
 
 
 
 
 
  
  
 

 
 

QUITO – ECUADOR | 2025 

 

 

 

 

 

Maestría en 

CIENCIA DE DATOS Y MÁQUINAS DE APRENDIZAJE CON 
MENCIÓN EN INTELIGENCIA ARTIFICIAL 

Trabajo previo a la obtención de título de 

 Magister en Ciencia de Datos y máquinas de aprendizaje con mención en Inteligencia Artificial 

AUTOR/ES: 

Encalada Hidalgo Edwin Ismael 

Chávez Guerrero Guillermo David 

Marchán Salgado Francisco Xavier 

Nieto Trujillo María Fernanda 

Paredes Cabrera Josselyn Rosario 

TUTOR/ES:  

Karla Estefanía Mora Cajas 

Fernanda Paulina Vizcaíno Imacaña 

Diseño de una aplicación web para detección temprana de 
fraude de pagos en línea en el sector bancario, utilizando 

técnicas de aprendizaje automático explicable 

Quito - Ecuador 

Septiembre – 2025 







iv 
 
 
 

 
 

QUITO – ECUADOR | 2024 

Aprobación de dirección y coordinación del programa 

Nosotros, Ing. Alejandro Cortés Director EIG y Mgtr. Karla Mora Coordinadora 

UIDE, declaramos que: (Encalada Hidalgo Edwin Ismael, Chávez Guerrero Guillermo David, 

Marchán Salgado Francisco Xavier, Nieto Trujillo María Fernanda, Paredes Cabrera 

Josselyn Rosario) son los autores exclusivos de la presente investigación y que ésta es original, 

auténtica y personal de ellos. 

 

 

 

 

 

 

  

 
----------------------------------------------- 

Alejandro Cortés 
Director de la  

Maestría en Ciencia de datos y máquinas 
de aprendizaje con mención en 

Inteligencia Artificial 

---------------------------------------------- 
Karla Mora 

Coordinadora de la                                                
Maestría en Ciencia de datos y máquinas de 
aprendizaje con mención en Inteligencia 

Artificial 
 

 
 

 

 

  



v 
 
 
 

 
 

QUITO – ECUADOR | 2024 

DEDICATORIA 

 

A mis padres, Fernando y Rosario, por ser mi guía, mi fortaleza y mi luz en cada paso. A 

mi perrita Nala, que con su compañía y desvelos llenó mis noches de ternura. Y a mi novio 

Marcos, por su apoyo constante y por creer siempre en mí. Este logro es de ustedes, con todo mi 

cariño. 

Josselyn Rosario Paredes Cabrera 

 

A mis padres, Ximena y Jorge, por ser mi fuerza en cada paso y un ejemplo a seguir. A mis 

hermanos, Álvaro y Emilio, por recordarme que nunca camino sola. Y a mi Zoé, mi amor de 

cuatro patas, que con su compañía incondicional hizo más ligeros los días difíciles. Este logro 

también es de ustedes. 

María Fernanda Nieto Trujillo 

 

Dedico este trabajo a mi madre, quien desde siempre me ha enseñado el valor del esfuerzo, 

la perseverancia y la importancia de nunca rendirme. A mi hermana, por ser un pilar constante en 

mi vida y brindarme su apoyo incondicional en cada etapa. A mi novia, cuya motivación, cariño y 

compañía hicieron de este camino un proceso más ligero y significativo. Y a mi tía, que, aunque 

hoy se encuentra en el cielo, continúa guiando mis pasos y dándome fuerza a través de su 

recuerdo. A todos ustedes, mi profundo agradecimiento. 

Guillermo David Chávez Guerrero 

 



vi 
 
 
 

 
 

QUITO – ECUADOR | 2024 

Dedico este logro a mis padres. A mi madre, por su presencia constante, por acompañarme 

en cada decisión y ser siempre un pilar de apoyo incondicional. A mi padre, por motivarme a 

perseguir mis metas y confiar en mis capacidades. 

Agradezco profundamente a mis amigas Mafer y Josselyn; su compañía hizo que el camino de la 

maestría fuera más llevadero y menos agotador. A Álvaro, mi amigo más antiguo, cuya ayuda 

oportuna fue un verdadero salvavidas en los momentos en que sentí que todo se complicaba. A 

Karen, por su ánimo permanente y su apoyo en cada etapa de este proceso; tus palabras de aliento 

hicieron que este camino fuera mucho menos difícil. A Cynthia, por mantenerse siempre pendiente 

de mí y por ser, a pesar del tiempo, una de mis más grandes amistades; gracias a ti estoy hoy aquí. 

A Aída, quien, aun sin dominar esta área de estudio, siempre mostró una energía admirable y una 

gran disposición para ayudarme, ofreciéndome perspectivas que enriquecieron mi proceso. 

A todos ustedes, gracias. Este logro también es suyo. Lo he conseguido y seguiré 

avanzando, con la esperanza de que se sientan orgullosos de mí. 

Ewdin Ismael Encalada Hidalgo 

 

Dedico este trabajo de maestría, con profundo amor y gratitud, a mi familia, quienes han 

sido el pilar fundamental en cada etapa de mi formación personal y profesional. 

A mi madre, María Elena Salgado, por su apoyo incondicional, su fortaleza, sus consejos y 

por creer en mí incluso en los momentos más difíciles. Su ejemplo de perseverancia ha sido una 

guía constante en este camino. 

A mi hermana, Daniela Marchán, por su compañía, comprensión y palabras de aliento, que 

siempre han sido un impulso para seguir adelante. 



vii 
 
 
 

 
 

QUITO – ECUADOR | 2024 

A mi padre, Freddy Marchán, por su esfuerzo, sacrificio y por inculcarme valores que han 

marcado mi vida. Su respaldo y confianza han sido fundamentales para alcanzar este logro. 

Este logro es también de ustedes. Gracias por ser mi mayor motivación y apoyo 

permanente. 

Francisco Xavier Marchán Salgado 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 
 
 

 
 

QUITO – ECUADOR | 2024 

AGRADECIMIENTOS 
 

Expreso mi gratitud a quienes hicieron posible la culminación de esta tesis. A mis 

compañeros, por el esfuerzo y la perseverancia compartida; a mi familia y amigos, por su 

paciencia, comprensión y constante ánimo; y a mis docentes, por cada enseñanza impartida. 

Gracias también a todas las personas que, de manera directa o indirecta, contribuyeron al 

desarrollo de este proyecto. 

Josselyn Rosario Paredes Cabrera 

 

Agradezco a la Universidad Internacional del Ecuador y a sus docentes por el 

conocimiento y la orientación recibidos a lo largo de este proceso. Extiendo también mi gratitud a 

mis compañeros, cuyo apoyo y compañía hicieron más enriquecedor este camino académico. 

María Fernanda Nieto Trujillo 

 

Quiero expresar mi sincero agradecimiento a las personas que hicieron posible la 

culminación de este trabajo. A mi madre, por su esfuerzo inagotable, su ejemplo diario y por 

enseñarme a enfrentar cada desafío con firmeza. A mi hermana, por su compañía, paciencia y 

apoyo permanente. A mi novia, por motivarme, creer en mí y ser un impulso fundamental en cada 

momento del proceso. Y a mi tía, cuya presencia espiritual continúa brindándome luz y fortaleza 

desde el cielo. A cada uno de ustedes, gracias por ser parte esencial de este logro. 

Guillermo David Chávez Guerrero 

 



ix 
 
 
 

 
 

QUITO – ECUADOR | 2024 

Expreso mi agradecimiento a mi madre, por su entrega constante, su ejemplo de fortaleza y 

las enseñanzas que han guiado mi camino. A mi padre, por su apoyo, confianza y por inculcarme 

valores que han sido fundamentales en mi formación personal y académica. Y a mi hermana, por 

su compañía, comprensión y respaldo incondicional a lo largo de todo este proceso. 

Francisco Xavier Marchán Salgado 

 

Expreso mi más sincero agradecimiento a mis padres por su apoyo incondicional, su 

paciencia y su constante motivación a lo largo de todo mi proceso académico, ya que su confianza 

y apoyo fueron fundamentales para alcanzar este objetivo. A mis amigos, gracias por su compañía, 

comprensión y palabras de aliento, que hicieron más llevadero este camino y aportaron equilibrio 

en los momentos de mayor exigencia. Finalmente, agradezco a todas las personas que, directa o 

indirectamente, contribuyeron a la culminación de este trabajo, brindando apoyo académico, 

emocional o motivacional. 

Edwin Ismael Encalada Hidalgo 

 

 

 

 

 

 

 



x 
 
 
 

 
 

QUITO – ECUADOR | 2024 

RESUMEN 

El fraude en pagos en línea constituye un problema relevante para el sector bancario, ya 

que implica el uso no autorizado de información financiera para realizar transacciones 

fraudulentas, generando pérdidas económicas y afectando la confianza de los usuarios en los 

servicios digitales. El crecimiento del comercio electrónico y de los sistemas de pago digitales ha 

incrementado la complejidad y frecuencia de estas prácticas, lo que exige la implementación de 

mecanismos avanzados de detección y prevención. 

El objetivo de este proyecto es desarrollar modelos predictivos de detección de fraude en 

pagos en línea mediante técnicas de minería de datos y aprendizaje automático. Para ello, se aplicó 

la metodología Ágil (Scrum y Kanban), incorporando etapas de preprocesamiento de datos, 

selección de variables relevantes, entrenamiento de modelos de aprendizaje supervisado y 

evaluación mediante métricas de clasificación. Adicionalmente, se emplearon técnicas de 

optimización y validación cruzada para mejorar el desempeño de los modelos y reducir el riesgo 

de sobreajuste. 

Como resultado, se implementó una aplicación web local que integra los modelos con 

mejor desempeño, permitiendo la identificación de transacciones fraudulentas y la visualización 

de métricas de evaluación. Los resultados obtenidos evidencian que el uso de modelos de 

aprendizaje automático constituye una herramienta eficaz de apoyo para fortalecer los procesos de 

control y prevención del fraude en el contexto de los pagos digitales bancarios. 

 

Palabras clave: fraude, pagos en línea, banca, minería de datos, aprendizaje automático 
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ABSTRACT 

  
Online payment fraud represents a significant challenge for the banking sector, as it 

involves the unauthorized use of financial information to conduct fraudulent transactions. This 

results in economic losses and undermines user trust in digital services. The growth of e-

commerce and digital payment systems has increased the complexity and frequency of these 

practices, making it necessary to implement advanced detection and prevention mechanisms. 

The objective of this project is to develop predictive models for online payment fraud 

detection using data mining and machine learning techniques. To this end, an Agile methodology 

(Scrum and Kanban) was applied, incorporating stages of data preprocessing, relevant feature 

selection, supervised learning model training, and evaluation through classification metrics. 

Additionally, optimization techniques and cross-validation were employed to improve model 

performance and reduce the risk of overfitting. 

As a result, a local web application was implemented that integrates the best-performing 

models, enabling the identification of fraudulent transactions and the visualization of evaluation 

metrics. The results obtained demonstrate that the use of machine learning models constitutes an 

effective support tool to strengthen fraud control and prevention processes in the context of digital 

banking payments. 

 

 

 

 

Keywords: fraud, online payments, banking, data mining, machine learning 
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CAPITULO 1 
1. INTRODUCCIÓN 

 
1.1 Definición del proyecto 

Se desarrollará una aplicación web denominada FraudOps Portal, orientada a la visualización y 

gestión de alertas de fraude en pagos en línea dentro de una entidad bancaria. El proyecto 

incorporará técnicas de aprendizaje automático y profundo para evaluar el riesgo de las 

transacciones y generar explicaciones interpretables para el personal técnico de las entidades 

bancarias.  

Se explorarán y evaluarán diversos algoritmos, seleccionando aquellos que logren el mejor 

equilibrio entre precisión y capacidad explicativa en la detección de fraude. Como valor 

diferenciador, el FraudOps Portal ofrecerá interfaces adaptadas a usuarios no técnicos mediante 

resúmenes ejecutivos y funcionalidades de informes descargables, con el propósito de fortalecer la 

toma de decisiones y contribuir a la estandarización de los procesos de control en el ámbito bancario. 

El conjunto de datos públicos "Bank Transaction Fraud Detection" de la plataforma Kaggle 

fue elegido para tratar el problema de detectar fraudes en las transacciones bancarias. Esta base de 

datos proporciona transacciones auténticas (anonimizadas), lo cual posibilita el uso de métodos de 

minería de datos y aprendizaje automático en circunstancias parecidas a un ambiente financiero 

verdadero. Al ser de acceso público, asegura la transparencia en términos de metodología, que se 

pueda comparar con estudios anteriores y que sea reproducible. Además, tiene retos específicos del 

fraude financiero (desequilibrio de clases, necesidad de ingeniería de variables, evaluación rigurosa) 

lo cual aumenta su valor académico. No obstante, como los datos son escasos y específicos en 

términos contextuales, los resultados se restringirán al ámbito de la colección de datos, sin intención 

de generalizar automáticamente a todas las entidades financieras. 
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1.2 Justificación e importancia del trabajo de investigación 
 

El crecimiento del comercio electrónico y los servicios financieros digitales ha incrementado 

exponencialmente el volumen de pagos en línea a nivel global.  

Las pérdidas ocasionadas por fraudes con tarjetas a nivel mundial alcanzaron los 33.500 

millones de dólares en 2022, lo que representa un incremento respecto a los 28.400 millones de 

2020 y a los 27.900 millones de 2018. (Nilson Report, 2023). De igual manera en Ecuador, cerca de 

un 22% de las entidades financieras expresan preocupación por el fraude a través de la web digital 

(Superintendencia de Economía Popular y Solidaria, 2021). 

De este modo, al utilizar métodos de aprendizaje automático con un enfoque explicativo no 

solo permite identificar patrones anómalos de las transacciones, sino también entender cómo se 

generan las alarmas del sistema, aspecto fundamental en entornos regulados como el financiero. 

En este contexto se propone una solución basada en un portal web enfocada en la detección 

temprana de fraude, que combina precisión con la interpretación. De esta manera, el proyecto busca 

garantizar un enfoque metodológico sólido que contribuya el fortalecimiento de los sistemas de 

seguridad en los pagos digitales, contribuyendo a la prevención de pérdidas económicas y a la 

confianza en los servicios financieros digitales.  

Si bien la literatura valida el uso general de árboles de decisión en la detección de fraudes, la 

elección específica del algoritmo CART (Classification and Regression Trees) para este proyecto 

se debe a tres razones técnicas principales que lo hacen superior a los métodos tradicionales como 

ID3 o C4.5 en el contexto bancario. 

La identificación de fraude requiere el manejo eficaz de variables numéricas, pues mucho 

depende de variables continuas como la cantidad de dinero en la transacción, el saldo de la cuenta 

o el tiempo que ha pasado. CART gestiona las variables continuas por medio de particiones 
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binarias, lo cual evita que se pierda información al discretizar montos financieros en intervalos 

arbitrarios; esto es diferente con ID3, que fue diseñado sobre todo para atributos categóricos. 

Asimismo, CART mejora la eficiencia computacional al utilizar el índice de Gini como criterio de 

impureza en vez de la entropía que C4.5 emplea; esto evita la necesidad de calcular logaritmos 

complejos y es más eficiente en términos computacionales, lo cual es una ventaja fundamental 

cuando se procesan enormes cantidades de transacciones históricas y permite un entrenamiento 

más rápido sin comprometer precisión al separar clases.  

En última instancia, la estructura estrictamente binaria del modelo lo hace más robusto porque 

previene que los datos se fragmenten en exceso, algo característico de algoritmos con varias 

divisiones. Además, al combinarse con mecanismos de poda, ayuda a reducir el sobreajuste, un 

problema común en modelos de detección de fraude según Afriyie et al. (2023). 

1.3 Alcance 

El proyecto incluye una generalización metodológica que se realiza a través de un portal 

modular, el cual utiliza técnicas de aprendizaje automático y análisis de datos para proponer un 

enfoque inicial para detectar y analizar el fraude. La arquitectura del sistema permanece abierta y 

se puede ampliar, lo que posibilita la inclusión de nuevos métodos, técnicas o algoritmos en etapas 

posteriores, conforme avanza lo académico y lo tecnológico. Además, se incluye la administración 

de las evidencias producidas por los modelos. Las imágenes y los resultados que aparecen en el 

portal son generados directamente a partir del código Python vinculado a cada modelo mediante 

scripts independientes encargados de producir las figuras y salidas pertinentes. El sistema, después 

de organizar estas evidencias, las utiliza como insumos para desarrollar, revisar y validar los 

informes analíticos. 

Una gestión integral del ciclo de vida de los reportes, que incluye las etapas DRAFT, 

IN_REVIEW, OBSERVED y APPROVED a través de un flujo de estados estructurado, es también 
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implementada por el sistema. Esto asegura el seguimiento y control durante la validación y 

análisis del proceso. Además, se incluye una administración de roles diferenciados: los 

administradores (ADMIN) son los encargados de configurar el sistema, gestionar usuarios y 

controlar accesos; los analistas (ANALYST) producen informes y conclusiones a partir de las 

evidencias que los modelos generan; los supervisores (SUPERVISOR) son responsables de 

revisar, observar y aprobar dichos informes; y los usuarios visualizadores (VIEWER) tienen 

acceso limitado únicamente a aquellos informes que han sido autorizados y a su exportación, por 

ejemplo en formato PDF, restringido exclusivamente a los analistas designados por la 

administración. 

Respecto al tratamiento y almacenamiento de datos, el proyecto utiliza una base de datos 

SQLite para gestionar usuarios, asignaciones y reportes con un resguardo local. Se incluyen 

validaciones que garantizan la integridad y la consistencia de los datos. En última instancia, el 

sistema fue creado con criterios de flexibilidad y escalabilidad a nivel estructural, mediante una 

arquitectura modular que posibilita su desarrollo futuro sin afectar la estabilidad del portal. 

En lo que se refiere a las limitaciones y los alcances, el proyecto no incluye la implementación 

en un ambiente productivo real, puesto que su uso queda restringido a un entorno local de pruebas 

con propósitos académicos y demostrativos. Asimismo, no se tiene en cuenta la integración con 

infraestructura corporativa avanzada, como los servicios de SSO (Single Sign-On), la supervisión 

constante, la alta disponibilidad o los procesos integrales de hardening. El mantenimiento o 

soporte en tiempo real tampoco se considera, ya que el objetivo primordial es crear un prototipo 

operativo enfocado en la demostración conceptual y el análisis. 
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1.4 Objetivos 

1.4.1 Objetivo general 

Diseñar un sistema de detección de transacciones fraudulentas en pagos en línea, basado en 

modelos de aprendizaje automático que utilicen datos históricos de operaciones financieras 

digitales, e integrarlo en un portal web que permita visualizar, explicar y gestionar los resultados de 

manera accesible, ofreciendo además informes descargables para públicos técnicos y no técnicos. 

1.4.2 Objetivos específicos 

1. Analizar datasets de transacciones financieras históricos que sean adecuados para entrenar 

los modelos de aprendizaje automático del portal web 

2. Entrenar distintos modelos de aprendizaje automático supervisados y no supervisados, 

evaluando su desempeño mediante métricas como precisión, recall, F1-Score, AUC-PR y 

tasa de falsos positivos, para obtener el mejor modelo.  

3. Desarrollar un portal web interactivo que permita a usuarios técnicos y no técnicos visualizar 

las predicciones, acceder a resúmenes ejecutivos, explorar explicaciones detalladas y 

generar informes descargables en formatos estándar. 
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CAPITULO 2 

2. REVISIÓN DE LITERATURA 

2.1 Estado del Arte 

Las soluciones desarrolladas con machine learning se posicionan como una herramienta 

clave para reducir los efectos económicos y sociales que genera el fraude. La literatura revisada 

indica que algoritmos como Random Forest, Gradient Boosting y las redes neuronales alcanzan 

niveles de precisión más altos, especialmente en operaciones digitales y pagos con tarjetas. No 

obstante, su rendimiento está condicionado por la calidad de los datos disponibles y por la 

capacidad de los modelos para ajustarse a nuevas formas de fraude. 

En un estudio de Afriyie et al. (2023), se evaluó el árbol de decisión junto con regresión 

logística y Random Forest para detectar fraude con tarjetas de crédito. El árbol logró una precisión 

del 92 % y un AUC del 94,5 %, aunque los autores mencionan el riesgo de sobreajuste. El modelo 

con mejor rendimiento fue Random Forest (96 % de precisión, 98,9 % AUC), por lo que se 

recomienda como la mejor alternativa en este contexto. Este estudio muestra que, aunque los árboles 

simples siguen siendo útiles, los modelos adecuados pueden mejorar significativamente las tareas 

de detección de fraude (Afriyie, et al., 2023). 

Según Ali etௗal. (2022), en la investigación de “Financial Fraud Detection Based on Machine 

Learning: A Systematic Literature Review”, los árboles de decisión son una técnica ampliamente 

usada en la detección de fraude financiero, apareciendo en muchos estudios revisados en su análisis 

sistemático. En casos como los de Devi & Kavitha o en estudios sobre fraude de seguros, los árboles 

obtienen una alta precisión o incluso superan otros métodos clásicos. Sin embargo, dichos estudios 

también sufren problemas importantes de desbalance de clases, lo que puede limitar la 

generalización del modelo si no se aplican estrategias adecuadas de balanceo (Ali, et al., 2022). 
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Los autores Flondor, Donath y Neamțu (2024) desarrollaron un modelo para la detección de 

fraude en tarjetas bancarias utilizando un árbol de decisión, entrenado con datos reales de 

transacciones. El estudio demostró que este enfoque permite identificar patrones anómalos de 

manera efectiva, lo que lo hace útil para el monitoreo preventivo en entornos bancarios. Aunque no 

se reportan métricas detalladas como AUC o F1, los resultados sugieren que los árboles de decisión 

son una herramienta viable para la detección de fraude en tiempo real (Flondor, Donath, & Neamtu, 

2024). 

Salunke, Phalke y Madavi et al. (2025) desarrollaron un modelo híbrido para la detección de 

fraude con tarjetas bancarias que combina regresión logística, árbol de decisión y Random Forest. 

El árbol de decisión como algoritmo individual logró una precisión cercana al 77% y 

aproximadamente un 83% de recall, mientras que el modelo combinado logró una precisión del 99% 

y más del 98% tanto en precisión como en recall. Estos resultados muestran que los árboles de 

decisión son eficaces para identificar patrones de fraude y que la combinación con otros algoritmos 

mejora significativamente el rendimiento, lo que demuestra el potencial de los enfoques híbridos 

para la detección temprana del fraude en el entorno financiero (Salunke, Phalke, Madavi, Kumre, & 

Bobhate, 2025) 

La selección de XGBoost para detectar fraudes en pagos en línea se apoya en varias propiedades 

esenciales. Primero, su habilidad para aprender interacciones complejas entre variables es 

particularmente apropiada en situaciones donde el fraude se presenta mediante combinaciones no 

triviales de atributos, como la ubicación, el historial del usuario, el monto de la transacción y el 

dispositivo. Esto ocurre sin que sea necesario definir explícitamente dichas interacciones. Además, 

XGBoost muestra una gran solidez en relación a datos estructurados que contienen un elevado 

número de variables, lo cual es común en los sistemas de pago por Internet que producen muchos 
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atributos transaccionales, temporales, geográficos y de comportamiento. Esto mejora su rendimiento 

en situaciones con alta dimensionalidad. 

Su capacidad para gestionar clases desbalanceadas es otro aspecto importante, en particular 

cuando se trata de detectar fraudes, donde las transacciones fraudulentas constituyen una pequeña 

parte del total. XGBoost posibilita la modificación de pesos para la clase minoritaria y su adaptación 

a esquemas de muestreo, lo que simplifica la identificación eficaz de eventos poco comunes. Su 

eficiencia computacional y su capacidad de escalar se añaden a lo anterior, pues el algoritmo está 

optimizado para ambientes con grandes volúmenes de datos y permite la paralelización. Esto lo 

vuelve apropiado para sistemas que necesitan evaluaciones de riesgo en tiempo real o casi real. 

Su uso está respaldado por la evidencia en la literatura reciente desde un punto de vista empírico: 

Hajek et al. (2022) llevaron a cabo la validación de un marco basado en XGBoost sobre más de seis 

millones de transacciones móviles e indicaron que este modelo tuvo un mejor rendimiento que los 

métodos tradicionales, tanto en cuanto a métricas estándar como en reducción de costos. Por su 

parte, Shi (2024) demostró que, en escenarios con tarjetas de crédito muy desbalanceados, el 

XGBoost fue superior a una red neuronal artificial para identificar la clase minoritaria. Por último, 

a pesar de que los modelos de boosting son más difíciles de interpretar que un árbol de decisión 

simple, XGBoost proporciona una interpretación razonable a través de herramientas como SHAP, 

que posibilitan calcular la aportación de cada variable a la predicción de fraude. Este es un factor 

fundamental para cumplir con las exigencias regulatorias y generar confianza en sistemas críticos, 

como han indicado Almalki y Masud (2025). 

