornos de 

uso en tiempo real. 

La respuesta generada por el servicio se entrega en formato JSON, siguiendo una 

estructura estandarizada que incluye:  La clase predicha correspondiente a la enfermedad 

detectada (por ejemplo, sigatoka negra o Sana), El nivel de confianza asociado a la predicción, 

expresado mediante un confidence score, las probabilidades estimadas para las demás clases 

posibles, lo que permite un análisis más completo del resultado de la inferencia. Adicionalmente, 

esta capa implementa mecanismos robustos de validación y manejo de errores, permitiendo 

identificar y responder adecuadamente ante entradas inválidas por parte del usuario, tales como 

imágenes en formatos no soportados, archivos que exceden los límites de tamaño establecidos o 

solicitudes mal formadas. De esta manera, se asegura la estabilidad del sistema y se mejora la 

confiabilidad del servicio expuesto. 

4.2.4.2. Base de datos 

Se incorporó una base de datos relacional como mecanismo de persistencia, garantizando 

la integridad, consistencia y disponibilidad de la información generada por el sistema. Esta capa 

de almacenamiento permite registrar de manera estructurada los resultados derivados del análisis 

de las imágenes procesadas, facilitando la gestión y consulta de un historial de enfermedades 

detectadas por cada usuario. Como resultado, se mejora la trazabilidad de los datos y se optimiza 

la experiencia del usuario al proporcionar acceso a información histórica relevante. 

Adicionalmente, con el objetivo de asegurar la escalabilidad y evolución de la 

plataforma, se habilitaron nuevos endpoints a través de una API REST para el registro de 

feedback. Estos endpoints permiten capturar información complementaria relacionada con los 



 
 
 

 

 

88 

QUITO – ECUADOR | 2024 

 

diagnósticos obtenidos, lo que proporciona un mayor contexto sobre cada enfermedad detectada. 

Esta funcionalidad sienta las bases para futuras iteraciones del sistema, como el refinamiento de 

los modelos de análisis, la validación de resultados y la mejora en los procesos de tratamiento y 

seguimiento de las enfermedades identificadas. 
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Capítulo 5 

5. Conclusiones y recomendaciones 

5.1. Conclusiones 

Los resultados obtenidos evidencian que el modelo de aprendizaje profundo implementado 

presenta un alto nivel de desempeño global, alcanzando una exactitud (accuracy) del 

96,43%, así como valores elevados de precision, recall y F1-score. Estos indicadores 

demuestran que el sistema es capaz de identificar correctamente las enfermedades del 

banano con un bajo margen de error. 

El valor del recall global (97,06%) indica que el sistema tiene una alta capacidad para 

detectar la mayoría de los casos positivos, reduciendo la probabilidad de que una planta 

enferma sea clasificada como sana. Esto es especialmente relevante en el contexto agrícola, 

donde los falsos negativos pueden tener consecuencias económicas significativas. 

El análisis por clase muestra que el modelo presenta un desempeño sobresaliente en las 

clases sigatoka y pestalotiopsis, con valores de F1-score superiores al 97%, lo que evidencia 

una correcta diferenciación visual de estas enfermedades. Sin embargo, la clase cordana 

presenta una precisión inferior en comparación con las demás, lo que sugiere una mayor 

confusión con otras clases, posiblemente debido a similitudes visuales en los síntomas o a 

una menor cantidad de muestras disponibles. 

Se observa que la clase sigatoka cuenta con un mayor número de muestras (support), lo cual 

se refleja en un desempeño más estable del modelo. Esto confirma que la cantidad y 

diversidad de datos influyen directamente en la capacidad de generalización del sistema. 
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5.2. Recomendaciones 

Se recomienda incrementar la cantidad de imágenes, especialmente para clases con menor 

número de muestras como fusarium, cordana y healthy, incorporando variaciones en 

iluminación, ángulos y estados de la enfermedad, con el fin de mejorar la precisión del 

modelo en escenarios reales. 

Se recomienda validar el sistema en entornos reales de cultivo, utilizando imágenes 

capturadas directamente por agricultores o técnicos agrícolas, lo que permitiría evaluar el 

desempeño del modelo frente a condiciones no controladas. 

Se recomienda agregar información de condiciones meteorológicas y de suelo al momento 

de obtener las imágenes. Esto aportaría significativamente en la clasificación de 

enfermedades que compartan indicadores entre enfermedades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

 

91 

QUITO – ECUADOR | 2024 

 

Referencias bibliográficas 

Abade, A. S., Ferreira, P. A., & Vidal, F. B. (2020). Plant diseases recognition on images using 

convolutional neural networks: A systematic review. arXiv preprint arXiv:2009.04365. 

https://doi.org/10.48550/arXiv.2009.04365 

 

Agencia de Regulación y Control Fito y Zoosanitario. (2024). Guía técnica de Moko. 

https://www.agrocalidad.gob.ec/wp-content/uploads/2024/10/Guia_Ralstonia.pdf 

 

Agencia de Regulación y Control Fito y Zoosanitario. (2025). Boletín epidemiológico Foc R4T: 

Resultados de la vigilancia fitosanitaria del período enero–marzo, 2025. Comunidad 

Andina. https://www.comunidadandina.org/documents/temas/dg-com/sanidad-

vegetal/Foc_R4T_Ecuador_1_Trimestre.pdf 

 

Agencia de Regulación y Control Fito y Zoosanitario. (2024). Boletín informativo: Estrategias 

para prevenir el ingreso de Fusarium oxysporum f.sp. raza 4 tropical (Foc R4T) (Período 

enero–marzo 2024). https://www.agrocalidad.gob.ec/wp-

content/uploads/2024/07/BOLETIN-Foc-R4T-Ene–Mar-2024.pdf 

 

Arman, S. E., Bhuiyan, M. A. B., Abdullah, H. M., Islam, S., Chowdhury, T. T., & Hossain, M. 

A. (2023). BananaLSD: A banana leaf images dataset for classification of banana leaf 

diseases using machine learning. Data in Brief, 50, 109608 

 

Arunkumar, R., & Suthin Raj, T. (2021). Major diseases of banana and its management. 

ResearchGate. 

https://www.researchgate.net/publication/352056982_Major_Diseases_of_Banana_and_it

s_Management 

 

Blandón, J. C., Gómez, D. J., Sierra, J. M., & Hincapié, D. J. (2024). First report of white root rot 

caused by Rosellinia necatrix on blackberry (Rubus glaucus) in Colombia. Plant 

Pathology, 73(3), 856. https://doi.org/10.1111/ppa.13863 

 

Blomme, G., Dita, M., Jacobsen, K. S., Pérez Vicente, L., Molina, A., Ocimati, W., Poussier, S., 

& Prior, P. (2017). Bacterial diseases of bananas and enset: Current state of knowledge and 

integrated approaches toward sustainable management. Frontiers in Plant Science, 8, 1290. 

https://doi.org/10.3389/fpls.2017.01290 

 

Barbedo, J. G. A. (2018). Factors influencing the use of deep learning for plant disease recognition. 

Biosystems Engineering, 172, 84–91. https://doi.org/10.1016/j.biosystemseng.2018.05.013 

 

 

https://doi.org/10.48550/arXiv.2009.04365
https://www.agrocalidad.gob.ec/wp-content/uploads/2024/10/Guia_Ralstonia.pdf
https://www.comunidadandina.org/documents/temas/dg-com/sanidad-vegetal/Foc_R4T_Ecuador_1_Trimestre.pdf
https://www.comunidadandina.org/documents/temas/dg-com/sanidad-vegetal/Foc_R4T_Ecuador_1_Trimestre.pdf
https://www.agrocalidad.gob.ec/wp-content/uploads/2024/07/BOLETIN-Foc-R4T-Ene–Mar-2024.pdf
https://www.agrocalidad.gob.ec/wp-content/uploads/2024/07/BOLETIN-Foc-R4T-Ene–Mar-2024.pdf
https://www.researchgate.net/publication/352056982_Major_Diseases_of_Banana_and_its_Management
https://www.researchgate.net/publication/352056982_Major_Diseases_of_Banana_and_its_Management
https://doi.org/10.1111/ppa.13863
https://doi.org/10.3389/fpls.2017.01290
https://doi.org/10.1016/j.biosystemseng.2018.05.013