En conjunto, estos factores hacen que XGBoost sea una opción sólida para la detección de fraude 

en pagos en línea, por su capacidad técnica, su adaptabilidad al entorno de datos desbalanceados, y 

sus resultados verificables en la literatura. 
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Las redes neuronales artificiales (ANN) han demostrado ser uno de los métodos más eficaces 

para detectar fraudes, gracias a su habilidad para reconocer patrones no lineales y complejos en 

grandes cantidades de información. Las ANN, a diferencia de los modelos tradicionales basados en 

reglas, posibilitan la detección de relaciones subyacentes y delicadas que suelen ser propias del 

comportamiento fraudulento (Bhattacharyya, Data mining for credit card fraud: A comparative 

study. Decision Support Systems, 50(3), 2011) Esta habilidad es particularmente importante 

teniendo en cuenta que el fraude no sigue patrones sencillos o fijos. 

Las redes neuronales pueden adaptarse con facilidad y aprender de manera constante, lo que 

les permite renovarse a medida que se desarrollan nuevas estrategias fraudulentas. Esto es esencial 

en contextos cambiantes donde los estafadores alteran sus tácticas de manera continua (West, 2016). 

En este sentido, las ANN tienen un beneficio importante en comparación con los métodos estáticos, 

cuya eficiencia se reduce a medida que pasa el tiempo. 

Varios estudios han evidenciado, además, que las redes neuronales logran niveles de exactitud más 

altos y tasas de falsos negativos y positivos más bajos en comparación con enfoques tradicionales 

como los árboles de decisión o las regresiones (Carcillo F. L., 2019). Esto mejora la confiabilidad 

del sistema y disminuye las interrupciones no necesarias en operaciones legítimas. 

Según James, Witten, Hastie / Tibshirani (James, Witten, Hastie, & Tibshirani, 2013), el 

proceso de aprendizaje estadístico se centra en estimar la función $f$ que describe la relación entre 

las variables predictoras y la variable respuesta. Para lograrlo, la mayoría de los algoritmos reducen 

el problema de aprendizaje a la tarea de calcular un conjunto de valores intrínsecos llamados 

parámetros.  

Una vez que se haya encontrado un modelo funcional, se debe realizar un entrenamiento 

que utilice datos observados para estimar estos parámetros donde matemáticamente, este proceso 

tiene como objetivo encontrar valores específicos (en su mayoría son 𝛽 o 𝜃) que mejor se ajusten 
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al modelo a los datos de entrenamiento y al mismo tiempo minimicen los errores (James, Witten, 

Hastie, & Tibshirani, 2013). 

Por lo tanto, un parámetro se define como cualquier coeficiente, peso o elemento 

estructural que un algoritmo aprende o calcula automáticamente durante la fase de entrenamiento. 

Estos valores no los determina el investigador, sino que son el resultado directo de la optimización 

matemática del modelo del conjunto de datos (James, Witten, Hastie, & Tibshirani, 2013). 

Los hiperparámetros también conocidos como parámetros de ajuste, son configuraciones 

externas al proceso de aprendizaje automático. Según (James, Witten, Hastie, & Tibshirani, 2013), 

estos valores son cruciales para regular el comportamiento del modelo porque controlan 

directamente el equilibrio entre complejidad y capacidad de generalización.  

Los autores señalan la importancia de estos valores cuando se habla del equilibrio entre 

sesgo y varianza. Mientras que los parámetros intrínsecos intentan ajustar los datos, los 

hiperparámetros actúan como restricciones que evitan al modelo volverse complejo y que no 

memorice el ruido de los datos de entrenamiento (sobreajuste). 

 

Tabla 1 

Parámetros e hiperparámetros de Modelos  

   Parámetro Definición Impacto y Uso 

Árbol de 
decisión 

  criterion Función para medir la calidad 
de la división. 

Se puede usar Gini o Entropy y 
determina cómo el árbol debe separar 
los datos. 

   max_depth Es la profundidad máxima a 
la que puede llegar el árbol. 

• None: El árbol crece hasta que las 
hojas sean puras pero existe un alto 
riesgo de overfitting. 

• Usar valores numéricos haciendo al 
modelo más simple y generalizable. 
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   min_samples
_split 

Número mínimo de muestras 
para dividir un nodo interno. 

Suaviza el modelo si el valor 
aumenta se evita que el árbol cree 
ramas para pocos datos. 

   min_samples
_leaf 

Número mínimo de muestras 
por nodo hoja 

Aumentar el valor permite reducir el 
ruido y el sobreajuste. 

   max_feature
s 

El número de características 
que se deben considerar para 
buscar la mejor división. 

Añade aleatoriedad haciendo que el 
árbol sea robusto y menos 
correlacionado con solo una variable 
dominante. 

   class_weight Son pesos asociados a las 
clases. 

Funcional para datos 
desbalanceados. 

 
 
 

 

  ccp_alpha Parámetro de costo-
complejidad. 

Se usa para podar el árbol final 
obtenido donde un valor mayor que 0 
simplifica el árbol. 
 

XGBoost   n_estimators Número de árboles de 
decisión que conforman el 
modelo. 

Un mayor número de árboles permite 
capturar patrones complejos. En 
combinación con una tasa de 
aprendizaje baja, mejora la capacidad 
de generalización, aunque 
incrementa el tiempo de 
entrenamiento. 

   max_depth Profundidad máxima 
permitida para cada árbol. 

Controla la complejidad del modelo. 
Valores altos pueden generar 
sobreajuste, mientras que valores 
moderados, como el utilizado, 
permiten capturar interacciones 
relevantes sin perder generalización. 

   learning_rat
e 

Peso o contribución de cada 
árbol al modelo final. 

Valores bajos producen un 
aprendizaje más gradual y estable, 
reduciendo el riesgo de sobreajuste. 
Requiere un mayor número de 
árboles para alcanzar un buen 
desempeño. 

   subsample Proporción de observaciones 
utilizadas para entrenar cada 
árbol. 

Introduce aleatoriedad en el 
entrenamiento, reduce la varianza del 
modelo y mejora su robustez frente a 
ruido y valores atípicos. 

   colsample_b
ytree 

Proporción de variables 
consideradas en cada árbol. 

Evita que el modelo dependa 
excesivamente de un subconjunto 
reducido de variables y mejora la 
estabilidad del modelo. 

   objective Función objetivo que define 
el tipo de problema a 
resolver. 

Al utilizar binary:logistic, el modelo 
se adapta a problemas de 
clasificación binaria y produce 
probabilidades asociadas a la clase 
fraudulenta. 

   eval_metric Métrica utilizada 
internamente para evaluar el 

La función logloss penaliza 
predicciones incorrectas con alta 
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desempeño durante el 
entrenamiento. 

confianza, lo que mejora la calidad 
de las probabilidades estimadas. 

   scale_pos_w
eight 

Peso asignado a la clase 
minoritaria. 

Permite manejar el fuerte desbalance 
entre transacciones fraudulentas y 
legítimas, aumentando la 
sensibilidad del modelo para detectar 
fraudes. 

   random_stat
e 

Semilla aleatoria utilizada en 
el entrenamiento. 

Garantiza la reproducibilidad de los 
resultados y la consistencia en 
ejecuciones repetidas. 

   tree_method Método utilizado para 
construir los árboles de 
decisión. 

El método hist optimiza el uso de 
memoria y reduce el tiempo de 
entrenamiento, siendo especialmente 
adecuado para grandes volúmenes de 
datos. 

Rando
m 
Forest 

  n_estimators Número de árboles de 
decisión que componen el 
bosque 

Un mayor número de árboles reduce 
la varianza del modelo y mejora la 
estabilidad de las predicciones. Sin 
embargo, incrementa el costo 
computacional. En este estudio se 
utilizaron valores de 15 y 30 árboles 
para analizar el equilibrio entre 
desempeño y eficiencia. 

   criterion Función utilizada para medir 
la calidad de una división en 
cada nodo del árbol. 

Se empleó el criterio Gini, el cual 
mide la impureza de los nodos. Este 
criterio es eficiente 
computacionalmente y adecuado 
para grandes volúmenes de datos, 
permitiendo separar eficazmente 
transacciones fraudulentas y no 
fraudulentas. 

   max_depth Profundidad máxima que 
puede alcanzar cada árbol del 
bosque 

Limitar la profundidad evita que los 
árboles crezcan excesivamente y 
memoricen el ruido de los datos de 
entrenamiento, reduciendo el 
sobreajuste. Un valor controlado 
favorece la generalización del 
modelo. 

   min_samples
_split 

Número mínimo de muestras 
necesarias para dividir un 
nodo interno 

Valores mayores suavizan el modelo, 
evitando divisiones basadas en pocos 
registros. Esto es especialmente 
importante en detección de fraude, 
donde existen transacciones atípicas 
poco frecuentes 

   min_samples
_leaf 

Número mínimo de muestras 
requeridas en un nodo hoja. 

Incrementar este valor reduce el 
riesgo de sobreajuste y mejora la 
robustez del modelo, evitando hojas 
con muy pocas observaciones que 
podrían representar ruido. 

   max_feature
s 

Número máximo de 
características consideradas 
al buscar la mejor división en 
cada nodo 

Introduce aleatoriedad en el proceso 
de construcción de los árboles, 
reduciendo la correlación entre ellos. 
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Esto hace que el bosque sea más 
robusto y generalizable. 

   class_weight Ponderación asignada a cada 
clase durante el 
entrenamiento 

Se utilizó balanced para compensar 
el fuerte desbalance entre 
transacciones fraudulentas y no 
fraudulentas, penalizando más los 
errores en la clase minoritaria 
(fraude) 

   bootstrap Indica si se utilizan muestras 
con reemplazo para entrenar 
cada árbol. 

El muestreo bootstrap permite 
entrenar cada árbol con subconjuntos 
distintos de datos, incrementando la 
diversidad del bosque y mejorando 
su capacidad de generalización 

   random_stat
e 

Semilla utilizada para la 
generación de números 
aleatorio 

Garantiza la reproducibilidad de los 
resultados, aspecto fundamental en 
un trabajo de investigación 
académica. 

   threshold Valor de probabilidad a partir 
del cual una transacción se 
clasifica como fraude 

Se ajustó el umbral para maximizar 
el F1-score, permitiendo un mejor 
equilibrio entre precisión y recall. 
Este ajuste es clave en contextos 
bancarios donde los falsos negativos 
tienen alto costo. 

Redes  
Neuron

ales 

  units (Capas 
Densas) 

Cantidad de neuronas 
artificiales en cada capa 
oculta de la red. 

Se definió una arquitectura de 64 y 
32 neuronas para permitir que el 
modelo capture patrones complejos y 
características abstractas de los datos 
sin incrementar excesivamente el 
costo computacional. 

   activation='r
elu' 

Función de activación 
Rectified Linear Unit 
aplicada en las capas ocultas. 

Introduce no-linealidad en el modelo, 
lo que es crucial para aprender 
fronteras de decisión complejas que 
no pueden ser separadas por líneas 
rectas. 

   activation='s
igmoid' 

Función de activación no 
lineal que acota la salida 
entre 0 y 1 

Al utilizarse en la capa de salida, 
transforma el resultado final en una 
probabilidad interpretable de 
pertenencia a la clase "Fraude". 

   dropout_rat
e 

Porcentaje de neuronas que 
se desactivan aleatoriamente 
durante cada paso del 
entrenamiento. 

Funciona como regularizador (con 
tasas de 0.3 y 0.2), reduciendo la 
dependencia entre neuronas y 
evitando el sobreajuste (overfitting) 
para mejorar la generalización. 

   optimizer='a
dam' 

Algoritmo de optimización 
estocástica basado en 
estimación de momentos 
adaptativos. 

Ajusta automáticamente la tasa de 
aprendizaje para cada parámetro, 
permitiendo una convergencia más 
rápida y eficiente que el descenso de 
gradiente tradicional. 
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   loss='binary
_crossentrop
y' 

Función de pérdida que 
calcula la entropía cruzada 
entre las etiquetas reales y las 
predicciones. 

Es la función objetivo estándar para 
clasificación binaria; penaliza 
logarítmicamente las predicciones 
incorrectas, guiando al modelo a 
distinguir mejor entre clases. 

   batch_size Número de muestras de 
entrenamiento procesadas 
antes de actualizar los pesos 
del modelo. 

Un tamaño de 64 proporciona un 
equilibrio entre la estabilidad de la 
convergencia del gradiente y la 
velocidad de entrenamiento en 
memoria. 

   epochs (con 
EarlyStoppi
ng) 

Número máximo de 
iteraciones completas sobre el 
set de datos. 

Se configuran 30 épocas pero con 
Early Stopping para detener el 
entrenamiento automáticamente si la 
pérdida de validación no mejora, 
garantizando el modelo óptimo. 

 

Nota: Los hiperparámetros presentados en esta tabla fueron seleccionados a partir de pruebas preliminares y 

recomendaciones de la literatura, con el objetivo de optimizar el desempeño del modelo y mitigar el 

sobreajuste 

Fuente: Elaboración Propia 

2.2 Marco Teórico 

2.2.1 Comercio electrónico y pagos digitales 

El avance de la tecnología ha impulsado en gran medida el desarrollo de los mercados de 

telecomunicaciones al igual que la inversión en infraestructura digital, dando lugar a un entorno 

comercial cada vez más integrado y globalizado, en el que las transacciones económicas pueden 

realizarse en cualquier parte del mundo. En este contexto nace el comercio electrónico como una 

modalidad que facilita el intercambio de bienes y servicios a través de Internet, eliminando las 

limitaciones de tiempo y espacio. A medida que la red se consolida como un medio esencial para 

la interacción económica, el comercio electrónico ha dejado de ser una opción para convertirse en 

un elemento indispensable para la operación y competitividad de personas, empresas y regiones. 

Por lo cual, adoptar esta medida se ha vuelto un requisito para mantenerse vigente en los mercados 

actuales, mientras que su ausencia puede derivar en procesos de aislamiento y en una desventaja 

económica y social significativa (Gariboldi, 1999). 
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En esta línea, el planteamiento de Gariboldi (1999) contribuye a entender que la evolución 

tecnológica no solo dio origen al comercio electrónico como un nuevo espacio de intercambio, 

sino que también estableció los fundamentos necesarios para el desarrollo de sistemas de pago 

digitales que respaldan y hacen viable este modelo de transacciones.  

El comercio electrónico, también conocido como e-commerce, depende de manera directa 

de los pagos digitales, puesto que estos establecen el medio a través del cual se llevan a cabo las 

transacciones de compra y venta en Internet. En este sentido, ambos conceptos mantienen una 

relación estrecha y complementaria: mientras el comercio electrónico proporciona un entorno 

adecuado para la oferta y la demanda en línea, los pagos digitales contribuyen con los mecanismos 

necesarios para ejecutar dichas operaciones de forma segura, ágil y eficiente. Esta interacción ha 

favorecido la automatización de los procesos comerciales, la expansión hacia nuevos mercados y 

la consolidación de modelos de negocio basados en plataformas digitales. A pesar de esto, el 

crecimiento de estas prácticas digitales también ha dado lugar a nuevos desafíos, específicamente 

en lo referente a la protección de la información y la prevención del fraude en entornos virtuales 

(Gariboldi, 1999). 

2.2.1.1 Comercio Electrónico 

El comercio electrónico (e-commerce) se define como la realización de actividades 

comerciales y transacciones de bienes o servicios a través de plataformas digitales, en las que 

Internet constituye el medio principal de intercambio. Hoy en día, el comercio electrónico puede 

sustituir a las tiendas físicas y ha permitido reducir las barreras de entrada para diversos tipos de 

negocios minoristas. Este fenómeno implica más que una simple interacción entre comprador y 

vendedor; depende de una infraestructura digital que sustenta su funcionamiento. El comercio 

electrónico puede entenderse como una versión digital de la compra por catálogo enviada por 

correo, que en su momento revolucionó el comercio minorista (Bloomenthal, 2025). 
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De acuerdo con Gariboldi (1999), el comercio electrónico no se confina únicamente a las 

actividades de compra y venta, sino que también incluye los procesos de promoción, distribución 

y posventa, los cuales son gestionados mediante canales electrónicos. Actualmente, autores como 

Talafha (2024) extienden este concepto al definir el comercio electrónico como un ecosistema 

integral que, además de la interacción entre compradores y vendedores, incorpora la 

infraestructura tecnológica, los sistemas logísticos y los servicios de pago necesarios para hacer 

posible la transacción. 

El comercio electrónico ofrece diversas ventajas. En primer lugar, proporciona comodidad, 

ya que está disponible las 24 horas del día durante toda la semana, permitiendo que los 

consumidores realicen compras en el momento que les resulte conveniente y que las empresas 

generen ventas incluso fuera de su horario de atención. Además, brinda mayor variedad, pues las 

empresas pueden ofrecer un catálogo amplio e incluso productos exclusivos en línea, sin 

necesidad de exhibirlos físicamente. Otra ventaja es la posibilidad de comercializar a nivel 

internacional, ya que los clientes pueden acceder a los productos desde cualquier lugar del mundo. 

Asimismo, el comercio electrónico contribuye a reducir costos operativos, al disminuir la 

necesidad de espacios físicos, personal y otros gastos asociados. Finalmente, permite recopilar 

información valiosa sobre el comportamiento y las preferencias de los consumidores, lo que 

facilita la segmentación de mercado y la definición de públicos objetivos (Bloomenthal, 2025). 

La naturaleza del comercio electrónico se distingue por su alcance global, su operación 

continua y la eliminación de intermediarios físicos. Estos rasgos generan un entorno altamente 

competitivo, pero también expuesto a amenazas cibernéticas. La masificación del e-commerce ha 

aumentado el volumen de transacciones, creando un terreno propicio para ataques como phishing, 

robo de identidad y fraudes en los procesos de pago (Lokhande, 2025). 
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2.2.1.2 Pagos Digitales 

Los pagos digitales son mecanismos financieros que permiten enviar y recibir dinero sin 

usar efectivo, mediante herramientas como tarjetas, transferencias bancarias, billeteras digitales, 

códigos QR o criptomonedas (Ramayanti et al., 2024). Estos medios hacen que las transacciones 

sean más rápidas y sencillas, ayudan a reducir costos para las empresas y permiten llevar un mejor 

control de los movimientos financieros. Su importancia en la economía es clave, porque facilitan 

que más personas y negocios participen en el sistema financiero, impulsan la actividad comercial y 

apoyan el crecimiento de las empresas. Además, al hacer posible pagar y cobrar de forma segura y 

en cuestión de segundos, los pagos digitales contribuyen a dinamizar el comercio y el crecimiento 

económico. Un mayor uso de estos sistemas se relaciona con incrementos en el PIB, la generación 

de empleo y el aumento del consumo de bienes y servicios (Inter-American Development Bank, 

2022). 

En el contexto del comercio electrónico, los pagos digitales representan la última etapa del 

proceso de compra y, a su vez, la más crítica desde el punto de vista de la seguridad. Según 

Zuasnábar (2023), la confianza del consumidor en los métodos de pago digital es un factor 

determinante en la decisión de compra y en la continuidad del uso de plataformas en línea. No 

obstante, esa misma confianza puede verse afectada por la exposición a fraudes o por la 

percepción de riesgo ante el manejo de datos personales. 

2.2.1.3 Relación entre comercio electrónico, pagos digitales y fraude 

La interacción entre comercio electrónico y pagos digitales es esencial para entender la 

dinámica del fraude en línea. A medida que las transacciones digitales aumentan en volumen y 

complejidad, también lo hacen las oportunidades de ataque para los ciberdelincuentes. Lokhande 

(2025) señala que las modalidades más comunes incluyen el uso de tarjetas robadas, la creación de 

sitios web falsos y la manipulación de sistemas de pago. De manera similar, Ramayanti et al. 
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(2024) destacan que la rápida digitalización ha superado la capacidad de algunos marcos 

regulatorios para garantizar una protección efectiva, especialmente en economías emergentes. 

Por ello, la seguridad en los pagos digitales se ha convertido en un tema prioritario para 

gobiernos, instituciones financieras y empresas tecnológicas. El empleo de tecnologías como la 

autenticación multifactor, la encriptación avanzada y el análisis de comportamiento en tiempo real 

son actualmente estrategias claves para prevenir y detectar fraudes (Talafha, 2024). 

2.2.2 Evolución del comercio electrónico 

El comercio electrónico ha evolucionado de manera constante, impulsado por el desarrollo de 

tecnologías digitales, la expansión del acceso a Internet y la transformación de los hábitos de 

consumo. Inicialmente concebido como un canal complementario de ventas, el e-commerce se ha 

consolidado como un componente esencial de la economía global, influyendo directamente en los 

sistemas de pago, la logística y la seguridad de las transacciones. Esta evolución se vio acelerada 

de manera significativa durante la pandemia de COVID-19 en 2020, cuando miles de empresas a 

nivel global, en especial, en América Latina y el Caribe se vieron obligadas a digitalizar sus 

procesos para mantener su actividad comercial frente a las restricciones sanitarias. En este 

contexto, se incrementó el uso de pagos electrónicos, billeteras digitales y transferencias 

inmediatas, lo que permitió a los consumidores adquirir bienes y servicios sin necesidad de acudir 

físicamente a establecimientos comerciales. Además, gobiernos y entidades financieras 

fomentaron soluciones digitales para facilitar el acceso a los servicios financieros y continuar las 

operaciones económicas, lo que generó una adopción más amplia y sostenida de herramientas 

digitales más allá de la etapa de emergencia sanitaria. Como resultado, el comercio electrónico no 

solo creció en volumen, sino que se consolidó como una práctica cotidiana en la región, 

transformando de manera estructural la relación entre consumidores, empresas y mercados (Inter-

American Development Bank, 2022). 
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2.2.2.1 Orígenes del comercio electrónico 

Los orígenes del comercio electrónico pueden situarse en la década de 1970, periodo durante 

el cual se comenzaron a utilizar sistemas de intercambio electrónico de datos (EDI) entre empresas 

con la finalidad de automatizar procesos como las órdenes de compra y la facturación (Gariboldi, 

1999). Estas primeras aplicaciones dieron inicio a la digitalización de actividades comerciales, 

aunque su uso se encontraba restringido a entornos empresariales cerrados. 

En la década de 1990, con la expansión de Internet y la aparición del protocolo HTTP, el 

comercio electrónico comenzó a adoptar su forma moderna. Las primeras tiendas en línea, como 

Amazon y eBay, sentaron las bases de la compraventa digital a gran escala (Lokhande, 2025). Este 

período se caracterizó por el surgimiento de modelos B2C (empresa a consumidor) y B2B 

(empresa a empresa), acompañados por la introducción de pasarelas de pago y sistemas de 

seguridad básicos como el cifrado SSL. 

2.2.2.2 Expansión y Consolidación (2000-2010) 

Durante la primera década del siglo XXI, el comercio electrónico se consolidó como un canal 

de distribución global. La mejora en la conectividad, el desarrollo de plataformas de pago más 

seguras y la confianza del consumidor contribuyeron al crecimiento sostenido de las transacciones 

digitales. Según Talafha (2024), este periodo estuvo marcado por la expansión de los 

marketplaces, la integración con sistemas logísticos y la aparición de normativas internacionales 

para la protección de datos y la autenticación de pagos. 

Sin embargo, junto con su expansión surgieron los primeros desafíos relacionados con el 

fraude electrónico. El robo de información financiera, la suplantación de identidad y el uso de 

tarjetas falsas se convirtieron en amenazas recurrentes. Esto obligó a los proveedores a incorporar 

mecanismos de verificación más robustos, como la autenticación en dos pasos y los filtros de 

dirección IP (Ramayanti et al., 2024). 
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2.2.2.3 La era del comercio móvil y las plataformas digitales (2010–2020) 

La masificación de los teléfonos inteligentes y el desarrollo de aplicaciones móviles 

transformaron radicalmente la manera en que los consumidores realizan compras. Este fenómeno, 

conocido como m-commerce, permitió que las transacciones se efectuaran en cualquier momento 

y lugar, aumentando el volumen global del comercio electrónico. 

Según Zuasnábar (2023), en este periodo surgieron las billeteras digitales, los pagos con 

código QR y los sistemas integrados de checkout, que redujeron la fricción en la experiencia de 

compra. No obstante, el crecimiento del comercio móvil también generó un incremento de fraudes 

asociados al phishing, al malware financiero y a la ingeniería social. De ahí que la seguridad se 

convirtiera en un eje central en el diseño de plataformas y medios de pago 

2.2.2.4 Transformaciones recientes y tendencias actuales (2020 en adelante) 

En los últimos años, el comercio electrónico ha adquirido un papel aún más relevante debido a 

la pandemia de COVID-19, que aceleró la digitalización del consumo. Las empresas adoptaron 

rápidamente soluciones de pago sin contacto, plataformas omnicanales y herramientas de análisis 

de datos para personalizar la oferta. Según Lokhande (2025), esta etapa se caracteriza por la 

integración de inteligencia artificial, big data y blockchain para optimizar procesos, predecir 

comportamientos de compra y fortalecer la seguridad de las transacciones. 