 
 
 

 

 

92 

QUITO – ECUADOR | 2024 

 

Cervantes-Álava, A., Sánchez-Urdaneta, A., Colmenares, C., & Quevedo-Guerrero, J. (2023). 

Evaluación de fungicidas utilizados en el manejo de sigatoka negra en el cultivo de banano. 

Revista de la Facultad de Agronomía de la Universidad del Zulia, 40(2), e234016. 

https://doi.org/10.47280/RevFacAgron(LUZ).v40.n2.06 

Cedeño Campoverde, K. J. (2024). Sistema de teledetección utilizando drones para el monitoreo 

de banano [Tesis de grado no publicada]. Universidad Técnica Estatal de Quevedo. 

 

Corporación Financiera Nacional. (2024, October). Ficha sectorial banano. http://cfn.fin.ec/wp-

content/uploads/2024/10/Ficha-Sectorial-Banano.pdf 

 

Cui, X., Hao, Z., Chen, M., Song, S., Zhang, J., Li, Y., Li, J., Liu, Y., & Luo, L. (2024). 

Identification and pathogenicity of pestalotioid species on Alpinia oxyphylla in Hainan 

Province, China. Journal of Fungi, 10(6), 371. https://doi.org/10.3390/jof10060371 

 

Churchill, A. C. L. (2011). Mycosphaerella fijiensis, the black leaf streak pathogen of banana: 

Progress towards understanding pathogen biology and detection, disease development, and 

the challenges of control. Molecular Plant Pathology, 12(4), 307–328. 

https://doi.org/10.1111/j.1364-3703.2010.00672.x 

 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, 

M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image 

is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the 

International Conference on Learning Representations. 

https://openreview.net/forum?id=YicbFdNTTy 

 

Fu, Y. P., Qi, Y. X., Xie, Y. X., Peng, J., Zeng, F. Y., & Zhang, X. (2021). Identification and 

biological characteristics of the pathogen causing Cordana leaf spot of banana in Hainan 

Province. Journal of Tropical Biology, 12(1), 61-68. 

https://doi.org/10.15886/j.cnki.rdswxb.2021.01.009 

 

Food and Agriculture Organization of the United Nations. (s. f.). Bananas. 

https://www.fao.org/markets-and-trade/commodities-overview/bananas-tropical-

fruits/bananas/5/en 

 

Grajales-Amorocho, M., Acosta-Minoli, C., Muñoz-Pizza, D. M., Manrique-Arias, O., & Munoz-

Loaiza, A. (2024). Analysis of Moko disease propagation on plantain (Musa AAB 

Simmonds) through a model based on system dynamics. European Journal of Plant 

Pathology, 168, 37–50. https://doi.org/10.1007/s10658-023-02764-2 

 

https://doi.org/10.47280/RevFacAgron(LUZ).v40.n2.06
http://cfn.fin.ec/wp-content/uploads/2024/10/Ficha-Sectorial-Banano.pdf
http://cfn.fin.ec/wp-content/uploads/2024/10/Ficha-Sectorial-Banano.pdf
https://doi.org/10.3390/jof10060371
https://doi.org/10.1111/j.1364-3703.2010.00672.x
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.15886/j.cnki.rdswxb.2021.01.009
https://www.fao.org/markets-and-trade/commodities-overview/bananas-tropical-fruits/bananas/5/en
https://www.fao.org/markets-and-trade/commodities-overview/bananas-tropical-fruits/bananas/5/en
https://doi.org/10.1007/s10658-023-02764-2


 
 
 

 

 

93 

QUITO – ECUADOR | 2024 

 

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (3rd ed.). 

O'Reilly Media. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. 

 

Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: A review. 

Plant Methods, 17, 22. https://doi.org/10.1186/s13007-021-00722-9 

 

Jiménez, N., Orellana, S., Mazon-Olivo, B., Rivas-Asanza, W., & Ramírez-Morales, I. (2025). 

Detection of leaf diseases in banana crops using deep learning techniques. AI, 6(3), 61. 

https://doi.org/10.3390/ai6030061 

 

Linero-Ramos, R., Parra-Rodríguez, C., Espinosa-Valdez, A., Gómez-Rojas, J., & Gongora, M. 

(2024). Assessment of dataset scalability for classification of Black Sigatoka in banana 

crops using UAV-based multispectral images and deep learning techniques. Drones, 8(9), 

503. https://doi.org/10.3390/drones8090503 

 

 

Ministerio de Agricultura y Ganadería. (2023). Boletín situacional banano 2023. Sistema de 

Información Pública Agropecuaria (SIPA). 

https://sipa.agricultura.gob.ec/boletines/situacionales/2023/boletin_situacional_banano_2

023.pdf 

 

Mduma, N., & Elinisa, C. (2025). Banana leaves imagery dataset. Scientific Data, 12, 477. 

https://doi.org/10.1038/s41597-025-04456-4 

 

 

Munhoz, T., Vargas, J., Teixeira, L., Staver, C., & Dita, M. (2024). Fusarium tropical race 4 in 

Latin America and the Caribbean: Status and global research advances towards disease 

management. Frontiers in Plant Science, 15, 1397617. 

https://doi.org/10.3389/fpls.2024.1397617 

 

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant 

disease detection. Frontiers in Plant Science, 7, 1419. 

https://doi.org/10.3389/fpls.2016.01419 

 

Noar, R. D., Thomas, E., & Daub, M. E. (2022). Genetic characteristics and metabolic interactions 

between Pseudocercospora fijiensis and banana: Progress toward controlling black 

sigatoka. Plants, 11(7), 948. https://doi.org/10.3390/plants11070948 

 

https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.3390/ai6030061
https://doi.org/10.3390/drones8090503
https://sipa.agricultura.gob.ec/boletines/situacionales/2023/boletin_situacional_banano_2023.pdf
https://sipa.agricultura.gob.ec/boletines/situacionales/2023/boletin_situacional_banano_2023.pdf
https://doi.org/10.1038/s41597-025-04456-4
https://doi.org/10.3389/fpls.2024.1397617
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3390/plants11070948


 
 
 

 

 

94 

QUITO – ECUADOR | 2024 

 

Noyan, M. A. (2022). Uncovering bias in the PlantVillage dataset. arXiv. 

https://doi.org/10.48550/arXiv.2206.04374 

 

Pinzón-Núñez, A. M., Feria-Gómez, D. F., Pérez-Ochoa, G. M., Ramírez-Gil, J. G., & Sanjuán, T. 

(2024). New standard area diagram set for assessing black sigatoka in bananas. European 

Journal of Plant Pathology, 170, 535–548. https://doi.org/10.1007/s10658-024-02917-x 

 

Romero-García, C. V., Saraguro-Reyes, C. M., Mazon-Olivo, B. E., & Morocho-Román, R. F. 

(2025). Agricultura de precisión en la producción de banano: Revisión sistemática. 

Ingenium et Potentia. Revista Electrónica Multidisciplinaria de Ciencias Básicas, 

Ingeniería y Arquitectura, 7(12), 50-80. https://doi.org/10.35381/i.p.v7i12.4450 

 

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-

CAM: Visual explanations from deep networks via gradient-based localization. 