De forma paralela, los gobiernos y organismos financieros han intensificado la regulación 

sobre los pagos digitales, buscando equilibrar la innovación con la protección de los 

consumidores. La evolución actual del e-commerce no sólo apunta a la eficiencia y la comodidad, 

sino también a la resiliencia frente a riesgos de fraude, suplantación y lavado de activos digitales 

(Ramayanti et al., 2024). 
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2.2.2.5 Perspectiva en el contexto de fraudes en línea 

La evolución del comercio electrónico ha ido acompañada de una evolución similar en las 

estrategias de fraude. Cada avance tecnológico y cada mejora en la experiencia de usuario han 

sido aprovechados también por los ciberdelincuentes para desarrollar técnicas más sofisticadas de 

ataque. Tal como menciona Talafha (2024), el reto actual no radica únicamente en facilitar el 

acceso al comercio digital, sino en garantizar que cada fase de la transacción desde la 

autenticación del usuario hasta la confirmación del pago se realice bajo estándares robustos de 

seguridad y trazabilidad. 

En este sentido, comprender la evolución histórica del e-commerce permite contextualizar la 

aparición de nuevas vulnerabilidades, así como la necesidad de políticas integrales que aborden 

simultáneamente la innovación tecnológica y la gestión de riesgos. 

2.2.2.6 Riesgos y vulnerabilidades en pagos en línea 

El crecimiento acelerado del comercio electrónico y de los sistemas de pago digital ha traído 

consigo una serie de riesgos y vulnerabilidades que amenazan la seguridad de las transacciones y 

la confianza de los usuarios. Estas amenazas se originan tanto en factores tecnológicos como 

brechas de seguridad o fallas en los protocolos de autenticación como en factores humanos, 

asociados a la ingeniería social o al uso inadecuado de las plataformas. Por ello, comprender los 

principales riesgos y vulnerabilidades resulta esencial para el análisis del fraude en pagos en línea. 

2.2.2.6.1 Naturaleza de los riesgos en pagos digitales 

Los pagos en línea implican el intercambio de información sensible, como datos personales, 

números de tarjeta, contraseñas o credenciales bancarias. Cuando esta información es interceptada 

o utilizada de manera indebida, se producen pérdidas financieras y deterioro de la confianza en el 

sistema. Según Talafha (2024), el riesgo en los pagos digitales puede definirse como la posibilidad 
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de que una transacción sea alterada, interceptada o falsificada por actores no autorizados, 

afectando la integridad, confidencialidad o disponibilidad del sistema. 

Los riesgos pueden clasificarse en tres grandes categorías: operativos, tecnológicos y 

conductuales. Los riesgos operativos se relacionan con errores humanos o fallas en los 

procedimientos internos; los tecnológicos derivan de vulnerabilidades del software o hardware; y 

los conductuales están vinculados al comportamiento del usuario, como el uso de contraseñas 

débiles o el acceso a sitios fraudulentos (Ramayanti et al., 2024). 

2.2.2.6.2 Principales vulnerabilidades técnicas 

El malware financiero, que implica la instalación de programas maliciosos en los dispositivos 

de los usuarios para capturar información sensible o manipular transacciones; las suplantaciones 

de identidad y el phishing, a través de los cuales los atacantes se hacen pasar por entidades 

confiables mediante correos electrónicos, mensajes de texto o sitios web falsos con el objetivo de 

obtener credenciales o datos de pago; y los ataques "Man in the Middle" (MitM), son algunas de 

las vulnerabilidades más frecuentes en sistemas de pago online, en los que se intercepta el tráfico 

entre el servidor y el cliente para alterar o sustraer la información transmitida; la clonación de 

tarjetas y el robo de credenciales, mediante métodos como keyloggers o aprovechamiento de bases 

de datos vulneradas; y, por último, las deficiencias en los sistemas de cifrado y autenticación, 

propios de sistemas que no emplean protocolos de seguridad sólidos como HTTPS o cifrado punto 

a punto, lo cual aumenta considerablemente la amenaza de fraude (Lokhande, 2025). 

De acuerdo con Zuasnábar (2023), estas vulnerabilidades no siempre se deben a deficiencias 

tecnológicas, sino a una combinación de errores humanos y falta de educación digital del 

consumidor. Por ejemplo, la mayoría de los ataques de phishing tienen éxito porque el usuario 

desconoce las señales básicas de suplantación o accede a enlaces no verificados. 
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2.2.2.6.3 Riesgos asociados al fraude electrónico 

El fraude en pagos en línea representa uno de los principales desafíos en la economía digital. 

Según Lokhande (2025), este tipo de fraude se produce cuando una persona o grupo utiliza 

información falsa o robada para realizar transacciones ilegítimas. Las modalidades más frecuentes 

incluyen el uso de tarjetas robadas, la creación de cuentas falsas, el reembolso fraudulento y el 

robo de identidad. 

Ramayanti et al. (2024) señalan que, a medida que se perfeccionan las medidas de seguridad, 

los delincuentes también desarrollan métodos más sofisticados, como el uso de inteligencia 

artificial para generar correos falsos o deepfakes con el fin de engañar a los sistemas de 

verificación. Esto genera un entorno dinámico donde la prevención requiere actualizaciones 

constantes de software y capacitación tanto para usuarios como para empresas. 

2.2.2.6.4 Impacto en la confianza y en la adopción de medios digitales 

La percepción de riesgo influye directamente en la adopción y continuidad del uso de los 

pagos digitales. Talafha (2024) destaca que, incluso si la frecuencia real de fraudes es baja, una 

experiencia negativa puede afectar de manera significativa la confianza del consumidor, 

disminuyendo la intención de uso de plataformas electrónicas. Por ello, la gestión de riesgos en 

pagos digitales no sólo tiene una dimensión técnica, sino también psicológica y reputacional. 

Zuasnábar (2023) agrega que la confianza del usuario se fortalece cuando las empresas 

implementan medidas visibles de seguridad como notificaciones de transacción, tokens dinámicos 

o autenticación biométrica, ya que estas prácticas refuerzan la sensación de control y 

transparencia. 

2.2.2.6.5 Estrategias de mitigación y retos actuales 

Frente a los riesgos antes mencionados, las estrategias más comunes de mitigación incluyen la 

implementación de autenticación multifactor, monitoreo en tiempo real de las transacciones, 
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encriptación avanzada de datos, y el uso de modelos predictivos basados en inteligencia artificial 

para detectar patrones anómalos (Talafha, 2024). 

El reto principal radica en equilibrar la usabilidad con la seguridad. Un sistema excesivamente 

rígido puede generar fricción en la experiencia de compra, mientras que uno demasiado flexible 

puede aumentar la exposición al fraude. Por tanto, la gestión de riesgos debe orientarse hacia un 

enfoque integral que combine tecnología, educación del usuario y regulación efectiva (Ramayanti 

et al., 2024). 

2.2.3 Fraude en transacciones financieras 

El fraude en transacciones financieras constituye una de las principales amenazas para la 

estabilidad y confianza en los sistemas de pago digitales. Su impacto se ha incrementado 

significativamente con el crecimiento del comercio electrónico y la digitalización de los servicios 

financieros, lo que ha abierto nuevas oportunidades para los ciberdelincuentes. En términos 

generales, este tipo de fraude puede entenderse como toda acción deliberada destinada a obtener un 

beneficio económico mediante el engaño, la manipulación o el uso indebido de información 

confidencial dentro de una operación financiera (Vanini et al., 2023). 

En el entorno digital, los fraudes suelen manifestarse a través de tácticas como la clonación de 

tarjetas, el acceso no autorizado a cuentas, la falsificación de identidades o el uso de datos personales 

robados. Estas prácticas se han vuelto más sofisticadas debido al uso de tecnologías avanzadas como 

la inteligencia artificial, el aprendizaje automático y la ingeniería social, que facilitan la 

automatización y personalización de los ataques (Fariha et al., 2025). De acuerdo con estudios 

recientes, la vulnerabilidad de los sistemas financieros digitales se debe, en gran parte, al incremento 

de las transacciones en tiempo real y a la dificultad de supervisar de forma manual operaciones 

masivas en plataformas globales (Singh, 2025). 
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Entre las modalidades más comunes de fraude en transacciones financieras destacan el 

phishing, las compras no autorizadas, el uso fraudulento de tarjetas y las transacciones reversadas 

intencionalmente. En el caso del phishing, el atacante engaña al usuario para obtener datos 

confidenciales, mientras que, en el fraude con tarjetas, el delincuente emplea información sustraída 

para realizar compras sin consentimiento del titular (Martínez Pazos et al., 2023).  

Asimismo, existen casos en los que empleados o proveedores autorizados manipulan 

sistemas internos para desviar fondos o alterar registros contables, lo que se conoce como fraude 

interno o colusión (The Payments Association, s.f.). 

Los factores que facilitan este tipo de delitos incluyen la falta de educación financiera de los 

usuarios, el uso de contraseñas débiles, la ausencia de controles de seguridad robustos y la 

insuficiente coordinación entre organismos reguladores. Además, el creciente uso de plataformas 

internacionales de pago y la interoperabilidad entre sistemas de diferentes países generan brechas 

normativas que los delincuentes pueden aprovechar (Singh, 2025). Por otro lado, la rápida evolución 

de las tecnologías financieras, si bien impulsa la innovación, también incrementa la superficie de 

ataque, especialmente cuando las medidas de seguridad no evolucionan al mismo ritmo (Vanini et 

al., 2023). 

Las consecuencias del fraude financiero son múltiples. A nivel económico, generan pérdidas 

significativas para consumidores, entidades financieras y comercios. Sin embargo, su impacto más 

profundo recae sobre la confianza del usuario en los canales digitales, afectando la adopción de los 

pagos en línea y el comercio electrónico (Fariha et al., 2025). A nivel institucional, los fraudes 

recurrentes deterioran la reputación de las empresas, aumentan los costos operativos y pueden 

derivar en sanciones legales o regulatorias (Martínez Pazos et al., 2023). 

Frente a estos riesgos, las estrategias más comunes de mitigación incluyen la 

implementación de autenticación multifactor, el monitoreo en tiempo real de las transacciones, la 
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encriptación avanzada de datos, y el uso de modelos predictivos basados en inteligencia artificial 

para detectar patrones anómalos (Talafha, 2024). Asimismo, la cooperación interinstitucional entre 

bancos, proveedores tecnológicos y autoridades regulatorias resulta esencial para fortalecer los 

mecanismos de detección y respuesta ante posibles fraudes (The Payments Association, s.f.). 

Finalmente, la educación del usuario sobre prácticas seguras, la adopción de tecnologías de 

tokenización y la evaluación de riesgo en cada transacción son medidas clave para reducir la 

exposición a estos delitos (Vanini et al., 2023). 

En síntesis, el fraude en transacciones financieras no solo constituye un desafío técnico, sino 

también social y regulatorio. Su prevención requiere un enfoque integral que combine herramientas 

tecnológicas avanzadas, políticas de seguridad coherentes y una cultura financiera orientada a la 

protección del usuario. 

2.2.3.1 Tipos de fraude en pagos digitales 

El crecimiento del comercio electrónico y la digitalización de los servicios financieros han 

impulsado un aumento considerable de los fraudes asociados a los pagos digitales. Estos delitos se 

presentan en diversas formas y con distintos niveles de complejidad, pero todos comparten un 

mismo objetivo: obtener beneficios económicos ilegítimos mediante la manipulación de sistemas 

de pago o la suplantación de identidades. Según estudios recientes, la diversificación de los 

métodos de pago como tarjetas, transferencias instantáneas, billeteras electrónicas y 

criptomonedasha generado nuevos espacios para la comisión de fraudes en entornos digitales 

(Singh, 2025). 

Uno de los tipos más comunes es el fraude con tarjeta de crédito o débito, donde los 

delincuentes obtienen información de las tarjetas mediante técnicas como skimming, phishing o 

brechas de seguridad en plataformas de pago. Posteriormente, esa información se utiliza para 

realizar compras o transferencias no autorizadas (Martínez Pazos et al., 2023). En algunos casos, 
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los defraudadores crean tarjetas clonadas o emplean los datos en sitios de comercio electrónico 

que no exigen verificación adicional, aprovechando la falta de autenticación multifactor (Talafha, 

2024). 

Otro tipo relevante es el fraude por suplantación de identidad, en el cual el delincuente se 

hace pasar por un usuario legítimo utilizando datos personales robados o falsificados. Este tipo de 

fraude suele ir acompañado de ataques de ingeniería social, como el phishing o el vishing, donde 

las víctimas son persuadidas para entregar voluntariamente sus credenciales o códigos de 

verificación (The Payments Association, s.f.). La sofisticación de estos ataques ha aumentado con 

el uso de inteligencia artificial y deepfakes, que permiten crear mensajes, voces o incluso rostros 

falsos con apariencia auténtica (Fariha et al., 2025). 

También destaca el fraude en comercio electrónico o “card-not-present” (CNP), que ocurre 

cuando una transacción se realiza sin la presencia física de la tarjeta, como en compras en línea. 

Este tipo de fraude representa una proporción significativa de las pérdidas globales en pagos 

digitales, debido a que resulta más difícil verificar la autenticidad del comprador (Vanini et al., 

2023). Las medidas de seguridad tradicionales, como la verificación del código CVV o la 

dirección de facturación, resultan insuficientes frente a delincuentes que disponen de datos 

completos de la víctima obtenidos mediante filtraciones o venta de información en la dark web 

(Singh, 2025). 

Por otra parte, se encuentra el fraude en transferencias electrónicas, donde los atacantes 

interceptan o manipulan los procesos de pago entre empresas o individuos. En este contexto, los 

fraudes de tipo Business Email Compromise (BEC) se han vuelto frecuentes: los delincuentes 

falsifican correos electrónicos corporativos para engañar a empleados y lograr que realicen 

transferencias hacia cuentas bajo su control (Talafha, 2024). Estas prácticas han ocasionado 
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pérdidas multimillonarias a nivel mundial y afectan tanto a empresas grandes como a pequeños 

comercios. 

En los últimos años ha emergido además el fraude en billeteras digitales y aplicaciones 

móviles, impulsado por la popularización de plataformas como PayPal, Apple Pay o Google Pay. 

Los atacantes aprovechan vulnerabilidades en la verificación de identidad o engañan a los usuarios 

para que autoricen pagos hacia cuentas fraudulentas. Este tipo de fraude suele combinar ingeniería 

social con manipulación de dispositivos móviles, lo que dificulta su rastreo (Fariha et al., 2025). 

Por último, el auge de las criptomonedas y los activos digitales ha dado origen al fraude en 

criptoactivos, caracterizado por esquemas de inversión falsos, robos de claves privadas o 

plataformas de intercambio fraudulentas. Estos fraudes aprovechan la descentralización y el 

anonimato del sistema para evadir controles tradicionales, dificultando la recuperación de fondos 

(Singh, 2025). A diferencia de los fraudes convencionales, aquí la falta de intermediarios 

financieros tradicionales reduce la capacidad de reacción ante una estafa o transacción ilícita. 

Frente a estos riesgos, la literatura académica destaca la importancia de combinar 

estrategias de prevención tecnológica como autenticación multifactor, tokenización y análisis de 

comportamiento con la educación financiera de los usuarios, a fin de reducir la exposición al 

fraude digital (Talafha, 2024). Además, la cooperación entre bancos, proveedores de tecnología y 

autoridades regulatorias es esencial para establecer protocolos uniformes que permitan detectar, 

denunciar y mitigar los distintos tipos de fraude en los pagos en línea (The Payments Association, 

s.f.). 

2.2.3.2 Impacto económico y social del fraude 

El desarrollo tecnológico en el sector bancario también trae consigo nuevos desafíos para la 

estabilidad y seguridad del sistema financiero. Entre ellos destaca el fraude digital, ya que los 

actores malintencionados están utilizando las herramientas de la digitalización para ejecutar 
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fraudes en línea con mayor alcance y frecuencia que en el pasado. Incluso con limitaciones y 

vacíos en los datos disponibles, la digitalización facilita que los estafadores operen con mayor 

rapidez y flexibilidad (Carter, 2025). 

De acuerdo con Oladele et al. (2025), en los últimos años el fraude financiero ha 

experimentado un crecimiento notable, generando un impacto económico considerable reflejado en 

pérdidas anuales que ascienden a miles de millones de dólares a nivel global. Este incremento no 

solo responde a la sofisticación de las técnicas de fraude, sino también a la mayor dependencia de 

los servicios financieros digitales.  

La evidencia internacional coincide con lo observado en el contexto ecuatoriano. El estudio de 

Maldonado Gudiño et al. (2024) muestra que, entre 2021 y 2023, los casos de fraude digital 

aumentaron de 2.400 a 3.000 incidentes anuales, lo que significó pérdidas económicas que 

alcanzaron los 10 millones de dólares en 2023 (p. 10). Además, del total de transacciones 

electrónicas realizadas en el país, el 8,08 % correspondió a transacciones fraudulentas, con un 

promedio mensual de 250 casos y pérdidas aproximadas de 833.333 dólares mensuales (p. 11). Estos 

datos evidencian que el fraude no constituye un fenómeno aislado, sino un problema estructural con 

repercusiones económicas sostenidas. 

Asimismo, distintos estudios señalan que las consecuencias del fraude financiero no solo 

recaen en las víctimas directas, como consumidores y entidades financieras, sino que también 

afectan al funcionamiento de la economía en su conjunto. Estos impactos indirectos se manifiestan 

en el aumento de los costos operativos, la necesidad de implementar sistemas de seguridad cada vez 

más sofisticados y la disminución de la confianza pública en los servicios financieros digitales 

(Oladele et al., 2025). En el caso ecuatoriano, la tendencia al alza en el uso de transacciones 

electrónicas que crecieron un 5,30 % entre 2022 y 2023 implica también un aumento en la 
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exposición al fraude y en los costos asociados a su mitigación (Maldonado Gudiño et al., 2024, p. 

9). 

En conjunto, esta evidencia demuestra que el fraude digital representa una carga económica 

significativa tanto a nivel global como nacional, afectando las finanzas de los usuarios, la estabilidad 

operativa de las entidades financieras y, en última instancia, la confianza en el ecosistema financiero 

digital. 

2.2.3.2.1 Impacto Social  

La dimensión social del fraude es igualmente crítica: además de las afectaciones económicas, 

los usuarios experimentan vulnerabilidad, desconfianza en la banca digital y procesos de exclusión 

financiera, tal como lo señalan diversos estudios que analizan la relación entre fraude y participación 

en servicios digitales (Ozili, 2024). Asimismo, el fraude deteriora la experiencia de uso de servicios 

electrónicos, debido a la percepción de inseguridad y al temor de los clientes de utilizar plataformas 

de pagos o banca en línea (Singh, 2025). Estos impactos, documentados ampliamente en diferentes 

contextos internacionales (Carter, 2025; Oladele et al., 2025), permiten establecer un marco de 

referencia comparativo para comprender cómo fenómenos similares pueden manifestarse en 

realidades específicas, como la del Ecuador, donde la digitalización de los pagos y la banca 

electrónica continúa en expansión y, con ello, aumentan también los riesgos asociados a actividades 

fraudulentas (Umoh, 2024; Singh, 2025). 

En el caso ecuatoriano, el estudio de Maldonado Gudiño et al. (2024) evidencia que el fraude 

financiero digital no solo afecta a las instituciones, sino que tiene repercusiones directas en la vida 

de los usuarios. El artículo señala que delitos como el phishing, el robo de identidad y las 

transacciones no autorizadas generan consecuencias graves para las víctimas, tales como daños a su 

historial crediticio, pérdida de control sobre su información personal y la necesidad de invertir 

tiempo y recursos para revertir los efectos del fraude (p. 5). Estas afectaciones no son únicamente 
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financieras: también implican un fuerte componente emocional y psicológico, traducido en miedo, 

desconfianza y resistencia a seguir utilizando servicios digitales. 

Además, la falta de conocimientos de ciberseguridad entre los usuarios ecuatorianos 

incrementa su vulnerabilidad social. El mismo estudio resalta la necesidad de campañas de 

capacitación y concientización que permitan a los usuarios identificar riesgos y adoptar prácticas 

seguras, con el objetivo de reducir la exposición a fraudes digitales (Maldonado Gudiño et al., 2024, 

p. 14). La importancia de estas acciones radica en que, sin una alfabetización digital adecuada, 

grupos vulnerables como adultos mayores, personas con baja educación financiera o con acceso 

limitado a tecnología, generan mayor riesgo de ser víctimas recurrentes. 

De esta manera, el impacto social del fraude digital en Ecuador se manifiesta en múltiples 

niveles: afecta la confianza, incrementa la sensación de inseguridad, limita la adopción de canales 

bancarios digitales y profundiza brechas sociales vinculadas a la educación tecnológica. Esta 

realidad, coherente con la evidencia internacional, subraya la necesidad de abordar el fraude no solo 

como un problema técnico o económico, sino también como un fenómeno que afecta directamente 

la vida cotidiana y el bienestar de los ciudadanos. 

2.2.3.3 Estrategias tradicionales de detección 

Históricamente, la detección del fraude en el sector financiero se ha apoyado en una serie de 

mecanismos tradicionales que anteceden al uso de algoritmos avanzados de aprendizaje automático. 

Estos métodos surgieron como respuestas iniciales para enfrentar modalidades de fraude 

relativamente estáticas, cuando la mayoría de las operaciones bancarias se realizaban de manera 

presencial o mediante canales digitales básicos. En el contexto ecuatoriano, diversas instituciones 

financieras han dependido principalmente de controles internos, validaciones manuales, revisiones 

documentales, procedimientos de debida diligencia (KYC) y monitoreo por parte de operadores 
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humanos para identificar comportamientos anómalos o transacciones sospechosas (Maldonado 

Gudiño et al., 2024). Estas estrategias, aunque fundamentales en su momento, estaban diseñadas 

para estructuras operativas mucho menos dinámicas que las actuales. 

La literatura internacional coincide en que las primeras aproximaciones para la detección de 

fraude se basaban en sistemas de reglas estáticas, umbrales de montos, listas negras y blancas, y 

modelos estadísticos tradicionales como análisis de outliers o puntuaciones basadas en desviaciones 

estándar (Bolton & Hand, 2002). Asimismo, muchos procesos dependían de la experiencia del 

personal encargado, quienes evaluaban de forma manual comportamientos inusuales o 

inconsistencias en la información proporcionada por los usuarios (Delamaire et al., 2009). En estos 

esquemas, una transacción era marcada como sospechosa únicamente si coincidía con un patrón 

previamente establecido, lo que volvía al sistema reactivo y limitado frente a nuevas modalidades 

de fraude. 

Un análisis más amplio presentado por Phua et al. (2010) señala que esta dependencia casi 

exclusiva de reglas definidas por expertos impedía que los sistemas tradicionales reconocieran 

patrones emergentes. En otras palabras, solo se detectaba el fraude ya conocido, mientras que las 

técnicas innovadoras pasaban desapercibidas. Esto resultaba especialmente problemático en un 

entorno donde los estafadores modifican constantemente sus estrategias. 

El estudio de Phiri et al. (2024) aporta una perspectiva contemporánea relevante, al mostrar 

que gran parte del fraude en línea actual se origina mediante técnicas como phishing, smishing o 

ingeniería social. Estos métodos no buscan vulnerar directamente la infraestructura bancaria, sino 

explotar la confianza del usuario y las debilidades de los procesos manuales de autenticación. El 

análisis de entrevistas a víctimas en Sudáfrica y España evidencia que los métodos tradicionales de 

verificación, basados en contraseñas, preguntas de seguridad o validaciones humanas, siguen siendo 
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insuficientes para prevenir este tipo de fraudes (Phiri et al., 2024, pp. 3–5). Además, los autores 

identifican la persistencia de “sistemas heredados” en ciertas entidades financieras, los cuales 

presentan limitaciones frente a amenazas dinámicas y sofisticadas (Phiri et al., 2024, p. 5). 

Estas observaciones coinciden con los hallazgos del estudio publicado en Scientific Reports, 

donde se detalla que los métodos tradicionales presentan alta tasa de falsos positivos, baja 

adaptabilidad, y dificultad para procesar grandes volúmenes de datos, características que 

comprometen su efectividad en escenarios digitales modernos (Zhao et al., 2025). Este trabajo 

subraya que los sistemas basados en reglas fijas son incapaces de ajustarse a modalidades nuevas 

de fraude, que pueden evolucionar en cuestión de horas. 

Por otra parte, la investigación de Phiri et al. (2024) también evidencia que el componente 

humano continúa siendo un punto crítico en la cadena de seguridad. La falta de capacitación, la 

sobrecarga operativa o la confianza indebida en comunicaciones fraudulentas contribuyen a que el 

fraude se concrete. Este tipo de vulnerabilidad humana, que los sistemas tradicionales no pueden 

mitigar completamente, representa un límite estructural de los métodos clásicos de detección. 

En conjunto, la evidencia internacional y regional indica que, si bien las estrategias 

tradicionales establecieron las bases de los sistemas antifraude, sus limitaciones son evidentes en un 

contexto digital caracterizado por altos volúmenes transaccionales, amenazas dinámicas y 

modalidades de fraude cada vez más complejas. Los controles manuales no escalan al ritmo de las 

transacciones en línea; los sistemas de reglas rígidas no identifican patrones emergentes; la 

experiencia humana no basta para analizar millones de operaciones diarias; y la autenticación 

tradicional es vulnerable a ataques de ingeniería social. Debido a ello, se reconoce ampliamente la 

necesidad de migrar hacia enfoques basados en análisis automatizado, modelos adaptativos y 
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técnicas modernas de aprendizaje automático, que permitan una detección temprana, eficiente y 

continua del fraude en entornos bancarios digitales. 

2.2.4 Aprendizaje automático en la detección de fraude 

El crecimiento acelerado de las transacciones digitales y la sofisticación de los mecanismos de 

fraude han impulsado la adopción de métodos de aprendizaje automático (Machine Learning, ML) 

como una herramienta fundamental para fortalecer los sistemas de detección temprana en 

instituciones financieras. A diferencia de los enfoques tradicionales, basados en reglas estáticas, 

listas negras o revisiones manuales, los modelos de ML son capaces de aprender patrones complejos, 

identificar relaciones no evidentes y adaptarse a nuevas modalidades de fraude con mayor rapidez 

(Ngai et al., 2011). Esta capacidad adaptativa resulta esencial en un entorno donde los atacantes 

modifican constantemente sus tácticas para evadir medidas de seguridad predefinidas. 

Diversos estudios coinciden en que el aprendizaje automático ha demostrado un rendimiento 

superior en la detección de fraude financiero debido a su habilidad para procesar grandes volúmenes 

de datos, analizar múltiples características simultáneamente y manejar la naturaleza altamente 

desbalanceada de los datasets de fraude, donde las transacciones fraudulentas representan una 

fracción mínima del total (Al-Hashedi & Magalingam, 2021). Para abordar este desbalance, los 

modelos suelen complementarse con técnicas como SMOTE, selección de características o métodos 

de penalización de costos, los cuales permiten mejorar la sensibilidad sin incrementar los falsos 

positivos (Dal Pozzolo et al., 2015). 

En la misma línea, Compagnino (2025) destaca que el ML se ha consolidado como un 

componente central en los sistemas modernos de prevención del fraude, particularmente por su 

flexibilidad y por su capacidad para generar predicciones en tiempo real. Según este autor, los 

algoritmos supervisados como: “Random Forest, Gradient Boosting, Support Vector Machines y 

Redes Neuronales Artificiales” han mostrado un desempeño sobresaliente al modelar patrones 
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transaccionales normales y comparar nuevas operaciones con comportamientos previos. Esto 

permite identificar desviaciones sutiles que serían prácticamente invisibles para los sistemas 

tradicionales. 

Una de las ventajas más significativas del aprendizaje automático es su capacidad para mejorar 

continuamente mediante el análisis de datos históricos y retroalimentación de casos confirmados. 

En estudios recientes, Wickramanayake et al. (2020) evidencian que modelos como XGBoost y 

Random Forest alcanzan altos niveles de precisión y recall en la detección de fraude en pagos en 

línea, gracias al uso de estructuras en conjunto (ensemble learning) que reducen el sobreajuste y 

mejoran la estabilidad del modelo. Estos modelos también permiten evaluar la importancia relativa 

de cada variable, aportando información valiosa sobre los factores de riesgo más críticos, aspecto 

especialmente relevante para instituciones que buscan estrategias preventivas más efectivas. 

Por otra parte, investigaciones recientes en el ámbito del deep learning han ampliado el alcance 

del ML hacia estructuras más complejas. Hernández Aros et al. (2024) explican que técnicas como 

redes neuronales profundas, autoencoders y LSTM pueden capturar patrones altamente no lineales 

y dependencias temporales en secuencias de transacciones, lo que resulta especialmente útil para 

detectar fraudes encadenados o conductas fraudulentas que evolucionan con el tiempo. Aunque estas 

arquitecturas suelen requerir mayor capacidad computacional y bases de datos más extensas, ofrecen 

ventajas significativas en escenarios donde la dinámica del fraude es rápida y difícil de modelar 

mediante métodos tradicionales o algoritmos lineales. 

Además, un estudio reciente publicado en Scientific Reports subraya que los modelos de ML 

no solo superan a los métodos tradicionales en rendimiento, sino también en capacidad de 

adaptación. Según Zhao et al. (2025), los algoritmos basados en aprendizaje automático pueden 

ajustar automáticamente sus parámetros a medida que cambian los patrones de comportamiento, lo 

cual reduce significativamente los falsos positivos y mejora la detección de fraudes novedosos. Este 
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aspecto es clave para la banca digital moderna, donde los ciberdelincuentes introducen variaciones 

en sus tácticas en intervalos de tiempo muy cortos. 

Reportes especializados como el Financial and Cyber Fraud Report 2024 de Grant Thornton 

resaltan que los sistemas basados en inteligencia artificial y aprendizaje automático se han 

convertido en el estándar de la industria, debido a la creciente complejidad de los ataques y al 

volumen exponencial de transacciones digitales. El informe enfatiza que la automatización y la 

analítica avanzada permiten identificar patrones que serían imperceptibles para analistas humanos 

y que resultan esenciales para evitar pérdidas económicas sustanciales (Grant Thornton, 2024). 

Finalmente, el aprendizaje automático representa un cambio de paradigma en la detección de 

fraude financiero, ofreciendo mecanismos más robustos, adaptativos y precisos que los enfoques 

tradicionales. Su capacidad para aprender, generalizar y anticiparse a nuevas tácticas delictivas lo 

convierte en una herramienta estratégica para instituciones que buscan fortalecer sus sistemas de 

seguridad y garantizar la confianza en los servicios de banca digital. 

2.2.4.1 Conceptos básicos de Machine Learning y Deep Learning 

El Machine Learning (ML) constituye una de las herramientas más relevantes dentro del campo 

de la detección automatizada de fraude financiero. Su premisa fundamental radica en que los 

modelos pueden aprender patrones directamente de los datos, sin necesidad de ser programados 

explícitamente para cada situación. En palabras de Jordan y Mitchell (2015), el ML permite que un 

algoritmo mejore su desempeño conforme aumenta la experiencia obtenida a partir de nuevos datos. 

Esta cualidad resulta especialmente pertinente en el entorno financiero, donde los esquemas de 

fraude evolucionan con rapidez y las reglas rígidas son incapaces de capturar patrones infinitamente 

variables. 
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Los modelos tradicionales de ML empleados en la detección de fraude incluyen algoritmos 

como “Árboles de Decisión, Support Vector Machines (SVM), Regresión Logística y Random 

Forest”, todos ellos diseñados para clasificar transacciones como normales o fraudulentas en función 

de características previamente observadas. Según Fu et al. (2025), estos modelos permiten 

identificar relaciones relevantes entre indicadores financieros, variables no financieras e incluso 

patrones textuales, lo que facilita una visión más amplia del comportamiento fraudulento. Además, 

el estudio destaca el papel de técnicas de preprocesamiento como Borderline-SMOTE, 

indispensable para tratar el desbalance severo entre transacciones legítimas y fraudulentas que 

constituye una característica muy común en los datasets financieros (pp. 980–982) . 

El aprendizaje automático puede dividirse principalmente en dos paradigmas: supervisado y 

no supervisado. En el aprendizaje supervisado, los modelos se entrenan con ejemplos etiquetados, 

lo que permite aprender una función que discrimine entre clases con base en patrones históricos.  

Esto facilita la clasificación de nuevas transacciones con base en comportamientos 

previamente observados. El aprendizaje no supervisado, en cambio, es ideal para detectar anomalías 

en escenarios donde el fraude no se encuentra completamente identificado o etiquetado. Modelos 

como One-Class SVM, estudiados por Fu et al. (2025), permiten encontrar desviaciones respecto 

del comportamiento normal, facilitando la detección de fraudes emergentes o sofisticados (pp. 983–

984)  

El Deep Learning (DL) representa una evolución del ML tradicional. Este enfoque emplea 

redes neuronales profundas, capaces de aprender representaciones complejas de los datos a través 

de múltiples capas. Una de sus principales ventajas es su capacidad para capturar relaciones 

altamente no lineales sin necesidad de una ingeniería intensiva de características. Hernández Aros 

et al. (2024) sostienen que el DL es especialmente eficaz en contextos de fraude donde los patrones 
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son dinámicos, temporales o difíciles de expresar mediante reglas simples. Dentro de las 

arquitecturas más destacadas se encuentran las Redes Neuronales Artificiales (ANN), las redes 

LSTM para secuencias temporales, y los Autoencoders, ampliamente utilizados para la detección 

de anomalías mediante reconstrucción (pp. 3–5) . 

Los autoencoders, específicamente, aprenden a comprimir las transacciones normales en un 

espacio latente y reconstruirlas con precisión. Cuando una transacción fraudulenta se introduce en 

el modelo, la reconstrucción presenta un error significativamente mayor, lo que permite identificar 

actividades sospechosas aun sin disponer de etiquetas. Este enfoque ha cobrado especial relevancia 

en la banca digital debido a la creciente complejidad y volumen de las transacciones en tiempo real 

(Hernández Aros et al., 2024). 

Por otra parte, Compagnino (2025) destaca que tanto ML como DL permiten desarrollar 

sistemas que mejoran continuamente, ya que pueden actualizarse con nuevos datos y adaptarse a 

modalidades cambiantes de fraude. Esto contrasta con los métodos tradicionales basados en reglas, 

que suelen quedar obsoletos ante nuevas estrategias criminales. Además, el autor señala que 

modelos como Random Forest, Gradient Boosting y diversas arquitecturas neuronales han mostrado 

un desempeño notable en la detección de patrones complejos en escenarios financieros (pp. 2–4). 

En suma, tanto el Machine Learning como el Deep Learning constituyen herramientas 

esenciales dentro de la prevención y detección temprana del fraude financiero. Los algoritmos 

supervisados y no supervisados permiten abordar distintos tipos de problemas partiendo desde la 

clasificación directa hasta la detección de anomalías; mientras que las redes profundas capturan 

relaciones sutiles y complejas. Estas características hacen que ML y DL superen ampliamente las 

limitaciones de los enfoques tradicionales, proporcionando mayor adaptabilidad, precisión y 

capacidad de respuesta ante un panorama delictivo en constante transformación. 
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2.2.4.2 Modelos supervisados aplicados a la detección de fraude 

I. Random Forest 

La detección de fraude en pagos digitales requiere modelos capaces de procesar grandes 

volúmenes de información, manejar desbalances extremos entre clases y captar relaciones no 

lineales entre variables. En este contexto, Random Forest (RF) se ha consolidado como uno de los 

algoritmos más eficaces y confiables dentro del aprendizaje automático aplicado al sector 

financiero. Su uso generalizado en transacciones electrónicas, banca digital y fraude con tarjetas de 

crédito se respalda tanto en evidencia internacional como en estudios realizados en Ecuador. 

A nivel global, la revisión sistemática de Compagnino et al. (2025) identifica a Random 

Forest como el modelo supervisado más utilizado para la detección de fraude financiero. Los 

autores señalan que RF alcanza frecuentemente precisiones superiores al 95 % y muestra mayor 

estabilidad y capacidad de generalización que algoritmos como SVM, k-NN, Árboles de Decisión 

simples y regresión logística. Esto se debe a su arquitectura basada en múltiples árboles 

entrenados sobre subconjuntos aleatorios de datos y características, lo que reduce el sobreajuste y 

permite capturar interacciones complejas entre atributos. 

La revisión de Hernández Aros et al. (2024), publicada en Humanities and Social Sciences 

Communications (Nature), confirma este panorama al ubicar a Random Forest entre los algoritmos 

más robustos y recurrentes en estudios de fraude bancario, crediticio y contable. El análisis destaca 

que RF mantiene un desempeño competitivo incluso cuando la clase fraudulenta representa menos 

del 1 % del total de transacciones, condición típica del fraude en pagos en línea. Además, los autores 

señalan que RF conserva altos niveles de recall, fundamentales para evitar falsos negativos, cuando 

se combina con técnicas de sobremuestreo o metodologías sensibles al costo. 

La evidencia nacional refuerza estos hallazgos. En la investigación desarrollada por Llerena 

(2024) en la USFQ, utilizando información financiera real de CACPECO, Random Forest obtuvo 
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el mejor desempeño entre los modelos evaluados. El algoritmo alcanzó un 𝑅ଶ = 0,94, superando 

ampliamente a la regresión logística (0.48), y presentando menor error cuadrático (MSE = 0.59) y 

menor error estándar (RMSE = 0.72). Estos resultados demuestran que RF es capaz de capturar 

patrones complejos en datos financieros reales, incluso cuando existe ruido, alta variabilidad y 

correlaciones entre atributos. 

Lituma Perero et al. (2024) desarrollaron un estudio enfocado en la detección de fraude en 

tarjetas de crédito que aporta evidencia clara sobre el buen desempeño del modelo Random Forest 

en este tipo de problemas. Para ello trabajaron con un conjunto de más de catorce mil transacciones 

y aplicaron un proceso de preparación bastante completo: limpiaron registros duplicados, 

construyeron nuevas variables a partir de fechas y categorías, identificaron las características más 

relevantes y trataron el desbalance del conjunto de datos mediante SMOTE. Con esta base 

entrenaron un Random Forest que ajustaron utilizando RandomizedSearchCV, obteniendo 

parámetros como 200 árboles, profundidad máxima de 12 y criterio entropy. Al evaluar el modelo 

con métricas habituales en clasificación accuracy, precisión, recall, F1 y AUC, el desempeño fue 

especialmente alto: un accuracy cercano al 98.8 %, un AUC de 0.97 y un número reducido de errores 

(20 falsos negativos y 15 falsos positivos). Además, mediante el análisis de interpretabilidad 

(SHAP) identificaron que variables como el monto, la hora de la transacción y la categoría del 

comercio influyen con mayor peso en la detección de fraude. En conjunto, el estudio muestra que 

Random Forest es un modelo sólido y confiable para manejar datos financieros complejos y apoyar 

la detección temprana de operaciones fraudulentas (Lituma Perero et al., 2024). 

DDesde la perspectiva técnica, Random Forest es particularmente apropiado para detectar 

fraudes en pagos en línea porque puede modelar las complejas relaciones no lineales que existen 

entre los patrones de conducta del usuario, el monto de la transacción, la geolocalización, el tipo 

de dispositivo y el canal de pago. Asimismo, exhibe una alta resistencia frente al ruido y a los 
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valores atípicos, cualidades comunes en datos transaccionales auténticos. El algoritmo tiene un 

buen desempeño en entornos de alta dimensionalidad, porque es capaz de manejar con eficacia un 

amplio volumen de variables, incluyendo las que se crean a través de procesos de ingeniería de 

características. En la construcción de los árboles, el muestreo aleatorio de las características y de 

los ejemplos disminuye el peligro del sobreajuste, aumentando así la habilidad del modelo para 

generalizar. En última instancia, Random Forest proporciona un nivel de interpretabilidad 

adecuado al calcular la importancia de las variables, lo cual es crucial en entornos financieros que 

exigen justificar las decisiones del modelo y observar regulaciones sobre transparencia y 

explicabilidad. 

Una ventaja adicional es que Random Forest se adapta de forma natural a estrategias para tratar 

el desbalance de clases, como SMOTE, submuestreo o ajuste de pesos. Esto permite aumentar la 

detección de la clase fraudulenta sin incrementar excesivamente los falsos positivos, un requisito 

esencial en sistemas de monitoreo automático de la banca. 

En conjunto, se muestra de manera consistente que Random Forest no solo es un modelo eficaz, 

sino también uno de los más equilibrados y confiables para sistemas de detección de fraude en pagos 

digitales. Su combinación de rendimiento, estabilidad, capacidad explicativa y adaptabilidad a 

escenarios reales lo convierte en una elección plenamente justificada para un portal web de 

detección temprana de fraude bancario. 

II. Árboles de Decisión 

De acuerdo con (Shah & Sharma, 2025), un árbol de decisión es un método de aprendizaje 

supervisado que se utiliza en el aprendizaje automático para predecir resultados a partir de 

características de entrada. Este se crea separando los datos en subconjuntos de forma reiterada, de 

acuerdo con los valores de las características. Cada división se escoge para maximizar la separación 

utilizando métricas como el índice de Gini o la ganancia de información.  El procedimiento termina 
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cuando se cumplen ciertas condiciones, por ejemplo, si un grupo tiene un número reducido de puntos 

de datos y no puede dividirse más o si se alcanza una profundidad de árbol determinada. 

Los árboles de decisión se construyen comenzando por la raíz y avanzando hacia las hojas. 

Para definir cada división del árbol se usan los atributos que describen a los ejemplos, ya que las 

reglas de clasificación se obtienen justamente a partir de estas características. Las hojas representan 

las clases y los nodos intermedios corresponden a pruebas basadas en atributos. Clasificar un objeto 

consiste en recorrer el árbol desde la raíz, siguiendo las ramas según los valores del objeto hasta 

llegar a una hoja. Un árbol que clasifica correctamente todos los ejemplos del conjunto de 

entrenamiento siempre puede construirse cuando los atributos son suficientes, y normalmente 

existen varias alternativas válidas (Quinlan, 1986). 

Los ejemplos que alimentan el modelo pueden venir de dos fuentes, el primero son los datos 

históricos que ya existen en bases de datos reales cuya información da una idea general y confiable 

del comportamiento de los casos, aunque suele repetir información y no siempre incluye situaciones 

poco frecuentes. La segunda consiste en trabajar con ejemplos preparados por expertos, 

seleccionados de manera intencional para representar los casos más comunes y también aquellos 

que casi no ocurren. Aunque los métodos de inducción de árboles funcionan con cualquiera de los 

dos tipos de conjuntos, inicialmente fueron pensados para utilizar datos históricos. Con el tiempo, 

sin embargo, también se han usado de manera habitual conjuntos creados por expertos (Quinlan, 

1986). 

a. Métodos de construcción de árboles de decisión  

Quinlan describe como el algoritmo Iterative Dichotomizer 3 (ID3) consiste en elegir, en cada 

paso, el atributo que mejor ayuda a separar las clases. Para decidir cuál es ese atributo, calcula 

cuánto se reduce la incertidumbre al dividir los datos según cada uno. El que ofrezca la mayor 

reducción es el que se usa para crear el siguiente nodo del árbol. 
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Mientras que el autor, i Solé define el método ID3 como aquel que se basa en dividir el conjunto 

de datos paso a paso, buscando en cada iteración la partición que mejor separe las clases. El 

algoritmo continúa generando estas divisiones mientras sigan existiendo atributos útiles y hasta que 

se alcance un punto donde los grupos formados sean lo más homogéneos posible, garantizando así 

una buena capacidad predictiva (i Solé, 1995). 

Una vez seleccionado el atributo, el conjunto de ejemplos se divide según sus valores, y el 

proceso se repite dentro de cada grupo. Esto continúa hasta que los ejemplos de un nodo pertenecen 

todos a la misma clase o ya no quedan más atributos disponibles. En esos casos, el nodo se convierte 

en una hoja (i Solé, 1995). 

Quinlan también comenta que este procedimiento implica volver a revisar los datos varias veces, 

porque en cada nodo se necesita calcular la ganancia de información de los atributos restantes. 

Aunque esto aumenta el costo computacional, él señala que, en la práctica, el método sigue siendo 

manejable incluso con conjuntos de datos relativamente grandes. 

En relación con la homogeneidad, existen diversas medidas cuyo propósito es asignar valores 

extremos cuando una partición está compuesta únicamente por ejemplos de una misma clase. Estas 

permiten evaluar particiones que no son completamente uniformes, ya que su grado de diversidad 

interna queda expresado numéricamente, lo que facilita la comparación entre diferentes divisiones 

(i Solé, 1995). 

La medida más utilizada para cuantificar el desorden es la entropía, que proviene de la teoría de 

la información y que se basa en la distribución de probabilidades de las clases. La entropía puede 

interpretarse como una medida de información porque está vinculada con el nivel de “sorpresa” que 

produce un determinado valor: cuanto menos previsible es un resultado, mayor es la información 

que aporta. Se llega a lo que es la ganancia de información donde en la construcción del árbol, en 

cada etapa no se busca simplemente el atributo que contenga más información, sino aquel que genere 
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la mayor diferencia de información con respecto a la partición actual al dividir los datos según sus 

valores. Es por ello por lo que en cada paso se selecciona el atributo que optimice esta ganancia (i 

Solé, 1995). 

La ganancia de información se define de la siguiente manera: 

𝐺(𝑋, 𝐴௞) = 𝐼(𝑋, 𝐶) − 𝐸(𝑋, 𝐴௞)    (1) 

  

 Donde: 

 𝐼(𝑋, 𝐶): es la cantidad de información asociada a las particiones generadas por un conjunto 

de clases 𝐶 con respecto al conjunto de casos 𝑋 y se define de la siguiente forma: 

𝐼(𝑋, 𝐶) =  − ∑ 𝑝(𝑋, 𝑐௜) logଶ 𝑝(𝑋, 𝑐௜)஼೔ ∈஼                              (2) 

Donde: 

 𝑝(𝑋, 𝑐௜): es la probabilidad de que un ejemplo específico 𝑐௜, que se aproxima mediante la 

frecuencia observada de casos que pertenecen a la clase 𝑐௜, utilizándose esta frecuencia como 

estimador de la probabilidad: 

𝑝(𝑋, 𝑐௜) =  
#௖೔

#௑
                                      (3) 

Donde el término 𝑝(𝑋, 𝑐௜) representa la proporción de casos pertenecientes a la clase #𝑐௜ 

respecto al tamaño total de la muestra #𝑋. 

En cuanto a 𝐸(𝑋, 𝐴௞), representa la información esperada del atributo 𝐴௞ respecto al 

conjunto de casos X. Refleja el grado de diversidad que presenta este atributo dentro del conjunto 

𝑋. Mide la diversidad que se introduce en las particiones al seleccionar el atributo 𝐴௞. Su expresión 

es: 
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𝐸(𝑋, 𝐴௞) =  ∑ 𝑝ቀ𝑋, 𝐴௞
ିଵ(𝑉௜)ቁ ∙ 𝐼𝐴௞

ିଵ(𝑉௜), 𝐶)௏಺ ∈  ௏(஺ೖ)                                   (4) 

Donde 𝑝ቀ𝑋, 𝐴௞
ିଵ(𝑉௜)ቁ es la probabilidad de que un caso presente el valor Vi en el atributo 

𝐴௞ que suele aproximar a partir de las frecuencias observadas mediante la siguiente expresión: 

𝑝ቀ𝑋, 𝐴௞
ିଵ(𝑉௜)ቁ =  

#஺ೖ
షభ(௏೔)

#௑
    (5) 

Es decir, calcula el número de casos que muestran el valor 𝑉௜, en el atributo 𝐴௞ en relación con 

el total de casos del conjunto 𝑋. 

b. Métodos de Poda 

El método de poda intenta obtener particiones que sólo sean necesarias para obtener una buena 

predicción y sean más fáciles de interpretar. Hay dos métodos: C4.5 que se basa en estimar la tasa 

de error para cada subárbol y reemplazarlo con el nodo hoja si la estimación del error hoja es menor. 

La idea básica es que la determinación de la tasa de error para cualquier nodo del árbol, incluidos 

los nodos de hoja, comenzará desde los niveles más bajos del árbol, y si las estimaciones muestran 

que la precisión general mejora al eliminar 𝑛 de los hijos del nodo y convertir 𝑛 en una hoja, entonces 

C4.5 realiza esta poda. En la práctica, aunque estas estimaciones son aproximadas, el método suele 

ser eficaz (Salzberg, 1994). 

El segundo método de poda es MDL, también conocido como método de mínima descripción 

de longitud. Se seleccionan pequeños subconjuntos de reglas que garanticen que clase 𝐶 esté 

representada en los datos. El objetivo es mantener el conjunto de reglas lo más simple posible, 

evitando la duplicación y la complejidad excesiva, pero sin perder la capacidad predictiva. Este 

enfoque se complementa con varias estrategias algorítmicas (Salzberg, 1994). 

c. Método de CART 
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El método CART, propuesto por Breiman y sus colegas en 1984, es un algoritmo para construir 

árboles de decisión cuyo nombre proviene de Classification and Regression Trees. Se caracteriza 

por generar árboles binarios, de modo en que cada nodo se define un punto de corte que divide el 

conjunto de observaciones en dos grupos (i Solé, 1995). 