International Journal of Computer Vision, 128(2), 336–359. 

https://doi.org/10.1007/s11263-019-01228-7 

 

Sanga, S., Mero, V., & Machuve, D. (2020). Mobile-based deep learning models for banana 

diseases detection. arXiv. https://doi.org/10.48550/arXiv.2004.03718 

 

Nelson, S. (2011, May 2). Banana Cordana leaf spot 1 [Photograph]. Flickr. 

https://www.flickr.com/photos/scotnelson/5680832197 

 

Taye, M. M. (2023). Theoretical understanding of convolutional neural networks: Concepts, 

architectures, applications, and future directions. Computation, 11(3), 52. 

https://doi.org/10.3390/computation11030052 

 

Ploetz, R. C. (2015). Management of Fusarium wilt of banana: A review with special reference to 

tropical race 4. Crop Protection, 73, 7-15. https://doi.org/10.1016/j.cropro.2015.01.007 

 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., 

Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual 

recognition challenge. International Journal of Computer Vision, 115(3), 211–252. 

https://doi.org/10.1007/s11263-015-0816-y 

 

 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-

time object detection. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (pp. 779-788). https://doi.org/10.1109/CVPR.2016.91 

 

https://doi.org/10.48550/arXiv.2206.04374
https://doi.org/10.1007/s10658-024-02917-x
https://doi.org/10.35381/i.p.v7i12.4450
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.48550/arXiv.2004.03718
https://www.flickr.com/photos/scotnelson/5680832197
https://doi.org/10.3390/computation11030052
https://doi.org/10.1016/j.cropro.2015.01.007
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2016.91


 
 
 

 

 

95 

QUITO – ECUADOR | 2024 

 

Paladines Larco, F. A. (2025). Visión por computadora y aprendizaje profundo para conteo y 

salud de plantas de banano [Tesis de grado no publicada]. Escuela Superior Politécnica 

del Litoral. 

 

Thiagarajan, J. D., Kulkarni, S. V., Jadhav, S. A., Waghe, A. A., Raja, S. P., Rajagopal, S., Poddar, 

H., & Subramaniam, S. (2024). Analysis of banana plant health using machine learning 

techniques. Scientific Reports, 14(1), 15041. https://doi.org/10.1038/s41598-024-63930-y 

 

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural 

networks. In Proceedings of the 36th International Conference on Machine Learning (pp. 

6105-6114). PMLR. http://proceedings.mlr.press/v97/tan19a.html 

 

Ultralytics. (2023). Ultralytics YOLO documentation. https://docs.ultralytics.com 

 

Ugarte Fajardo, J., Bayona Andrade, O., Criollo Bonilla, R., Cevallos‐Cevallos, J., Mariduena‐

Zavala, M., & Vicente Villardón, J. L. (2020). Early detection of black Sigatoka in banana 

leaves using hyperspectral images. Applications in Plant Sciences, 8(8), e11383. 

 

 

Upadhyay, A., Chandel, N. S., Singh, K. P., Chakraborty, S. K., Nandede, B. M., Kumar, M., & 

Elbeltagi, A. (2025). Deep learning and computer vision in plant disease detection: A 

comprehensive review of techniques, models, and trends in precision agriculture. Artificial 

Intelligence Review, 58(3), 1–64. https://doi.org/10.1007/s10462-024-11100-x 

 

 

 

 

 

  

https://doi.org/10.1038/s41598-024-63930-y
http://proceedings.mlr.press/v97/tan19a.html
https://docs.ultralytics.com/
https://doi.org/10.1007/s10462-024-11100-x


 
 
 

 

 

96 

QUITO – ECUADOR | 2024 

 

Apéndice A. Repositorio de código del proyecto 

 

El código fuente, modelos entrenados y recursos técnicos desarrollados en este trabajo de 

titulación se encuentran disponibles públicamente para fines de reproducibilidad, validación 

académica y transparencia científica. 

Repositorio de GitHub: https://github.com/kevinjimenez/banana-disease-classifier 

Ubicación de imágenes/dataset dentro del repositorio: dataset/test y dataset/train. 

Apéndice B. Base de datos con imágenes propias 

Imágenes moko: 

https://drive.google.com/drive/folders/1K0cs3Ni50f2cXKOcRdLtCu31ZszNWjst?usp=drive_link 
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