Una ventaja importante es que puede trabajar con atributos continuos y además permite abordar 

tanto problemas de clasificación cuando la variable objetivo es categórica como problemas de 

regresión. Para la división de datos, CART utiliza el índice de Gini como medida de diversidad que 

consiste en encontrar el atributo y el punto de corte que logren la mayor reducción de esta diversidad 

(i Solé, 1995). 

Una vez elegido el mejor separador, este se convierte en un nodo del árbol y el proceso se repite 

con cada una de las particiones resultantes. Si en algún momento un atributo deja de aportar 

información este se descarta. Cuando ya no es posible realizar más divisiones útiles, el nodo se 

convierte en hoja. El árbol se considera completo cuando todas las particiones han llegado a hojas 

terminales (i Solé, 1995). 

d. Ventajas e Inconvenientes 

En el ámbito de la detección de fraude financiero, los árboles de decisión destacan 

principalmente por su interpretabilidad. A diferencia de los modelos como las redes neuronales 

profundas, esta metodología permite rastrear la lógica exacta detrás de cada predicción. Esto es 

crucial en el sector bancario, donde a menudo es obligatorio justificar ante el cliente o los 

reguladores por qué una transacción fue marcada como sospechosa. Asimismo, estos modelos 

ofrecen métricas intrínsecas sobre la importancia de los atributos, permitiendo identificar qué 

variables como el monto o la hora de la transacción, son determinantes para la clasificación. 

Sin embargo, el método no está exento de problemas. El principal inconveniente es su tendencia 

a sobreajustarse (overfitting) que, en caso de no controlarse, los árboles pueden crecer demasiado y 
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normalizar el ruido de los datos de entrenamiento en lugar de aprender patrones generalizables. 

Además, son sensibles a pequeñas variaciones en los datos de entrada, lo que puede producir 

estructuras de árbol muy diferentes con cambios mínimos en los datos (i Solé, 1995). 

III. XGBoost 

a. Introducción al Modelo XGBoost 

El modelo XGBoost es un algoritmo de aprendizaje supervisado basado en el método de 

boosting por gradiente el cual construye de manera secuencial un conjunto de árboles de decisión 

(CART) para de esta manera poder optimizar una función de pérdida y añadir regularización que 

evita el sobreajuste (Chen & Guestrin, 2016). En esencia, cada nuevo árbol corrige los errores del 

conjunto de árboles anteriores, de modo que el modelo mejora progresivamente su capacidad de 

predicción. 

Su arquitectura incorpora, además, mecanismos de regularización (por ejemplo, L1 y L2), 

poda de árboles, manejo eficiente de datos faltantes y paralelización, lo que lo hace altamente 

competitivo con grandes volúmenes de datos estructurados y con relaciones no lineales. 

El hecho de que XGBoost pueda manejar bien datos heterogéneos, con muchas variables y 

con relaciones de interacción complejas, lo hace especialmente atractivo para tareas de clasificación 

en los que los patrones legítimos y fraudulentos pueden diferir en formas sutiles. 

b. Particularidades del fraude en pagos en línea y uso de XGBoost 

La detección de fraude en el ámbito de los pagos online se ve dificultada por varios aspectos 

intrínsecos al problema, como la gran disparidad entre las conductas de los usuarios fraudulentos y 

las legítimas, el marcado desequilibrio entre clases (en el que las transacciones fraudulentas suelen 

ser menos del 1 % del total) y la necesidad de hacer detecciones en tiempo real o casi en tiempo real 

para reducir pérdidas económicas (Velarde et al., 2023). En este contexto, debido a su habilidad para 
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detectar interacciones sofisticadas entre variables, como la hora de la transacción, el historial del 

usuario, el monto y la ubicación sin necesidad de una especificación manual, el modelo XGBoost 

es especialmente adecuado; a su robustez ante datos tabulares de alta dimensión, que es una 

propiedad típica en los registros transaccionales; a su eficacia en términos computacionales y a su 

habilidad para ser paralelizado, lo cual permite que pueda aplicarse en ambientes con grandes 

cantidades de información y demandas de respuestas veloces; y a su capacidad para tratar el 

problema del desequilibrio de clases usando técnicas como la ponderación de clases, el muestreo 

sub o sobre muestreo, disminuyendo el sesgo hacia la clase mayoritaria (Velarde et al., 2023). 

Por ejemplo, estudios han observado que XGBoost alcanza altos valores de métrica F1 o AUC 

en detección de fraude de tarjetas de crédito o pagos móviles, superando modelos tradicionales como 

regresión logística o árboles simples (Shi, 2024; Hajíček, Abedin & Sivarajah, 2022). En 

consecuencia, su empleo en detección de fraude en pagos en línea se considera una buena práctica 

empírica. 

c. Proceso típico de aplicación de XGBoost en detección de fraude 

El uso de XGBoost para detectar el fraude en los pagos por internet puede dividirse en varias 

fases fundamentales que aseguran un desarrollo metodológico robusto y replicable. Primero, es 

necesario preparar correctamente los datos. Esto comienza con la recopilación de un grupo de 

transacciones que se marcan apropiadamente como fraudulentas o legítimas. Después, se lleva a 

cabo el preprocesamiento, que engloba la depuración de datos, la gestión de valores ausentes y la 

codificación de variables categóricas; además, si es necesario, se estandarizan o normalizan las 

variables. La ingeniería de características, que se enfoca en crear variables derivadas como el tiempo 

desde la última transacción, la frecuencia de uso, el monto promedio o la variabilidad geográfica 

adquiere un papel importante en esta etapa porque la eficacia de XGBoost depende fuertemente del 
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nivel de calidad de las variables que reflejan los patrones comportamentales relacionados con el 

fraude. 

Como el fraude es una categoría minoritaria, gestionar el desequilibrio de clases es un elemento 

crucial. En este sentido, Meng, Zhou y Liu (2020) informaron que al combinar XGBoost con estas 

metodologías se lograron mejoras en indicadores como el AUC y el recall. Para conseguirlo, es 

posible utilizar tácticas como el sobre-muestreo de la clase minoritaria o el sub-muestreo de la clase 

mayoritaria, incluyendo métodos como SMOTE. Además, se pueden asignar más pesos a los casos 

fraudulentos durante el entrenamiento del modelo. Sin embargo, es crucial llevar a cabo una 

validación meticulosa para prevenir fugas de información (data leakage); por ejemplo, garantizando 

que los procesos de muestreo se utilicen exclusivamente sobre los conjuntos de entrenamiento y no 

antes de la división de los datos, pues esto podría incrementar artificialmente los resultados (Kabane, 

2024). 

Es necesario modificar los hiperparámetros claves de XGBoost durante la fase de preparación y 

entrenamiento del modelo, incluyendo la profundidad máxima (max_depth), el número de árboles 

(n_estimators), los términos de regularización (lambda y alpha), las proporciones de muestreo 

(colsample_bytree y subsampling) y la tasa de aprendizaje (learning_rate). Investigaciones actuales 

sugieren que la optimización usando métodos como búsqueda bayesiana o random search puede 

incrementar considerablemente el rendimiento del modelo cuando se trabaja con conjuntos de datos 

voluminosos (Velarde et al., 2023). Con el objetivo de mantener la proporción de fraudes en cada 

pliegue, el entrenamiento tiene que llevarse a cabo empleando validación cruzada estratificada y 

supervisando métricas significativas como AUC, precisión, recall, F1-score y las medidas 

vinculadas al coste de errores. Además, la puesta en marcha de early stopping es fundamental para 

evitar el sobreajuste. 
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La evaluación del modelo debe sobrepasar la precisión general (accuracy) y enfocarse en 

métricas que muestren de forma apropiada la habilidad de detectar el fraude, como lo son: F1-score, 

AUC-ROC, precisión y recall. También debe incluirse métricas económicas que tengan en cuenta 

las consecuencias diferentes de los falsos positivos y negativos. Hajek et al. (2022) sugirieron, en 

esta línea, medidas de reducción de costos que combinan ambas clases de error. La validación debe 

llevarse a cabo sobre conjuntos de prueba independientes, examinando también la estabilidad del 

modelo ante alteraciones en la distribución de los datos y comprobando que no haya sesgos ni fugas 

de información. 

Por último, una vez validado el modelo, en la puesta en marcha operativa se puede incorporar 

al sistema de pagos por internet para analizar cada transacción entrante y proporcionar un puntaje 

de riesgo. El sistema debe incluir procedimientos de actualización periódica y reentrenamiento del 

modelo para adaptarse a la aparición de nuevas modalidades fraudulentas y a la manera en que los 

usuarios se comportan con el tiempo. Dentro de este marco, se sugiere emplear técnicas de la 

Inteligencia Artificial Explicable (XAI), como LIME o SHAP. Estas técnicas posibilitan la 

interpretación del aporte de las variables para detectar el fraude y promueven la auditoría, la 

transparencia y el cumplimiento de los requisitos regulatorios (Almalki & Masud, 2025). 

Es conveniente usar técnicas de Explainable AI (XAI) como SHAP o LIME para interpretar qué 

variables contribuyen a la detección de fraude y lograr transparencia y control regulatorio (Almalki 

& Masud, 2025). 

d. Limitaciones de XGBoost 

Es importante mencionar varias restricciones y consideraciones prácticas relacionadas con el 

empleo de XGBoost para detectar fraude en pagos en línea. Primero que nada, aunque XGBoost es 

un algoritmo flexible y poderoso, su rendimiento depende en gran parte de la calidad de la ingeniería 

de características. Por lo tanto, si faltan variables importantes o el preprocesamiento no es adecuado, 
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esto puede restringir considerablemente su capacidad para hacer predicciones. Además, el modelo 

podría mostrar una sensibilidad menor para identificar fraudes poco comunes, incluso con la 

ponderación de clases, si existe un desequilibrio extremo entre las clases. Además, algunos análisis 

alertan que el uso de métodos de muestreo previos a la separación en conjuntos de entrenamiento y 

prueba puede acarrear inconvenientes de fuga de datos y llevar a una sobrevaloración del desempeño 

del modelo (Kabane, 2024). 

La necesidad de renovar el modelo con regularidad es otra consideración importante, ya que los 

patrones de fraude están en continua evolución y un modelo que se ha entrenado con datos históricos 

puede volverse ineficaz ante nuevas tácticas fraudulentas. Por otro lado, si bien XGBoost brinda un 

nivel aceptable de interpretabilidad, la misma no es instantánea ni totalmente clara, lo que hace 

necesario el uso adicional de métodos de explicación de modelos para simplificar la comprensión y 

justificación de las decisiones. En última instancia, a pesar de su correcto rendimiento empírico, 

XGBoost no asegura que el fraude se detecte de manera perfecta, pues siempre habrá falsos positivos 

(transacciones legítimas clasificadas como fraudulentas) y falsos negativos (fraudes no detectados). 

Esto enfatiza la necesidad de que las organizaciones calculen y manejen explícitamente los costos 

vinculados con ambos tipos de error al momento de diseñar e implementar el sistema de detección 

(Hajek et al., 2022). 

En resumen, el modelo XGBoost constituye una herramienta altamente relevante para la 

detección del fraude en pagos en línea, gracias a su adaptabilidad, eficiencia, eficacia en contextos 

con datos desbalanceados, y respaldo empírico reciente. Su aplicación adecuada combinada con una 

correcta preparación de datos, gestión del desbalance de clases, ajuste de hiperparámetros, 

evaluación rigurosa y actualización continua permite a las organizaciones de pagos reforzar su 

sistema de control de fraude. En el marco teórico de una tesis de maestría sobre fraude en pagos en 
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línea, dedicar un apartado a XGBoost permite fundamentar la elección metodológica de forma 

rigurosa. 

IV. Redes neuronales Artificiales  

a. Introducción a las Redes Neuronales 

A finales del siglo diecinueve se alcanzó un mayor entendimiento del cerebro humano y su 

funcionamiento, gracias a las investigaciones de Ramón y Cajal en España y Sherrington en 

Inglaterra. El primero se enfocó en la estructura de las neuronas, mientras que el segundo estudió 

las conexiones entre ellas, conocidas como sinapsis. El tejido nervioso, el más especializado del 

cuerpo, está compuesto por células nerviosas, fibras nerviosas y neuroglia, que incluye distintos 

tipos de células.  

La célula nerviosa se conoce como neurona, que actúa como la unidad funcional del sistema 

nervioso. Estas pueden ser clasificadas como neuronas sensoriales, motoras y de conexión. Se 

estima que en cada milímetro cúbico del cerebro residen alrededor de 50. 000 neuronas. 

Las neuronas poseen un soma que contiene el núcleo y realiza las funciones metabólicas, 

mientras recibe señales a través de las dendritas. El axón actúa como vía de salida, transmitiendo 

impulsos hacia otras células mediante sinapsis, donde la comunicación ocurre químicamente y 

puede generar un potencial de acción si se alcanza un umbral eléctrico. Este impulso viaja por el 

axón y se propaga a neuronas conectadas. 

El sistema neuronal biológico se organiza mediante neuronas sensoriales que captan estímulos 

externos y los envían a una compleja red de neuronas internas encargadas del procesamiento. 

Posteriormente, las neuronas de salida transmiten las respuestas necesarias para activar los músculos 

y coordinar acciones, formando una vasta red interconectada dentro del cerebro.  

b. Redes Neuronales en los fraudes electrónicos  
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Las redes neuronales ofrecen un punto de vista fascinante al utilizar métodos de 

aprendizaje profundo para identificar fraudes en plataformas de comercio en línea (Lee J, 2020) 

Las redes neuronales convolucionales (CNN) y los modelos de red neuronal recurrente (RNN) son 

capaces de detectar transacciones fraudulentas al examinar el comportamiento del usuario y sus 

patrones de navegación. Este enfoque es especialmente eficaz en situaciones cambiantes donde las 

tácticas de fraude se desarrollan continuamente. 

(Carmona Mora, 2021) destacan que los modelos de Machine Learning superan a los 

métodos tradicionales al detectar patrones anómalos que no son evidentes a simple vista. 

Algoritmos como los árboles de decisión y las redes neuronales permiten analizar grandes 

cantidades de información en tiempo real, lo que favorece una respuesta rápida ante posibles 

intentos de fraude. No obstante, señalan que el desequilibrio en los datos donde las transacciones 

legítimas son mucho más frecuentes que las fraudulentas representa un reto, ya que puede afectar 

la precisión de los modelos. Este inconveniente puede abordarse mediante técnicas como el sobre 

muestreo y el ajuste de los pesos en los algoritmos. 

a. Proceso de aplicación de Redes Neuronales en fraude 

La adopción de redes neuronales para detectar fraudes comúnmente se estructura en un enfoque 

metodológico claro. De acuerdo con lo indicado por (Bolton, 2002), el procedimiento comienza con 

la recopilación, depuración y organización de los datos, una fase esencial por el gran número de 

transacciones y la frecuente aparición de datos anómalos o inconsistentes. Este paso asegura que la 

información empleada represente correctamente tanto los comportamientos regulares como los 

fraudulentos. 

A continuación, se lleva a cabo la elección y creación de atributos. Investigadores como (Bishop, 

2006) y (Bhattacharyya, 2011) afirman que la manipulación de variables consistiendo en cambios, 

combinaciones temporales y medidas del comportamiento del consumidor es crucial para aumentar 
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la capacidad de predicción de los modelos. Asimismo, es común implementar métodos de 

normalización o disminución de dimensiones para ayudar en la convergencia del algoritmo. 

Después de organizar los datos, se lleva a cabo la separación de la información en grupos de 

entrenamiento, validación y prueba. Según (Haykin, 2009) esta división es fundamental para 

calibrar los hiperparámetros del modelo y reducir la posibilidad de sobreajuste, dado que los casos 

de fraude normalmente son solo una pequeña parte del total. 

La formación del modelo forma el núcleo del proceso. En este paso, los algoritmos de redes 

neuronales, en particular los que utilizan retropropagación, modifican sus pesos internos para 

reconocer patrones complejos y no lineales. La investigación fundamental de (Rumelhart, 1986) 

muestra que este sistema capacita a las redes para captar estructuras profundas en los datos aun 

cuando las características engañosas sean discretas. 

Luego, el sistema requiere realizar un análisis detallado, teniendo en cuenta especialmente la 

disparidad entre transacciones válidas y fraudulentas. (Fawcett, 1997) indican que indicadores como 

la curva ROC, el AUC, la sensibilidad y la precisión son más apropiados que la precisión estándar 

para evaluar la eficacia en situaciones marcadamente desequilibradas. 

Finalmente, de acuerdo con (Ngai, 2011), es necesario llevar a cabo un seguimiento y ajuste 

constante del proceso, dado que las tácticas de fraude están en constante cambio. Esto significa que 

se debe actualizar el modelo utilizando información reciente, modificar las características y revisar 

regularmente la efectividad del sistema para reconocer nuevos patrones inusuales. 

2.2.5 Técnicas de selección de características en detección de fraude 

La selección de características constituye un componente clave en los sistemas de detección de 

fraude, porque permite identificar los atributos más informativos, reducir la redundancia y mejorar 

tanto el rendimiento como la eficiencia de los modelos de aprendizaje automático. En contextos 
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financieros, donde los conjuntos de datos suelen ser de alta dimensionalidad y están fuertemente 

desbalanceados, una mala elección de variables incrementa el ruido, empeora la capacidad de 

generalización y eleva la tasa de falsos positivos, lo cual es especialmente crítico en escenarios de 

monitoreo en tiempo real (Fu et al., 2025; Hernández Aros et al., 2024).  

En la literatura se suele distinguir entre tres grandes familias de técnicas de selección de 

características: métodos filter, wrapper y embedded. Los métodos filter evalúan cada atributo de 

forma independiente utilizando criterios estadísticos, como la correlación, la información mutua o 

pruebas de chi-cuadrado, sin depender de un modelo específico. Este tipo de enfoque suele 

emplearse como una etapa inicial para eliminar variables claramente irrelevantes o altamente 

correlacionadas entre sí, reduciendo la dimensionalidad antes de entrenar modelos más complejos 

(Hernández Aros et al., 2024; Siam et al., 2025).  

Por su parte, los métodos wrapper utilizan el desempeño de un modelo de aprendizaje como 

criterio para seleccionar subconjuntos de características. Una técnica muy extendida es Recursive 

Feature Elimination (RFE), que entrena el modelo sobre el conjunto completo de atributos y, de 

forma iterativa, va eliminando aquellas variables con menor importancia hasta alcanzar un 

subconjunto óptimo. Estudios recientes en fraude financiero muestran que RFE permite mejorar 

métricas como la exactitud y el recall al descartar atributos redundantes que inducen sobreajuste y 

aumentan la complejidad computacional (Jin & Zhang, 2025).  

Los métodos embedded integran la selección de características dentro del propio proceso de 

entrenamiento del modelo. Este es el caso de algoritmos basados en árboles, como Random Forest, 

Gradient Boosting, XGBoost o LightGBM, que calculan de manera interna la importancia de cada 

variable a partir de criterios de ganancia de información o reducción de impureza. Estos enfoques 

resultan especialmente útiles en detección de fraude, porque combinan un buen rendimiento 
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predictivo con un cierto grado de interpretabilidad: permiten identificar atributos clave como montos 

atípicos, patrones de frecuencia de transacciones o cambios bruscos en el comportamiento del 

cliente (Compagnino, 2025; Chen, 2023).  

En el ámbito del fraude financiero, también se han propuesto esquemas de selección integrada 

o híbrida, que combinan varias técnicas para mitigar las limitaciones de usar un único método. Por 

ejemplo, Chen (2023) plantea un enfoque de selección integrada para fraude en estados financieros 

que combina la importancia de características obtenida por Random Forest, GBDT, XGBoost y 

LightGBM, mostrando que esta estrategia mejora el AUC y el recall frente a aplicar cada método 

por separado, especialmente cuando se trabaja en conjunto con técnicas de balanceo como SMOTE. 

De manera similar, trabajos recientes en fraude transaccional proponen marcos híbridos que 

combinan filtros estadísticos con importancia de características basada en modelos, logrando reducir 

el número de variables sin sacrificar desempeño e incluso mejorando la capacidad de detección de 

casos minoritarios (Siam et al., 2025).  

El auge del deep learning ha introducido otra perspectiva sobre la selección de características, 

al permitir el aprendizaje de representaciones latentes de forma automática. Modelos como 

autoencoders y redes recurrentes capturan patrones temporales y no lineales sin requerir 

necesariamente una selección explícita de variables en la etapa previa. No obstante, aun cuando el 

modelo aprende representaciones internas, muchos trabajos combinan estas arquitecturas con 

técnicas de selección o reducción de dimensionalidad en la fase de entrada, tanto para mejorar la 

eficiencia como para facilitar la interpretación de los resultados (Hernández Aros et al., 2024; Jin & 

Zhang, 2025). 

En síntesis, la selección de características en detección de fraude no es solo un paso técnico 

accesorio, sino una estrategia central para optimizar la precisión, reducir el costo computacional y 
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mejorar la explicabilidad de los modelos. En el contexto del presente proyecto, estas técnicas 

resultan especialmente relevantes, ya que permiten concentrar el aprendizaje en las variables más 

informativas de las transacciones (montos, tiempos, canales, patrones anómalos de uso, entre otras), 

lo cual es indispensable para un portal web de detección temprana de fraude en pagos en línea 

orientado a la banca. 

2.2.5.1 Ingeniería de características 

La ingeniería de características es un paso clave en el proceso de aprendizaje automático 

porque determina qué información recibe el modelo y cómo la recibirá. Aunque los algoritmos 

actuales son capaces de identificar patrones complejos, su rendimiento depende en gran medida de 

la calidad y estructura de los datos. Por tanto, es necesario transformar, depurar o crear nuevas 

variables antes de entrenar el modelo. 

2.2.5.1.1 Manejo de datos faltantes 

Cuando un conjunto de datos contiene valores faltantes, por lo general se debe a errores en la 

recolección, a preguntas no respondidas o a mediciones que no aplican en ciertos casos. Estos 

valores suelen aparecer como espacios en blanco, NaN o NULL, y la mayoría de las herramientas 

no los procesa correctamente, lo que puede llevar a resultados imprecisos (Raschka, Liu, & Mirjalili, 

2022). 

Una forma sencilla de enfrentarlo es eliminar las filas o columnas que contienen valores 

faltantes. Métodos como dropna permiten hacerlo rápidamente. Sin embargo, esta opción puede 

tener un costo importante: podríamos quedarnos con muy pocas muestras o perder características 

que aportan información relevante para el modelo, afectando su desempeño (Raschka, Liu, & 

Mirjalili, 2022). 
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2.2.5.1.2 Técnica de Imputación 

Cuando descartar datos no es una opción viable, se recurre a diferentes métodos de imputación 

para estimar los valores faltantes. Una técnica básica y bastante habitual es reemplazar los valores 

ausentes por la media de la columna (para datos numéricos), se puede usar la mediana que es menos 

sensible a valores extremos o la moda (para datos categóricos). Aunque es un enfoque simple, 

permite conservar el tamaño del conjunto de datos y seguir adelante con el proceso de modelado sin 

perder información que podría resultar útil (Raschka, Liu, & Mirjalili, 2022). 

En un estudio de detección de fraude de los autores Feng y Kim (2025) demostraron que 

cuando el 50% de una variable está ausente, el uso de la imputación específicamente la moda permite 

conservar la información crítica y mantener un volumen adecuado de datos para entrenar modelos 

eficaces. Este tipo de estrategia refuerza la idea de que no basta con limpiar superficialmente los 

datos: es necesario un preprocesamiento robusto que combine imputación y transformación para 

asegurar que los modelos cuenten con características suficientemente representativas y equilibradas. 

Al adoptar estas prácticas en mi proyecto, busco replicar un enfoque que ha demostrado mejorar 

tanto la estabilidad como la precisión en la predicción de transacciones fraudulentas (Feng & Kim, 

2025). 

2.2.5.1.3 Transformación y escalado de variables numéricas 

Los modelos de aprendizaje automático pueden ser sensibles a la escala de los datos. Es decir, 

si una característica toma valores entre 0 y 1, mientras otra varía de 0 a 10,000, la segunda puede 

dominar la función de pérdida del modelo. Para corregir esto se aplican técnicas como: 

 Estandarización: consiste en centrar los datos en torno a cero y escalarlos según su 

desviación estándar. Esto permite que todas las variables contribuyan de manera equitativa 

al modelo, asignándoles los mismos parámetros que una distribución normal estándar (media 
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cero y varianza uno), lo que facilita el aprendizaje de los pesos en los algoritmos de machine 

learning (Raschka, Liu, & Mirjalili, 2022). 

 Normalización: consiste en ajustar los valores de las variables a un rango específico, 

normalmente entre 0 y 1. Este procedimiento mejora la estabilidad y el rendimiento de 

modelos sensibles a las magnitudes absolutas, como redes neuronales o K-Nearest 

Neighbors (KNN). La normalización se considera un caso particular de escalamiento 

mínimo-máximo (Raschka, Liu, & Mirjalili, 2022). 

2.2.5.1.4 Codificación de variables categóricas 

Para que los modelos procesen variables categóricas, es necesario convertirlas a formato 

numérico. La elección del método depende del tipo de atributo y su relación con el target evitando 

sesgos y permitiendo al modelo aprender de forma más eficiente. 

 One-hot encoding: consiste en crear una nueva característica ficticia para cada valor único 

en la columna de característica nominal, crea columnas binarias para cada categoría, 

evitando que el modelo interprete un orden inexistente entre ellas, pero debemos tener en 

cuenta que esto introduce multicolinealidad. 

 Codificación ordinal: asigna un número a cada categoría cuando existe un orden natural (por 

ejemplo, niveles de riesgo: bajo, medio, alto). 

 Embeddings: en problemas con muchas categorías, se pueden usar representaciones 

vectoriales densas para reducir dimensionalidad y capturar relaciones semánticas. 

En el estudio de Bourdonnaye y Daniel (2021) analizan cómo diferentes métodos de 

codificación de variables categóricas influyen en la eficacia de los modelos de detección de fraude 

con tarjetas. Comparan técnicas clásicas como el one-hot encoding con aproximaciones basadas en 

estadísticas, como el target encoding o Weight of Evidence, y demuestran que estas pueden aumentar 

significativamente el rendimiento del modelo. Este hallazgo sugiere que la forma en que se 
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representan las variables categóricas no es un detalle menor, sino un componente vital que puede 

mejorar drásticamente la capacidad del algoritmo para discriminar entre transacciones legítimas y 

fraudulentas (Bourdonnaye & Daniel, 2021). 

2.2.6 Evaluación de modelos de detección de fraude 

2.2.6.1 Métricas de clasificación 

En su libro, Raschka afirma que es importante ir más allá de la precisión al evaluar modelos 

de clasificación, especialmente cuando las clases no están equilibradas, por lo que sugiere utilizar 

una combinación de métricas: precisión (cuántos de los positivos predichos son realmente 

positivos), recall o sensibilidad (qué tan bien el modelo captura los verdaderos positivos) y F1-score, 

que armoniza precisión y recall para ofrecer una visión equilibrada. Todas estas métricas están 

disponibles directamente en sklearn.metrics, lo que le permite comparar modelos de forma 

transparente y ajustar su rendimiento en función de lo que realmente importa al problema (Raschka, 

Liu, & Mirjalili, 2022). 

La matriz de confusión es una herramienta que permite evaluar cómo se desempeña un modelo 

de aprendizaje automático. Se presenta como una matriz cuadrada que muestra la cantidad de casos 

clasificados correcta y erróneamente, distinguiendo entre verdaderos positivos (VP), verdaderos 

negativos (VN), falsos positivos (FP) y falsos negativos (FN), como se muestra en la Figura: 

Figura 1  

Matriz de Confusión 
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Nota: Estructura de una matriz de confusión para clasificación binaria. Representa la relación 

entre los valores reales (Actual class) y las predicciones del modelo (Predicted class), 

permitiendo identificar el rendimiento a través de aciertos (TP, TN) y errores (FP, FN). 

Fuente: (Raschka, Liu, & Mirjalili, 2022). 

Tanto el error de predicción (ERR) como la precisión (ACC) ofrecen una visión general sobre 

el desempeño de un modelo, indicando cuántos casos se clasificaron correcta o incorrectamente. El 

error se calcula dividiendo el número total de predicciones falsas entre el total de predicciones 

realizadas, mientras que la precisión se obtiene dividiendo las predicciones correctas entre el total 

de predicciones: 

𝐸𝑅𝑅 =
ி௉ାிே

ி௉ାிேା்௉ା்
     (6) 

La precisión de la predicción se puede calcular directamente a partir del error: 

𝐴𝐶𝐶 =
்௉ା்

ி௉ାிேା்௉ା்ே
= 1 − 𝐸𝑅𝑅        (7) 

La tasa de verdaderos positivos (TPR) y la tasa de falsos positivos (FPR) son métricas de 

rendimiento especialmente útiles para problemas de clases desequilibradas: 

𝐹𝑃𝑅 =  
ி௉

ே
=

ி௉

ி௉ା்ே
            (8) 
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𝑇𝑃𝑅 =
்௉

௉
=

்௉

ிேା
      (9) 

A diferencia de la tasa de falsos positivos (FPR), la tasa de verdaderos positivos (TPR) 

indica qué proporción de los casos positivos se identificó correctamente dentro del total de 

positivos. Las métricas de precisión (PRE) y recall o recuperación (REC) están estrechamente 

vinculadas con los verdaderos positivos y negativos; de hecho, la recuperación coincide con la 

TPR: 

𝑅𝐸𝐶 = 𝑇𝑃𝑅 =
்௉

௉
=

்௉

ிேା்௉
      (10) 

La recuperación mide cuántos registros relevantes (los positivos) se capturan como tales (los 

verdaderos positivos). La precisión cuantifica cuántos registros predichos como relevantes (la suma 

de verdaderos y falsos positivos) son realmente relevantes (verdaderos positivos) (Raschka, Liu, & 

Mirjalili, 2022). 

𝑃𝑅𝐸 =  
்௉

்௉ାி௉
     (11) 

Para equilibrar las ventajas y desventajas de optimizar PRE y REC, se utiliza la media 

armónica de PRE y REC, la denominada puntuación F1: 

𝐹1 = 2
௉ோா×ோா஼

௉ோாାோா஼
     (12) 

Finalmente tenemos la curva de ROC que se utilizan para evaluar cómo se comporta un 

modelo de clasificación según su capacidad de identificar correctamente los positivos (TPR) y evitar 

falsos positivos (FPR). La diagonal del gráfico representa el desempeño de un clasificador aleatorio, 

mientras que un clasificador ideal estaría en la esquina superior izquierda, donde identifica todos 

los positivos sin cometer errores. El área bajo la curva resume el rendimiento general del modelo en 

un solo valor, facilitando la comparación entre distintos clasificadores (Raschka, Liu, & Mirjalili, 

2022). 
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Tabla 2 

Métricas de Clasificación 

 

Métrica Qué mide Cuando usar 

Accuracy 

(Precisión general) 

Porcentaje de 

predicciones correctas 

sobre el total 

Útil para tener una visión global del 

desempeño, pero puede engañar si hay 

desbalance de clases (muchos más casos 

legítimos que fraudulentos). 

Precision 

(Precisión) 

Qué proporción de las 

predicciones positivas 

son realmente positivas 

Importante cuando queremos evitar falsas 

alarmas o alertas innecesarias a los clientes. 

Recall 

(Recuperación / 

Sensibilidad) 

Qué proporción de los 

positivos reales fueron 

detectados 

Fundamental si no queremos que se escape 

ningún caso de fraude, incluso a costa de 

algunas falsas alarmas. 

F1-score Promedio armónico entre 

precisión y recuperación 

Útil cuando queremos un equilibrio entre no 

perder fraudes y no generar falsas alertas. 

ROC-AUC Capacidad del modelo 

para distinguir entre 

clases positiva y negativa 

Ideal para comparar modelos, especialmente 

con datos desbalanceados, y entender el 

rendimiento global más allá de un solo 

umbral. 

Nota: Resumen de métricas de desempeño derivadas de la matriz de confusión. Estas métricas evalúan la 

eficacia del modelo desde distintas perspectivas: la exactitud global (Accuracy), la capacidad de identificar 

positivos (Recall) y la precisión de las predicciones positivas (Precision). 

Fuente: Elaboración Propia 
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2.2.7 Explicabilidad de modelos en la detección de fraude 

La explicabilidad es un componente fundamental en los modelos destinados a detectar fraudes. 

La interpretación del razonamiento que subyace a una predicción posibilita la creación de confianza 

en los modelos de aprendizaje automático, sobre todo si estos se emplean para apoyar decisiones 

regulatorias o financieras, como indican (Doshi-Velez, 2017) 

Además, la explicabilidad ayuda a detectar conductas no deseadas, sesgos o errores. De acuerdo 

con lo que dice (Carcillo, 2019) para prevenir acusaciones falsas y asegurar la transparencia ante 

auditorías internas y externas, es necesario fundamentar cada alerta generada en el proceso de 

detección de fraude. 

2.2.7.1 Interpretabilidad en Machine Learning 

La interpretabilidad se refiere a la capacidad de un modelo para ser entendido por humanos, 

ya sea en su estructura, en su funcionamiento o en los factores que influyen en sus predicciones. De 

acuerdo con (Molnar, 2022),un modelo es interpretable cuando sus decisiones pueden explicarse de 

manera directa sin recurrir a aproximaciones adicionales. 

2.2.7.1.1 Modelos interpretables vs. modelos de caja negra 

Entre los modelos interpretables por diseño se encuentran las regresiones lineales, árboles de 

decisión y sistemas basados en reglas. (Rudin, 2019) argumenta que, en contextos de alto riesgo 

como el fraude, estos modelos deberían preferirse cuando pueden alcanzar un rendimiento 

comparable al de modelos complejos. 

Sin embargo, métodos más potentes como redes neuronales, Random Forest, Gradient 

Boosting o SVM suelen ofrecer mejor desempeño en escenarios con patrones no lineales o datos 

altamente desbalanceados. En tales casos, la interpretabilidad debe obtenerse mediante técnicas 

externas. 
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2.2.7.1.2 Interpretabilidad global y local 

Según (Guidotti R, 2018) la interpretabilidad puede dividirse en dos dimensiones: 

 Interpretabilidad global: explica cómo funciona el modelo en términos generales, 

permitiendo identificar qué variables tienen mayor influencia. 

 Interpretabilidad local: se enfoca en explicar una predicción específica, útil para analizar 

casos sospechosos o justificar decisiones particulares ante auditorías. 

2.2.7.2 Métodos de explicabilidad (LIME, SHAP) 

A) LIME: explicabilidad local basada en modelos sustitutos 

LIME (Local Interpretable Model-agnostic Explanations), creado por Ribeiro, Singh y Guestrin 

en 2016, es una técnica de explicabilidad que produce explicaciones locales al simular el 

funcionamiento del modelo original con uno que puede ser interpretado, normalmente lineal, 

alrededor de la vecindad de una observación concreta. LIME posibilita entender por qué una 

transacción específica ha sido catalogada como peligrosa, favorece la revisión manual de casos 

atípicos hecha por analistas antifraude y ayuda a reconocer variables que afectan de forma 

imprevista las decisiones individuales del modelo en el marco de la detección de fraude. De esta 

manera, se refuerza la confianza y la transparencia en el sistema de detección. 

B) SHAP: explicabilidad basada en teoría de juegos 

SHAP (SHapley Additive exPlanations), presentado por Lundberg y Lee en 2017, es un método 

de explicabilidad superior que emplea la teoría de juegos cooperativos para otorgar a cada atributo 

una contribución cuantitativa y aditiva al modelo predictivo, mediante el uso de los valores de 

Shapley. Este método asegura características deseables tales como la igualdad, la coherencia y la 

consistencia. Esto quiere decir que si una variable aporta más a la predicción de un modelo que de 
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otro, su relevancia según SHAP también será mayor, lo que permite brindar explicaciones 

comparables y con fundamentos matemáticos. 

SHAP aporta numerosas ventajas en el marco de la identificación de fraude. Habilita la creación 

de explicaciones locales, que son útiles para comprender las razones por las cuales una transacción 

específica fue catalogada como fraudulenta o legítima, y explicaciones globales, que hacen más 

fácil el estudio del comportamiento general del modelo y el reconocimiento de patrones sistemáticos 

de fraude. Asimismo, permite crear clasificaciones de la relevancia de las variables con apoyo 

teórico, lo cual es útil para priorizar factores de riesgo y respaldar el proceso de tomar decisiones 

estratégicas. SHAP también hace posible detectar efectos no lineales y relaciones complejas entre 

variables, que son difíciles de notar con las técnicas convencionales, como la combinación de 

localización, importe y hora de la transacción. Además, sus visualizaciones (como summary plots y 

dependence plots) hacen más fácil que los analistas, auditores y reguladores se comuniquen sobre 

los resultados, lo cual mejora la transparencia, el rastreo y la confianza en sistemas antifraude 

implementados en contextos financieros esenciales. 

Según Lundberg et al. (2020), SHAP se ha convertido en uno de los métodos más robustos para 

auditar modelos complejos en entornos financieros. 

2.2.8 Desarrollo de aplicaciones web para sistemas de detección 

La creación de aplicaciones en línea enfocadas en sistemas de identificación, que abarcan la 

detección de fraudes, anomalías u otras situaciones vitales, se basa en fundamentos de desarrollo de 

software, arquitecturas distribuidas y un diseño que prioriza la efectividad en el manejo de datos. 

De acuerdo con (Pressman, 2010) estas aplicaciones necesitan la integración de varios elementos 

que puedan funcionar en tiempo real, ofreciendo interfaces accesibles al mismo tiempo que procesan 

datos de diversas fuentes. 
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En concreto, los sistemas de detección que usan análisis automatizado requieren plataformas 

en línea que faciliten la visualización dinámica de los resultados, la ejecución de modelos 

computacionales y la interacción con bases de datos centralizadas. Investigadores como (Sommer, 

2010) afirman que la eficacia de estos sistemas está ligada a la capacidad de la aplicación para 

manejar grandes cantidades de datos, actualizar modelos predictivos y presentar alertas de forma 

instantánea al usuario. 

Asimismo, la literatura más reciente resalta la importancia de aplicar prácticas para un 

desarrollo seguro. Según (Stallings, 2017), es fundamental salvaguardar la confidencialidad e 

integridad de los datos, en particular cuando se trata de información delicada o transacciones 

económicas. Por esta razón, los sistemas web de detección a menudo incluyen procedimientos como 

la validación del tráfico, el cifrado de datos, el control de acceso basado en roles y la autenticación 

sólida. 

Por último, investigaciones como la de  (Hosseini, 2019) enfatizan que es necesario que la 

arquitectura web posibilite que el sistema sea escalable, teniendo en cuenta que, si aumenta el 

número de usuarios, datos o transacciones, esto puede hacer crecer la demanda de procesamiento. 

Esta perspectiva asegura que los modelos de detección continúen funcionando de manera eficaz a 

medida que aumentan las exigencias del entorno. 

2.2.8.1 Arquitectura de sistemas web 

La arquitectura de sistemas web está integrada por un conjunto de patrones tecnológicos, 

componentes y estructuras que posibilitan el desempeño de aplicaciones que se pueden acceder a 

través de navegadores y servicios en línea. (Sommerville, 2016) señala que esta clase de arquitectura 

establece la forma en que se estructuran los módulos de software, cómo se relacionan entre ellos y 

cómo se asegura el rendimiento, la fiabilidad y la seguridad del sistema. La arquitectura web es 
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particularmente importante en el marco de sistemas que detectan fraudes, ya que tiene que ser capaz 

de manejar gran cantidad de datos, consultas simultáneas y procesos de inferencia en tiempo real. 

La arquitectura cliente-servidor es uno de los métodos más empleados; en este modelo, el 

cliente (navegador) accede a la aplicación y las operaciones comerciales y el procesamiento central 

se llevan a cabo en servidores lejanos. La distribución y el mantenimiento de actualizaciones se 

simplifican con este tipo de arquitectura, debido a que las modificaciones se ejecutan directamente 

en el servidor sin perjudicar la experiencia del usuario final (Pressman R. S., 2020) La arquitectura 

de tres capas (three-tier) se basa con frecuencia en este modelo, dividiendo el sistema en: (1) la capa 

de presentación, que se ocupa de interactuar con el usuario; (2) la capa lógica o de negocio, que es 

responsable del procesamiento de reglas, comunicación a través de APIs y ejecución de modelos de 

aprendizaje automático; y (3) la capa de datos, donde se guardan las transacciones, los historiales y 

los resultados predictivos. Al dividir en módulos, se mejora la capacidad de escalabilidad, se 

simplifica el mantenimiento y es posible incorporar modelos analíticos sin modificar la estructura 

general de la aplicación. 

El empleo de microservicios ha ganado importancia en sistemas contemporáneos, 

particularmente los que están dirigidos a la analítica avanzada y la identificación de irregularidades. 

Según (Fowler, 2015) esta arquitectura segmenta el sistema en servicios independientes que tienen 

la capacidad de implementarse, actualizarse y escalarse de forma independiente. En el caso de 

aplicaciones de fraude, esto supone la oportunidad de contar con servicios concretos para auditoría, 

autenticación, visualización, gestión de usuarios o scoring de riesgo. Esta flexibilidad posibilita que 

el motor de machine learning sea actualizado, sustituido o versionado sin que la operación total del 

sistema se vea afectada, lo que le confiere una mayor fortaleza ante las variaciones en los patrones 

de fraude. 
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2.2.8.2 Interfaces para usuarios técnicos y no técnicos 

Dado que las interfaces de usuario son el punto de interacción directa entre los individuos y 

el sistema, su diseño tiene que ajustarse al perfil y nivel de conocimiento del usuario. Según 

(Nielsen, 2012) la claridad, la eficiencia y la usabilidad son componentes fundamentales para 

asegurar una experiencia óptima. En aplicaciones de detección de fraude, esto significa que los 

usuarios con perfiles diferentes (comerciales, operativos, analistas o ingenieros) sean capaces de 

comprender adecuadamente la información expuesta y tomar decisiones fundamentadas en ella. 

 Usuarios técnicos: (Por ejemplo, analistas de datos, ingenieros de sistemas o expertos en 

fraude) necesitan interfaces que tengan un nivel de detalle más alto. (Shneiderman, 2017) 

subrayan que este tipo de usuario requiere tener acceso a las variables que nutren el 

modelo, así como a las métricas de rendimiento (AUC, exactitud, recall), configuraciones 

avanzadas, registros del sistema y alternativas para exportar información. Estas interfaces 

tienen como objetivo ofrecer control y trazabilidad, sin sacrificar la claridad y el orden. En 

consecuencia, es frecuente que el sistema proporcione vistas distintas de acuerdo con la 

función del usuario, asegurándose de que cada perfil tenga acceso únicamente a los datos 

requeridos para realizar su trabajo. 

 Usuarios técnicos: La interfaz debe ser más simple y menos compleja cognitivamente para 

los usuarios sin formación técnica, como lo son los agentes de atención, el personal de 

servicio y los asesores comerciales. Esto necesita que se muestren resultados a través de 

indicadores intuitivos (como colores, semáforos y alertas claras), explicaciones en un 

lenguaje cotidiano y flujos guiados que posibiliten realizar acciones como examinar un 

caso, validar información o escalar una alerta. Estas interfaces tienen que evitar la 

sobrecarga de datos técnicos, poniendo énfasis en la presentación visual a través de 

gráficos o resúmenes. 
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2.2.8.3 Sistema de implementación de APP 

En el sistema establecido, las imágenes se utilizan como pruebas técnicas del análisis que cada 

modelo ha llevado a cabo. Estas evidencias no se "dibujan" directamente en el portal, sino que son 

producidas por el código Python vinculado a cada modelo como parte del proceso analítico. Esto 

puede incluir visualizaciones de resultados, gráficas generadas por el modelo, ilustraciones de 

apoyo para entender cómo actúa el clasificador o comparaciones de rendimiento. El portal se 

ocupa después de organizar y mostrar las evidencias mencionadas para que el usuario, 

especialmente el supervisor y el analista, pueda registrar sus conclusiones e interpretaciones de 

forma ordenada. 

Desde una perspectiva teórica, esta arquitectura se basa en una separación clásica entre la 

capa operacional y la analítica. La capa analítica, de naturaleza experimental u offline, incluye 

scripts en Python que llevan a cabo el entrenamiento y la evaluación de los modelos, así como la 

generación de artefactos como reportes, tablas o figuras. La capa operacional, por su parte, se 

refiere al portal, que utiliza estos artefactos e los incorpora en un flujo controlado que facilita la 

edición, revisión, aprobación y consulta posterior. 

Esta división es particularmente beneficiosa ya que disminuye la interdependencia entre el 

progreso de los modelos y el desarrollo del portal. Esto posibilita la creación de nuevas evidencias 

desde Python sin que sea necesario volver a escribir la interfaz de usuario. También promueve el 

seguimiento del análisis, dado que las evidencias se vinculan a un informe particular y a un estado 

dentro del flujo de trabajo, como revisión o borrador. Al transformar el informe en una bitácora 

estructurada que anota lo observado y lo concluido a partir de cada evidencia, incentiva la revisión 

humana. (Express, s.f.) 

Además, la implementación del portal sostiene conclusiones basadas en evidencia, es decir, 

en cada imagen producida, lo cual refuerza el análisis detallado. Así, el informe ya no es una sola 
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pieza de texto, sino un conjunto de descubrimientos asociados a cada imagen o modelo. Esto es 

particularmente importante cuando se comparan diferentes modelos o salidas de un mismo 

modelo, pues cada prueba puede explicar de forma explícita por qué se sugiere una decisión 

determinada o por qué se detecta un patrón sospechoso específico. (RFC Editor, 2015) 

2.2.8.4 Gestión de reportes y flujo de trabajo (workflow) 

El repositorio establece un proceso formal para la elaboración de informes, que se determina 

mediante los estados DRAFT, IN_REVIEW, OBSERVED y APPROVED. Desde el punto de vista 

teórico, este esquema puede ser considerado como un modelo de ciclo de vida donde la condición 

de un objeto, específicamente el informe, define quién tiene la capacidad de actuar sobre él, qué 

operaciones se permiten y cuál es el sentido del informe en cada instante, ya sea en estado de 

borrador, en proceso de validación, observado o aprobado. 

Con respecto a la gobernanza y al control de calidad, este método proporciona consistencia y 

orden, porque evita que varios participantes alteren un mismo informe sin supervisión. Por 

ejemplo, impidiendo que un supervisor edite un borrador como si fuera analista. Además, 

establece responsabilidad o rendición de cuentas, ya que cada transición de estado supone un actor 

claramente identificado, como el analista que envía el informe para su revisión o el supervisor que 

decide examinarlo o aprobarlo. Asimismo, ayuda a evitar errores, ya que el flujo impide las 

ediciones cuando el informe está aprobado o en revisión y posibilita que el analista lo edite 

nuevamente, sobre todo cuando está en borrador o ha sido observado. (OWASP, s.f.) 

Específicamente, el estado OBSERVED establece un ciclo explícito de retroalimentación. En 

teoría, este mecanismo puede ser considerado un retrabajo controlado, en el que el supervisor no 

solo rechaza el reporte, sino que lo devuelve con observaciones específicas para corregirlo. Este 

principio se fortalece en la implementación del repositorio, pues se previene que persistan entradas 

vacías y se facilita que el borrador recupere de manera adecuada las conclusiones vinculadas a 
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cada imagen. Esto es crucial para asegurar que el ciclo de "observar → corregir → reenviar" sea 

factible y no pierda el contexto del análisis anterior. 

El modelo cliente-servidor es la base de la arquitectura del software del portal. El frontend, 

que funciona como cliente, está constituido por páginas en HTML y JavaScript estáticas, las 

cuales se distinguen por rol (SUPERVISOR, VIEWER, ANALYST y ADMIN). Estas páginas 

representan las vistas y utilizan HTTP para acceder a los endpoints del sistema. El backend, 

desarrollado con Node.js y Express, ofrece estos endpoints y centraliza la lógica comercial, que 

abarca la autorización, las validaciones, la persistencia de datos y la exportación a PDF. SQLite se 

emplea como base de datos local para el almacenamiento. 

Esta arquitectura, desde el marco teórico, se adhiere al principio de división de 

responsabilidades, estableciendo una clara distinción entre la lógica de negocio, la gestión de datos 

y la interfaz del usuario. Además, el empleo de APIs permite establecer un contrato preciso entre 

cliente y servidor, en el que el backend determina acciones específicas como la generación, 

aprobación o exportación a PDF de informes. El modularidad funcional por roles posibilita que 

cada clase de usuario cuente con acciones y pantallas limitadas, disminuyendo la complejidad del 

cliente y simplificando el crecimiento progresivo del sistema. 

En este marco, el backend funciona como la "fuente única de la verdad" (single source of 

truth) del sistema, ya que concentra el manejo de los estados del reporte, las reglas de transición, 

los permisos por rol, el rango de datos a los que cada usuario puede acceder por ejemplo, 

restringiendo al rol VIEWER a los analistas asignados y la elaboración de documentos como los 

PDF con control de acceso. Para impedir que el cliente asuma responsabilidades de seguridad que 

no le pertenecen, esta centralización es esencial. A pesar de que el frontend tiene la capacidad de 

ocultar botones o alternativas, la autorización efectiva debe llevarse a cabo en el servidor, 

siguiendo las buenas prácticas de diseño seguro del software. (Puppeteer, s.f.) 
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2.2.8.5 Autenticación (JWT) y autorización (RBAC + scoping) 

La implementación aplica un sistema de seguridad común en aplicaciones web con API, 

fundamentado en la autorización y la autenticación. La autenticación se lleva a cabo por medio de 

JWT, lo cual posibilita un modelo sin estado en el que el servidor comprueba quién es el usuario 

usando el token, sin la necesidad de conservar sesiones en memoria. 

La autorización, que depende en gran medida del RBAC, se basa en que cada usuario tiene 

un rol (ANALYST, SUPERVISOR o VIEWER) que determina qué tareas puede llevar a cabo. 

Además, se añade un control de alcance (scoping) para que el acceso no dependa únicamente del 

rol, sino también de relaciones y estados: los analistas acceden a sus propios informes, los 

supervisores los examinan y dan su aprobación, y los viewers solo pueden consultar informes 

aprobados de analistas asignados. Desde una perspectiva teórica, el sistema fusiona RBAC con un 

esquema ABAC que se basa en relaciones y atributos, fortaleciendo así el principio de mínimo 

privilegio y asegurando un control de acceso más exacto y seguro. 

2.2.8.6 Persistencia local con SQLite (modelado relacional y consistencia) 

SQLite es un motor de base de datos relacional embebido que guarda los datos en un archivo 

local, lo cual le permite ser apropiado para sistemas que necesitan una implementación sencilla, 

persistencia transaccional, integridad referencial y un costo operativo reducido, como las 

aplicaciones locales o los prototipos. 

Dentro del repositorio, SQLite permite la existencia de roles y usuarios, relaciones de 

asignación entre actores, reportes con metadatos y estados, conclusiones por imagen y un registro 

elemental de acciones. Desde el enfoque teórico, el diseño hace uso de principios tradicionales de 

bases de datos relacionales, entre los que se encuentran la normalización parcial, el empleo de 

tablas puente para relaciones N:M, la integridad a través de claves foráneas y una evolución del 

esquema que es poco intensa. 
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El almacenamiento local, además, favorece la reproducibilidad y el control académico, lo 

que permite mantener abierta la opción de pasar a un RDBMS de servidor en el futuro sin 

modificar el modelo conceptual del sistema. 

2.2.8.7 Generación de PDF desde el backend (rendering server-side)  

Puppeteer, un motor de renderizado que se basa en un navegador sin interfaz (headless), es el 

encargado de generar los PDF del lado del servidor. Desde una perspectiva teórica, este 

procedimiento implica la creación de documentos en un servidor. En este caso, el backend crea 

una plantilla en HTML y la convierte directamente a PDF, asegurando que la salida sea consistente 

e independiente del navegador o de las preferencias del usuario. 

Dado que la autorización para la creación y descarga del PDF se gestiona en el backend, este 

método también fortalece la seguridad y el control de acceso, ya que impide que un usuario acceda 

a documentos de informes sin permiso. El PDF se transforma en un objeto estandarizado y formal 

en sistemas de informes, que puede archivarse, compartirse o auditarse. Permite incluir evidencias 

y resultados en un formato seguro e inalterable, lo que evita la falta de control y la variabilidad 

asociada con depender de la impresión directa desde el navegador. (imbalanced-learn developers, 

s.f.) 
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CAPITULO 3 

3. DESARROLLO 

3.1 Metodología de Desarrollo Ágil (Scrum y Kanban) 

3.1.1 Implementación de Scrum 

Scrum se utilizó como el marco central para la planificación y organización del 

proyecto. Dado que el desarrollo combina etapas analíticas (preprocesamiento de datos, 

selección de características, experimentación de modelos) y etapas de ingeniería 

(desarrollo de frontend, backend, reportes explicables), Scrum permitió dividir el trabajo 

en sprints de dos semanas, cada uno con metas claras y verificables. (Schwaber, 2020) 

Durante cada sprint se realizaron las siguientes actividades formales: 

a) Sprint Planning 

El equipo definió las funcionalidades a desarrollar según su prioridad e impacto en 

el avance del proyecto. En esta etapa se planificaron tareas relacionadas con el análisis 

exploratorio de datos, entrenamiento de algoritmos, desarrollo de APIs, diseño de las 

interfaces web y generación de reportes explicables. 

Al tratarse de un proyecto académico que combina investigación y construcción 

técnica, esta fase resultó esencial para mantener claridad en los objetivos inmediatos y 

evitar desviaciones del alcance. 

b) Daily Meetings (adaptadas) 

Aunque el proyecto no requería reuniones diarias extensas, se realizaron sesiones 

breves de seguimiento para identificar bloqueos, revisar avances y redistribuir tareas 

cuando era necesario. Esto ayudó a mantener alineados los esfuerzos entre los integrantes, 
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especialmente en momentos clave como la integración del modelo en el portal o la 

validación de las explicaciones generadas por SHAP o LIME. 

c) Sprint Review 

Al final de cada sprint se presentó un incremento funcional del sistema: un modelo 

entrenado, una sección del portal web, un prototipo de reporte o una visualización 

explicativa. Esta práctica permitió obtener retroalimentación temprana, corregir 

desviaciones y asegurar que cada iteración aportara un valor real al proyecto. 

d) Sprint Retrospective 

El equipo evaluó qué funcionó bien, qué debía mejorarse y qué podría optimizarse 

para el siguiente sprint. Esto permitió ajustar la forma de trabajar, mejorar los tiempos de 

integración y reorganizar responsabilidades para maximizar la productividad. (Beck, 2001) 

3.1.2 Uso de Kanban para la gestión del flujo de trabajo 

Si bien Scrum estableció el marco temporal del proyecto, también fue preciso gestionar de 

manera visual y constante las labores cotidianas. Para ello, se utilizó Kanban como soporte 

operativo. Se empleó un tablero estructurado en las columnas To Do, In Progress, In Review y 

Completed, lo cual posibilitó observar el estado de cada actividad con claridad y propició el 

monitoreo del flujo de trabajo. Este método mejoró la coordinación del equipo al evitar que se 

acumularan tareas en etapas críticas, como la validación de modelos o el desarrollo de 

componentes backend. Además, se establecieron límites de trabajo en progreso (WIP) para 

prevenir la sobrecarga de tareas en una misma etapa, fomentar que las actividades se terminen 

antes de comenzar otras nuevas y asegurar un flujo de trabajo más eficiente y estable durante todo 

el proyecto. 
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Kanban también facilitó la priorización dinámica de tareas, especialmente en momentos 

donde la experimentación del modelo arrojaba resultados inesperados y se debía ajustar la 

ingeniería de características o incluir nuevas métricas de evaluación. 

3.1.3 Integración Scrum + Kanban (Scrumban) 

Por varias características propias del proyecto, se considera apropiado el empleo de 

una metodología híbrida que combine Scrum y Kanban (Scrumban). Primero, es 

importante señalar que los proyectos de Machine Learning son inherentemente variables, 

porque el entrenamiento y la calibración de modelos no se produce en un proceso lineal. 

Además, los resultados dependen de aspectos como la calidad del conjunto de datos, la 

elección de características, los algoritmos analizados y los hiperparámetros probados. En 

esta situación, Scrum posibilita la redefinición de metas al comienzo de cada sprint; 

Kanban, en cambio, posibilita la reorganización dinámica de tareas cuando los resultados 

logrados no son los deseados. 

En segundo lugar, el proyecto necesita la provisión ininterrumpida de componentes 

funcionales, sobre todo al relacionarse con los interesados o los usuarios que no son 

técnicos. Para ellos, ver adelantos concretos, como vistas funcionales del portal web, 

dashboards, informes ejecutivos o explicaciones fundamentadas en SHAP, es crucial. 

Scrum garantiza que se produzcan aumentos funcionales en ciclos breves, normalmente de 

dos semanas, lo cual promueve una retroalimentación constante y temprana. 

Además, el proyecto tiene una complejidad multidisciplinaria elevada, ya que 

engloba campos como la ciencia de datos, la seguridad en los bancos, el aprendizaje 

automático, la explicación de modelos y el desarrollo web a nivel completo. La 

combinación de Kanban y Scrum permite la coordinación efectiva de estas disciplinas, 

conservando un balance entre la flexibilidad operativa y el orden metodológico. Además, la 
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gestión del riesgo y la disminución de la incertidumbre son cruciales, ya que en los 

modelos de fraude modificaciones menores pueden tener un impacto importante en los 

resultados. El uso de metodologías ágiles permite el aprendizaje a partir del error, la 

experimentación controlada y el progreso constante. 

En último término, teniendo en cuenta los roles y tiempos de un equipo académico, 

es absolutamente necesario disponer de métodos explícitos para la asignación y el 

seguimiento de actividades. Según Molnar (2023), la utilización del tablero Kanban 

posibilitó determinar de manera transparente quién estaba a cargo de cada tarea, mientras 

que Scrum mejoró el cumplimiento de los objetivos del proyecto y la organización del 

trabajo en equipo al permitir definir metas realistas para cada sprint. 

3.1.4 Tiempos y roles del proyecto mediante Kanban 

Como complemento a la metodología ágil adoptada, se utilizó un tablero Kanban como 

herramienta de soporte para la gestión operativa de las actividades del proyecto. Este enfoque 

permitió visualizar de manera clara y estructurada el estado de cada tarea a lo largo del ciclo de 

desarrollo, facilitando el control del avance y la coordinación entre las distintas fases del proyecto. 

El tablero Kanban se organizó en las columnas To Do, In Progress, In Review y Completed, 

lo que permitió clasificar las actividades según su estado de ejecución. A través de esta estructura, 

se gestionaron tareas relacionadas con el preprocesamiento de datos, la experimentación y 

entrenamiento de modelos de aprendizaje automático, el desarrollo del portal web y la generación 

de reportes explicables. 

La aplicación de Kanban contribuyó a mejorar la eficiencia del flujo de trabajo, reducir 

acumulaciones de tareas en etapas críticas y permitir una priorización dinámica, especialmente en 

actividades exploratorias propias de proyectos de Machine Learning. Asimismo, esta herramienta 
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facilitó la identificación temprana de bloqueos y el seguimiento continuo del progreso, 

garantizando una ejecución ordenada y alineada con los objetivos definidos en cada iteración. 

Figura 2  

Tablero Kanban utilizado para la gestión del proyecto 

 

Nota: Evolución de las tareas del proyecto divididas en columnas de estado (Pendiente, En curso, 

Revisión y Completado). Esta metodología ágil asegura que las métricas de clasificación y los 

análisis de interpretabilidad se completen antes del despliegue final. 

Fuente: Elaboración propia 

3.2 Experiencia de Usuario y Perfiles de Acceso 

El diseño de la plataforma FraudOps Portal no solo se basó en criterios técnicos, sino 

también en la necesidad de garantizar que cada usuario, según su rol institucional, pudiera utilizar 
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la herramienta de manera intuitiva, segura y alineada con sus responsabilidades operativas. Para 

lograrlo, se definió un modelo de perfiles de acceso que determina la experiencia, las vistas 

habilitadas y las acciones disponibles para cada tipo de usuario. 

Este enfoque evita que todos los usuarios reciban la misma información, reduciendo la sobrecarga 

cognitiva, minimizando el riesgo de exposición de datos sensibles y permitiendo que la interfaz se 

adapte al nivel técnico y funcional de cada grupo. La experiencia final busca mantener claridad, 

simplicidad y pertinencia para cada rol, especialmente en un sistema donde coexisten análisis 

técnicos, revisión operativa y supervisión ejecutiva. 

3.2.1 Administrador 
 

El administrador tiene la responsabilidad de garantizar que el portal funcione 

adecuadamente, gestionar a los usuarios y configurar el sistema en términos generales. Su 

experiencia en la plataforma se centra en el mantenimiento, la gobernanza y las tareas de control. 

Cuando se accede, se tiene acceso a un panel dividido en secciones administrativas que permite 

crear, actualizar y asignar roles de usuarios; consultar registros de auditoría y actividad del 

sistema; ajustar parámetros relacionados con modelos, accesos e informes; además de observar el 

estado general y hacer seguimiento operativo del sistema. Dado que su función no es analítica ni 

operativa, este rol no tiene acceso a alertas de fraude. 

3.2.2 Supervisor 
 

El Supervisor está a cargo de comprobar las alertas que los modelos de detección de fraude 

generan y de examinar los aspectos operacionales de cada transacción indicada. Cuando inicias 

sesión, entras directamente a un panel principal con alertas priorizadas en tiempo real y filtros 

avanzados para la gestión de casos. Además, cuenta con paneles de explicabilidad que utilizan 

métodos como SHAP o LIME, datos sobre la condición de cada alerta (en revisión, validada, 
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nueva o descartada) y alternativas para marcar, cerrar o escalar casos. Su interfaz está optimizada 

para el análisis veloz, la interacción constante con el sistema y la toma de decisiones. 

3.2.3 Coordinador del proyecto 
 

El Coordinador del Proyecto tiene una perspectiva ejecutiva que se enfoca en el monitoreo 

general de la conducta del sistema y de cómo los modelos de fraude funcionan. Esta perspectiva 

comprende análisis de tendencias por tipo de fraude o categorías, comparaciones entre diferentes 

períodos, y herramientas para la creación de informes ejecutivos que se pueden descargar. 

También incluye métricas agregadas como recall, precisión y AUC-PR. Su interfaz se enfoca en la 

visualización y síntesis nítida de indicadores estratégicos, sin entrar a revisar transacciones 

individuales, lo que facilita la toma de decisiones y el progreso constante del proceso institucional. 

3.2.4 Usuarios Visualizadores 
 

Los Usuarios Visualizadores están dirigidos a la consulta de datos no técnicos que han sido 

validados con anterioridad. Este rol tiene acceso limitado a informes aprobados, estadísticas 

descriptivas y gráficos simplificados, que se muestran en una interfaz sencilla donde no aparecen 

detalles técnicos o delicados. Por lo tanto, se permite que personal no especializado participe sin 

que la seguridad ni la confidencialidad del sistema se vean comprometidas. 

3.2.5 Encuestadores / Recolectores de datos 
 

Cuando el proceso lo exige, los encuestadores o recolectores de datos tienen acceso 

limitado y específico para ingresar información. Su interacción con la plataforma se limita a 

consultar el historial de sus propias entradas, utilizar formularios estructurados y aplicar 

validaciones sencillas que aseguran que los datos permanezcan íntegros. Este rol no puede acceder 

a reportes ni a módulos de análisis, lo que respalda el principio del privilegio mínimo (Ribeiro, 

2016). 
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3.2.6 Justificación del enfoque de vistas personalizadas 
 

La aplicación de vistas personalizadas responde a metas esenciales para la seguridad y el 

rendimiento del sistema. Primero, evita el acceso no autorizado a información confidencial o 

técnica y, por ende, brinda una protección rigurosa de los datos delicados. En segundo lugar, al 

mostrar solo la información pertinente para cada rol, optimiza la carga cognitiva, lo que mejora la 

usabilidad y disminuye los fallos operativos. Además, ayuda a la trazabilidad operativa, 

respaldando procedimientos de control interno y auditoría, y se mantiene en consonancia con las 

prácticas de seguridad bancaria, según las cuales la información debe ser diferenciada y 

supervisada. En resumen, esta definición de perfiles y experiencias de usuario brinda al diseño del 

FraudOps Portal seguridad, solidez y claridad, lo que contribuye a establecer una arquitectura 

enfocada en el usuario y encaminada a la reducción eficaz del fraude. 
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Figura 3  

Diagrama de Casos de Uso - Portal FraudOps 

 

Nota: El diagrama ilustra las interacciones entre los actores principales (Analistas Antifraude y 

Administradores) y las funcionalidades del sistema Portal FraudOps. Se destacan los procesos de 

visualización de la matriz de confusión, generación de explicaciones locales con LIME y el 

monitoreo de métricas de rendimiento en tiempo real. 
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Fuente: Elaboración Propia 

Figura 4  

Flujo del rol ADMIN: gestión de usuarios, roles y asignaciones en FraudOps  

 

Nota: El diagrama describe la secuencia lógica de los procesos de administración de identidades. 

Incluye la creación de perfiles de usuario, la definición de privilegios de acceso (RBAC) y la 
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asignación de analistas a casos específicos de fraude, garantizando la trazabilidad y la seguridad en 

la gestión operativa del portal. 

Fuente: Elaboración Propia 
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Figura 5  

Flujo del rol ANALYST: elaboración, edición y envío de reportes en FraudOps 
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Nota: El diagrama detalla el proceso cíclico realizado por el analista, que inicia con la interpretación 

de las métricas de clasificación y las explicaciones de LIME, y culmina con la generación de reportes 

detallados. Este flujo asegura que los hallazgos de fraude sean documentados y comunicados de 

manera estandarizada para la toma de decisiones. 

Fuente: Elaboración Propia 

Figura 6  

Diagrama general del flujo de interacción por rol en el Portal FraudOps 

 

Nota: El diagrama presenta la arquitectura de interacción global del sistema, integrando las 

funciones de gobernanza del Administrador con las capacidades operativas del Analista. Se visualiza 

cómo la plataforma centraliza los datos de clasificación y las herramientas de explicabilidad, 

permitiendo un flujo continuo desde la gestión de acceso hasta la emisión de reportes técnicos de 

fraude. 

Fuente: Elaboración Propia 

Figura 7  

Flujo del rol SUPERVISOR: revisión, observación y aprobación de reportes en FraudOps 
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Nota: Secuencia de revisión, retroalimentación y validación de informes por parte del rol de 

supervisión, destacando el flujo de aprobación necesario para el cierre de casos sospechosos en el 

sistema. 

Fuente: Elaboración Propia 
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Figura 8  

Flujo del rol VIEWER: consulta restringida y descarga de reportes en PDF en FraudOps 
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Nota: El diagrama presenta el flujo de acceso limitado para el rol de consulta. Se destaca la 

restricción de privilegios que impide la edición de datos, permitiendo únicamente la visualización 

de tableros y la exportación de reportes finalizados en formato PDF para fines de auditoría o 

información gerencial. 

Fuente: Elaboración Propia 

 

Figura 9 

Modelo de datos (SQLite) del Portal FraudOps 
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Nota: Estructura de tablas y llaves primarias/foráneas del motor de base de datos SQLite. Este 

modelo constituye el núcleo de información para la gestión de usuarios y la documentación de casos 

de fraude dentro del portal. 

Fuente: Elaboración Propia 

3.3 Selección de la base de datos 

 
3.3.1 Descripción del Conjunto de Datos 

Se seleccionaron datos del repositorio público Kaggle para desarrollar y entrenar los modelos de 

aprendizaje automático propuestos. La base es el simulador PaySim. Se eligió este conjunto de 

datos porque representa transacciones de pago en línea que cumplen con el objetivo general del 

estudio. 

3.3.2 Dimensiones y Características 

El conjunto de datos original consta de un total de 6.362.620 registros de transacciones y 

tiene 11 columnas. Cada entrada representa una transacción separada representada por la variable 

'step', que es una unidad de tiempo secuencial, donde cada paso corresponde a una hora en tiempo 

real. 

Tabla 3 

Diccionario de Variables 

 

Variable Tipo de Dato Descripción 

step Numérico 
(Discreto) 

Representa la unidad de tiempo en la simulación. 1 step 
equivale a 1 hora de tiempo real. 

type Categórico 
(Nominal) 

Tipo de transacción realizada donde existen 5 tipos: CASH-
IN, CASH-OUT, DEBIT, PAYMENT y TRANSFER. 

amount Numérico 
(Continuo) 

El monto monetario de la transacción en moneda local. 
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nameOrig Categórico 
(String) 

Identificador único del cliente que inicia la transacción 
(Origen). 

oldbalanceOrg Numérico 
(Continuo) 

Saldo disponible en la cuenta de origen antes de realizar la 
transacción. 

newbalanceOrig Numérico 
(Continuo) 

Saldo resultante en la cuenta de origen después de realizar 
la transacción. 

nameDest Categórico 
(String) 

Identificador único del destinatario de la transacción 
(Destino). 

oldbalanceDest Numérico 
(Continuo) 

Saldo en la cuenta de destino antes de recibir la transacción. 
(Nota: Puede ser 0 si el destinatario es un comercio nuevo). 

newbalanceDest Numérico 
(Continuo) 

Saldo resultante en la cuenta de destino después de la 
transacción. 

isFraud Numérico 
(Binario) 

Variable Objetivo (Target). Indica si la transacción es 
fraudulenta. 

• 1: Transacción fraudulenta. 

• 0: Transacción legítima. 

isFlaggedFraud Numérico 
(Binario) 

Variable de control del sistema de simulación. Marca 
automáticamente transferencias masivas (generalmente 
superiores a 200.000) en un solo intento. 

Fuente: Elaboración Propia 

3.3.3 Definición de la Variable Objetivo 

Se identificó como variable dependiente a 'isFraud'. Esta variable es binaria, donde un 

valor de 1 representa una transacción fraudulenta y un valor de 0 representa una transacción 

legítima. 

3.3.4 Balance de Clases 

El conjunto de datos presenta un fuerte desequilibrio de clases. Las transacciones 

fraudulentas solo representan el 0,1% de los datos totales. Esta propiedad se abordará más 

adelante en el paso de preprocesamiento utilizando técnicas de equilibrio. 
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3.3.5 Preprocesamiento de Datos  

Dado que la calidad de las predicciones depende directamente de la calidad de los datos de 

entrada, se aplicaron las siguientes técnicas de limpieza, transformación y reducción." 

3.3.6 Limpieza y Selección de Características 

Se realizó un análisis de relevancia de atributos. Las variables ‘nameOrig’ y ‘nameDest’ 

fueron eliminadas. Debido a que son identificadores específicos, no proporcionan patrones 

generalizables y su inclusión puede conducir a una redundancia de modelos. Además, la variable 

isFlaggedFraud se eliminó porque es una regla estática en el marco de simulación y no una 

característica que el modelo debe aprender. 

Ingeniería de Características: 

Para evitar el ruido y la redundancia (colinealidad), se eliminaron las siguientes variables: 

 Identificadores (nameOrig, nameDest): Variables categóricas de cardinalidad 

única que no aportan patrones generalizables. 

 Variables Redundantes (newbalanceOrig, newbalanceDest, oldbalanceOrg, 

oldbalanceDest): Al haber calculado la magnitud del error y tener el saldo inicial, 

el saldo final se vuelve información repetitiva matemáticamente. 

 Variable step: Fue transformada a una variable cíclica (hora_del_dia) para 

capturar patrones temporales de comportamiento, eliminando la columna original y 

también se creó la variable día_del_mes. 

3.3.7 Transformación de Variables  

Se observaba que las variables monetarias (como montos y saldos) mostraban una 

distribución muy heterogénea: la mayoría de las transacciones eran de bajo valor, mientras que 

algunas alcanzaban cifras extremas. Para corregir esta asimetría se aplicó una transformación 
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logarítmica (ln(𝑥 + 1)) a estas columnas. Esta variante particular, que suma 1 al valor original, 

era necesaria para manejar las numerosas entradas con saldo cero, evitando así el error matemático 

que se produciría al calcular el logaritmo de cero. Se decidió excluirlo de esta transformación para 

no distorsionar la secuencia temporal y mantener la distancia uniforme de las horas, fundamental 

para detectar patrones cíclicos de fraude. 

3.3.8 Codificación de Variables Categóricas (Encoding) 

Los algoritmos de aprendizaje automático requieren entrada numérica para realizar 

operaciones matemáticas. La variable categórica ‘Type’ (Tipo de transacción) se convirtió 

mediante la técnica One-Hot Encoding donde cada categoría es una nueva columna binaria (0 o 1). 

Esto evita que el modelo asuma erróneamente un orden jerárquico entre tipos de transacciones que 

ocurriría si se asignaran números secuenciales. 

3.3.9 Escalado de Datos 

Las variables numéricas del conjunto de datos, como ‘amount’ y ‘oldBalanceOrg’, tienen 

rangos de valores muy diferentes. Para evitar que la función de costos del algoritmo sea dominada 

por variables con magnitudes mayores, se utilizó una técnica de estandarización (StandardScaler). 

Este proceso ajusta las variables para que tengan una media de 0 y una desviación estándar de 1, 

asegurando que todas las características contribuyan por igual al aprendizaje del modelo. 

División del Conjunto de Datos 

Se dividió el conjunto de datos en dos subconjuntos: 

 Conjunto de Entrenamiento (Training Set): Se dividió el 80% de los datos, utilizado para el 

ajuste de los parámetros. 

 Conjunto de Prueba (Test Set): El restante del 20% de los datos será reservado para la 

evaluación final. 



95 
Fraude en Pagos en Línea 
 
 

 
 

QUITO – ECUADOR | 2024 

Debido al grave desequilibrio en la clase ‘isFraud’, se utilizó una división estratificada 

garantizando que la proporción de fraudes (clase minoritaria) siga siendo idéntica tanto en el 

entrenamiento como en las pruebas, evitando sesgos. 
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CAPITULO 4 

4. ANÁLISIS DE RESULTADOS 

4.1 Análisis Exploratorio de Datos 

Para el desarrollo de los modelos predictivos se utilizó el conjunto de datos Synthetic 

Financial Datasets For Fraud Detection, el cual simula transacciones financieras reales y ha sido 

ampliamente empleado en estudios de detección de fraude debido a su complejidad y realismo. 

Tras el proceso de limpieza, transformación y selección de variables descrito en el capítulo 

anterior, se obtuvo una base final compuesta por 6 363 620 registros, distribuidos en 5 090 096 

observaciones para entrenamiento y 1 272 524 observaciones para prueba, manteniendo una 

división estratificada para preservar la proporción de fraudes. 

Con el objetivo de comprender la estructura del conjunto de datos de transacciones bancarias y 

detectar patrones relevantes asociados al fraude, se realizó un Análisis Exploratorio de Datos 

(EDA) mediante gráficos de tipo univariado y bivariado. 

Este análisis permitió examinar la distribución de las variables numéricas, la presencia de 

desbalances de clase, relaciones entre variables y comportamientos temporales de las 

transacciones. 

4.1.1 Análisis univariado  

En la Figura 9 se presenta la distribución de las principales variables numéricas del dataset 

(step, amount, oldbalanceOrg, newbalanceOrg, oldbalanceDest, newbalanceDest), empleando 

escala logarítmica para manejar adecuadamente la alta dispersión y la presencia de valores 

extremos. 

Figura 10  

Distribución de Variables Numéricas (Manejo de Ceros en Log) 
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Nota: La figura muestra la distribución de las principales variables monetarias y temporales del conjunto de 
datos.  

Fuente: Elaboración propia. 

La variable amount muestra una distribución fuertemente asimétrica hacia la derecha, con una 

gran concentración de operaciones en cantidades pequeñas y una larga cola asociada a montos 

altos. De igual manera, los saldos de inicio y de cierre, tanto los que provienen como los que van a 

destino, muestran patrones de distribución coherentes entre ellos. Esto es consistente con la 

esencia contable de las transacciones bancarias. La variable step, que indica el tiempo en horas a 

lo largo de 30 días de simulación, presenta una distribución no uniforme, lo cual evidencia los 

patrones temporales y operativos del sistema financiero. En resumen, estas propiedades apoyan el 

uso de modelos robustos y la implementación de transformaciones logarítmicas en situaciones 

donde las distribuciones no son normales, con el objetivo de optimizar el rendimiento y la 

estabilidad del análisis. 

La Figura 11 muestra la distribución de la variable objetivo isFraud, donde se evidencia un 

fuerte desbalance de clases, con aproximadamente 99.9% de transacciones no fraudulentas y solo 

0.1% fraudulentas. 

Figura 11  
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Distribución de Transacciones: Fraude vs Normal 

 

Nota: Se evidencia un fuerte desbalance de clases en el conjunto de datos.  

Fuente: Elaboración propia 

Este desbalance confirma la necesidad de aplicar técnicas específicas para clasificación en 

contextos de fraude. 

4.1.2 Análisis Bivariado 

En la Figura 12 se presenta la matriz de correlación de Pearson entre las variables numéricas 

independientes (excluyendo la variable objetivo). 

 

 

 

 

Figura 12  

Matriz de Correlación 
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Nota: Se observan correlaciones altas entre variables de saldo, propias de la dinámica contable.  

Fuente: Elaboración propia. 

 Existe una correlación prácticamente perfecta entre las variables oldbalanceOrg y 

newbalanceOrg (≈1.00), y de igual manera entre oldbalanceDest y newbalanceDest, lo que 

evidencia relaciones contables directas propias de la dinámica de las transacciones. Además, la 

variable amount muestra correlaciones moderadas con los saldos finales del destinatario, 

indicando que el monto transferido influye de forma apreciable en el balance resultante. Por otro 

lado, la variable step presenta correlaciones muy bajas con el resto de las variables, lo que sugiere 

una independencia temporal respecto a montos y balances. En conjunto, estas observaciones 

justifican la inclusión de dichas variables en los modelos propuestos, especialmente porque los 

algoritmos utilizados son menos sensibles a la multicolinealidad. 

Figura 13  
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Dispersión Temporal (Monto vs Tiempo) 

 

Nota: Las transacciones fraudulentas se concentran en montos elevados a lo largo de todo el 

periodo analizado.  

Fuente: Elaboración propia. 

Las transacciones catalogadas como fraudulentas se presentan de manera homogénea a lo 

largo de todo el periodo de simulación, sin evidenciar concentración en un intervalo temporal 

particular, aunque comparativamente muestran una mayor tendencia a asociarse con montos 

elevados frente a las transacciones normales. Esto sugiere que la variable temporal por sí sola no 

permite discriminar adecuadamente el fraude, pero al combinarse con variables monetarias puede 

aportar información relevante para mejorar la capacidad predictiva del modelo 

Figura 14  

Comportamiento Temporal: Total Transaccionado vs Ciclos Diarios 



101 
Fraude en Pagos en Línea 
 
 

 
 

QUITO – ECUADOR | 2024 

 

Nota: Se muestra el comportamiento de las transacciones a lo largo del tiempo, diferenciando 

entre transacciones fraudulentas y no fraudulentas. Fuente: Elaboración propia. 

Fuente: Elaboración propia. 

Se identifican variaciones significativas en el volumen total transaccionado a lo largo de 

los días, lo que refleja patrones operativos característicos del sistema financiero y la dinámica 

propia del flujo de pagos dentro del periodo analizado. En este contexto, las transacciones no 

fraudulentas concentran claramente el mayor volumen del total transaccionado, mientras que las 

fraudulentas representan una fracción mucho menor; sin embargo, su presencia se mantiene de 

forma constante y relativamente estable a lo largo del tiempo, evidenciando que, aunque el fraude 

tiene un impacto reducido en términos de volumen global, constituye un fenómeno persistente que 

debe ser considerado en el modelado predictivo. 
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Figura 15  

Comportamiento Temporal 

  
 

Nota: La figura muestra el volumen total transaccionado según la hora del día y por segmentos 

horarios, diferenciando entre transacciones fraudulentas y no fraudulentas, utilizando escala real y 

logarítmica.  

Fuente: Elaboración propia. 

Se observan picos de volumen transaccional en determinadas horas del día, lo que 

evidencia la existencia de horarios con mayor actividad financiera dentro del sistema analizado. A 

pesar de ello, las transacciones fraudulentas siguen un patrón horario similar al de las 

transacciones normales, aunque con volúmenes significativamente menores, lo cual resulta 

coherente con su baja frecuencia relativa. Además, el análisis por segmentos del día permite 

identificar diferencias claras en el volumen transaccional acumulado, destacándose como periodos 

de mayor actividad aquellos asociados a horarios laborales y comerciales. Sin embargo, las 

operaciones fraudulentas mantienen una presencia constante en todos los segmentos temporales, 

aunque con una magnitud considerablemente inferior frente a las operaciones no fraudulentas, lo 

que refuerza la utilidad del análisis temporal para comprender la dinámica general de los pagos. 

 

Figura 16  



103 
Fraude en Pagos en Línea 
 
 

 
 

QUITO – ECUADOR | 2024 

Distribución de Fraude por Tipo de Transacción 

 

Nota: La figura muestra el volumen total transaccionado según la hora del día y por segmentos 

horarios, diferenciando entre transacciones fraudulentas y no fraudulentas, utilizando escala real y 

logarítmica.  

Fuente: Elaboración propia. 

En la gráfica de barras Figura 15 se muestra la distribución de las transacciones según su tipo, 

diferenciando entre operaciones legítimas y fraudulentas. Dado el uso de una escala logarítmica en 

el eje vertical, es posible comparar categorías con volúmenes muy distintos sin que las clases 

minoritarias queden visualmente ocultas. Se observa que la mayoría de las transacciones 

pertenecen a tipos como CASH_OUT y PAYMENT, lo cual es coherente con el comportamiento 

típico de los sistemas financieros. 

Sin embargo, al analizar específicamente los casos de fraude, se evidencia que estos se 

concentran de manera desproporcionada en ciertos tipos de transacción, particularmente en 

CASH_OUT y TRANSFER. Esta concentración sugiere que los fraudes no ocurren de forma 



104 
Fraude en Pagos en Línea 
 
 

 
 

QUITO – ECUADOR | 2024 

aleatoria, sino que están asociados a mecanismos específicos de movimiento de dinero que 

facilitan la extracción rápida de fondos. Por tanto, la variable tipo de transacción se perfila como 

un predictor relevante para los modelos de detección de fraude. 

Figura 17 

Relación entre Saldo Disponible vs Monto Transferido 

 

Nota: La figura muestra el volumen total transaccionado según la hora del día y por segmentos 

horarios, diferenciando entre transacciones fraudulentas y no fraudulentas, utilizando escala real y 

logarítmica.  

Fuente: Elaboración propia. 

En la gráfica de dispersión Figura 16 se analiza la relación entre el saldo original de la 

cuenta (oldbalanceOrg) y el monto de la transacción (amount), incorporando una línea de 
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referencia donde el monto es igual al saldo disponible. Esta línea permite identificar visualmente 

transacciones en las que se intenta transferir la totalidad o una proporción significativa del saldo. 

En las transacciones legítimas, los puntos tienden a concentrarse por debajo de dicha línea, lo 

cual indica que, en general, los usuarios no vacían completamente sus cuentas en una sola 

operación. En contraste, una proporción considerable de las transacciones fraudulentas se ubica 

sobre o muy cercana a la línea de vaciado, lo que evidencia intentos de extraer la mayor cantidad 

posible de fondos en una sola operación. Este patrón es consistente con el comportamiento típico 

de fraude financiero y confirma la relevancia de la relación entre saldo disponible y monto 

transferido como señal discriminante. 

Figura 18 

Histograma de densidad para Montos menores a 900 mil 

 

Nota: La figura muestra el volumen total transaccionado según la hora del día y por segmentos 

horarios, diferenciando entre transacciones fraudulentas y no fraudulentas, utilizando escala real y 

logarítmica.  



106 
Fraude en Pagos en Línea 
 
 

 
 

QUITO – ECUADOR | 2024 

Fuente: Elaboración propia. 

En el histograma de densidad Figura 17 se permite comparar la distribución probabilística de 

los montos para transacciones legítimas y fraudulentas dentro de un rango acotado, eliminando la 

influencia de valores extremadamente grandes. Al analizar este rango, se observa que las 

transacciones fraudulentas tienden a concentrarse en montos específicos, mostrando picos de 

densidad más pronunciados que los de las transacciones normales. 

Por otro lado, las transacciones legítimas presentan una distribución más dispersa y uniforme, 

lo que refleja una mayor variedad de comportamientos normales. Esta diferencia en las 

distribuciones sugiere que, incluso en rangos de montos moderados, existen patrones 

característicos del fraude que pueden ser explotados por los modelos predictivos. 

Figura 19 

Matriz de Correlación 
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Nota: La figura muestra el volumen total transaccionado según la hora del día y por segmentos 

horarios, diferenciando entre transacciones fraudulentas y no fraudulentas, utilizando escala real y 

logarítmica.  

Fuente: Elaboración propia. 

En la matriz de correlación Figura 18 se muestra las relaciones lineales entre las variables 

numéricas del conjunto de datos tras el proceso de limpieza. En general, se observa que no existen 

correlaciones extremadamente altas entre las variables independientes, lo cual indica una baja 

presencia de multicolinealidad. Este resultado es deseable, ya que reduce el riesgo de inestabilidad 

en los modelos y facilita una mejor interpretación de la contribución individual de cada variable. 

Además, la ausencia de correlaciones fuertes sugiere que cada variable aporta información 

complementaria al proceso de detección de fraude, reforzando la calidad del conjunto de datos 

para el entrenamiento de modelos supervisados. 

4.2 Análisis de Resultados 

4.2.1 Modelo XGBoost 

En la Tabla 4 se detallan los mejores hiperparámetros encontrados para este modelo, de 
igual manera se describe la efectividad del modelo a través de sus métricas de evaluación y su 
matriz de confusión. 

Tabla 4 

Resultados de las métricas del modelo XGBoost 

Mejor valor obtenido en los 
hiperparámetros 

Métricas de clasificación Tasas 

n_estimators = 300  
max_depth = 6  
learning_rate = 0.05  
subsample = 0.8  
colsample_bytree = 0.8  
tree_method = hist 

Accuracy: 0.9991  
Precision (Fraude): 0.52  
Recall (Fraude): 0.3780  
F1-score (Fraude): 0.5303  
AUC-ROC: 0.9677 

Falsos Negativos: 1022 
Falsos Positivos: 207 

Nota: La figura muestra los diferentes hiperparámetros del modelo XGBoost, así como sus 

métricas de clasificación y las tasas de rendimiento. Fuente: Elaboración propia. 
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El modelo XGBoost entrenado sobre los datos originales mostró un desempeño sólido y 

consistente, con una exactitud cercana al 99.9 % y un valor de ROC-AUC aproximado de 0.97, lo 

que evidencia una alta capacidad para diferenciar entre transacciones legítimas y fraudulentas. En 

particular, el modelo destacó por su elevada precisión en la detección de fraude, lo que indica que 

la mayoría de las alertas generadas corresponden efectivamente a casos reales. Sin embargo, el 

recall fue moderado, reflejando un enfoque más conservador, en el que se prioriza la reducción de 

falsos positivos, aun cuando esto implique no identificar la totalidad de los eventos fraudulentos. 

Por otro lado, la incorporación de la técnica SMOTE permitió mejorar notablemente la 

detección de la clase minoritaria, incrementando el recall a valores superiores al 60 %. Esta mejora 

en sensibilidad vino acompañada de una disminución significativa en la precisión, lo que se 

tradujo en un mayor número de falsas alarmas. Aunque el ROC-AUC se mantuvo en niveles 

similares al modelo sin sobremuestreo, el descenso del F1-score evidenció un desequilibrio entre 

la capacidad de detección y la confiabilidad de las predicciones. 

Tabla 5 

Comparación de resultados de ambos modelos XGBoost 

Modelo ROC_AUC Average_Precision Recall F1-Score 
XGBoost 
XGBoost + SMOTE 

0.97 
0.96 

0.52 
0.41 

0.38 
0.64 

0.53 
0.18 

Nota: La figura muestra los diferentes hiperparámetros de los distintos modelos XGBoost, es 

decir, XGBoost Base y el XGBoost utilizando SMOTE.  

Fuente: Elaboración propia. 

 
La comparación entre ambos enfoques pone de manifiesto el compromiso existente entre 

precisión y recall. Si bien el modelo con SMOTE resulta más agresivo en la identificación de 

fraudes, el modelo sin SMOTE ofrece un mejor balance general y un comportamiento más estable. 

Considerando que, en este contexto, las falsas alertas representan costos operativos relevantes, se 
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seleccionó el modelo XGBoost sin SMOTE como modelo final, ya que proporciona un desempeño 

más consistente y confiable, manteniendo una alta capacidad predictiva sin generar un volumen 

excesivo de alertas incorrectas. 

Figura 20  

Matriz de confusión del modelo XGBoost sin SMOTE 

 

Nota: La figura muestra la matriz de confusión del modelo XGBoost en su forma base, mediante 

la cual puede medir cuantos aciertos realizó el modelo  

Fuente: Elaboración propia. 

La matriz de confusión muestra un desempeño sólido del modelo en la clasificación de 

transacciones legítimas, con una tasa de aciertos muy elevada. En cuanto a la clase fraudulenta, el 

modelo logra identificar una proporción relevante de fraudes, aunque aún se presentan falsos 

negativos, lo cual es esperable dada la complejidad del problema y el fuerte desbalance de clases. 

No obstante, se observa un número reducido de falsos positivos, lo que indica que el modelo evita 

penalizar innecesariamente transacciones legítimas. 

Figura 21 

Curva ROC del modelo XGBoost sin SMOTE 
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Nota: La figura muestra la curva ROC de modelo XGBoost en su forma base, mediante la cual 

puede medir la capacidad discriminativa del modelo  

Fuente: Elaboración propia. 

La curva ROC presenta un área bajo la curva elevada, lo que refleja una alta capacidad 

discriminativa del modelo para distinguir entre transacciones fraudulentas y no fraudulentas. 

Este resultado indica que el modelo mantiene un buen equilibrio entre sensibilidad y especificidad 

a lo largo de distintos umbrales de decisión, confirmando su robustez para el problema analizado. 

Figura 22 

Importancia de variables del modelo XGBoost 

 

Nota: La figura muestra la importancia que tienen las variables para el modelo XGBoost.  

Fuente: Elaboración propia. 
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La gráfica de importancia de variables revela que un conjunto reducido de características 

concentra la mayor contribución al proceso de decisión del modelo. Variables relacionadas con el 

comportamiento transaccional y aspectos temporales destacan como las más influyentes. 

Este resultado es coherente con la teoría acerca de la detección de fraude y aporta 

interpretabilidad al modelo, permitiendo comprender qué factores son determinantes en la 

clasificación. 

Figura 23 

Análisis del recall del modelo XGBoost sin SMOTE 

 

Nota: La figura muestra el comportamiento de la curva Recall para los fraudes, mediante la cual se 

puede identificar las transacciones fraudulentas.  

Fuente: Elaboración propia. 

La gráfica muestra el comportamiento del recall para la clase fraudulenta, reflejando la 

capacidad del modelo para identificar correctamente las transacciones fraudulentas. Un valor de 

recall elevado indica que una mayor proporción de fraudes reales es detectada por el sistema, 

reduciendo el riesgo de omitir transacciones fraudulentas. 

En el contexto de detección de fraude, esta métrica resulta especialmente relevante, ya que 

los falsos negativos representan un costo significativo para las entidades financieras. Los 
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resultados obtenidos evidencian que el modelo logra un nivel adecuado de sensibilidad, 

manteniendo al mismo tiempo un control razonable sobre la generación de falsos positivos. 

Los resultados obtenidos confirman que XGBoost es un modelo adecuado para la 

detección de fraude financiero. Si bien el uso de técnicas de balanceo como SMOTE mejora la 

sensibilidad del modelo, también introduce un incremento considerable en los falsos positivos. En 

este contexto, el modelo XGBoost sin SMOTE ofrece un mejor compromiso entre desempeño 

predictivo y viabilidad operativa, consolidándose como la alternativa más apropiada para el 

problema analizado. 

4.2.2 Modelo Árbol de Decisión 

En la Tabla 5 se detallan los mejores hiperparámetros encontrados y se reporta la 

efectividad del modelo a través de sus métricas de evaluación y su matriz de confusión. 

Tabla 6 

Resultados de las métricas del modelo entrenado con Árbol de Decisión 

Mejor valor obtenido en los 
hiperparámetros 

Métricas de clasificación Tasas 

splitter: best  

min_samples_split: 5  

min_samples_leaf: 2  

max_depth: 10 

criterion: entropy  

ccp_alpha: 0.0 

Accuracy: 1 

Precision: 0.81 

Recall: 0.39 

F1-score: 0.52 

Support: 1643 

Falsos Negativos: 1008 

Falsos Positivos: 149 

Nota: La figura presenta los mejores hiperparámetros encontrados y el resultado obtenido para el 

modelo de árbol de decisión.  

Fuente: Elaboración propia. 

El modelo seleccionado como el de mejor desempeño corresponde al escenario sin 

aplicación de SMOTE, al obtener un F1-score de 0.52 para la clase minoritaria (fraude). El 
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accuracy del modelo alcanza valores cercanos al 99 %, resultado que es consistente con la 

marcada desproporción existente entre las clases, pero esta métrica por sí sola no resulta ser 

suficiente para evaluar el desempeño del modelo en la detección de fraude, ya que se ve 

fuertemente influenciada por la clase mayoritaria. 

En el caso de la clase no fraudulenta, el modelo presenta un comportamiento prácticamente 

perfecto, con una precisión y F1-score de 1.00, y un recall de 1.00 indicando que el modelo puede 

identificar correctamente casi la totalidad de las transacciones legítimas, registrando una cantidad 

mínima de falsos positivos y evidenciando una alta confiabilidad en este tipo de predicción. 

En el caso de la clase fraudulenta, que representa una proporción muy reducida del total de 

observaciones, el desempeño del modelo es más limitado. Se obtiene una precisión de 0.81, lo que 

indica que una alta proporción de las transacciones clasificadas como fraude corresponden 

efectivamente a fraudes reales. Sin embargo, el recall de 0.39 refleja que el modelo solo logra 

identificar una parte de los fraudes existentes, dejando una cantidad significativa de casos sin 

detectar mientras que el F1-score con un resultado de 0.52 evidencia un equilibrio moderado entre 

precisión y capacidad de detección para esta clase. 

Los resultados muestran que el modelo es altamente eficaz para la identificación de 

transacciones legítimas y presenta una buena precisión en la clasificación de fraudes. Sin embargo, 

su capacidad para detectar la totalidad de los casos fraudulentos aún puede mejorarse.  

Figura 24 

Matriz de clasificación del modelo entrenado con Árbol de Decisión 
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Nota: La figura presenta el reporte de clasificación del modelo Random Forest aplicado al 

conjunto de prueba, mostrando las métricas de precisión, recall, F1-score y soporte para cada 

clase, así como los promedios globales.  

Fuente: Elaboración propia. 

En el caso de la clase no fraudulenta, el modelo presenta un comportamiento prácticamente 

perfecto, con una precisión y F1-score de 1.00, y un recall de 1.00 indicando que el modelo puede 

identificar correctamente casi la totalidad de las transacciones legítimas, registrando una cantidad 

mínima de falsos positivos y evidenciando una alta confiabilidad en este tipo de predicción. 

En el caso de la clase fraudulenta, que representa una proporción muy reducida del total de 

observaciones, el desempeño del modelo es más limitado. Se obtiene una precisión de 0.81, lo que 

indica que una alta proporción de las transacciones clasificadas como fraude corresponden 

efectivamente a fraudes reales. Sin embargo, el recall de 0.39 refleja que el modelo solo logra 

identificar una parte de los fraudes existentes, dejando una cantidad significativa de casos sin 

detectar mientras que el F1-score con un resultado de 0.52 evidencia un equilibrio moderado entre 

precisión y capacidad de detección para esta clase. 

Figura 25 

Matriz de confusión del modelo entrenado con Árbol de Decisión 
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Nota: Matriz del modelo base sin balancear. Se muestra una tendencia hacia la categoría 

mayoritaria con 1,008 fraudes no detectados (falsos negativos), que exceden a los aciertos de la 

clase minoritaria.  

Fuente: Elaboración propia. 

La figura 25 muestra la matriz de confusión obtenida a partir del modelo de árbol de 

decisión entrenado sin aplicar técnicas de balanceo. Se observa que el modelo identificó 

correctamente 1.270.732 transacciones legítimas, lo que evidencia un buen desempeño en la 

clasificación de la clase mayoritaria. La intensidad del color en este cuadrante refuerza de forma 

visual el marcado desbalance entre clases y refleja la capacidad del modelo para validar el 

comportamiento normal de las transacciones sin generar interrupciones operativas. 

Además, el modelo detectó 149 falsos positivos, etiquetando falsamente transacciones 

legítimas como fraude. En el contexto bancario, este número es significativamente bajo, lo que 

reduce la posibilidad de bloqueos innecesarios de tarjetas y mejora la experiencia del usuario. 

Por otro lado, el modelo clasificó como legítimas 1.008 transacciones que en realidad 

correspondían a fraudes. Como este valor excede el número de fraudes detectadas correctamente 
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(635), se evidencia una baja sensibilidad (recall), lo que indica que el modelo omite una mayor 

cantidad de fraudes de los que puede identificar. 

 

Figura 26 

Curva de ROC - Árbol de decisión 

 

Nota: El modelo presenta un AUC de 0.8581, lo que demuestra una buena habilidad general para 

discriminar. No obstante, este rendimiento global tiene que ser contrastado con la matriz de 

confusión porque, pese a los errores en la detección de fraudes reales, el desequilibrio extremo 

entre las clases puede inflar esta métrica.  

Fuente: Elaboración propia. 

La figura 26 presenta la curva ROC correspondiente al modelo de Árbol de Decisión 

entrenado sin la aplicación de SMOTE. El valor del AUC obtenido es de 0.8581, lo que indica que 

el modelo tiene una buena capacidad de discriminación entre transacciones fraudulentas y 

legítimas. Desde una interpretación probabilística, al seleccionar aleatoriamente una transacción 
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fraudulenta y una legítima, existe aproximadamente un 86 % de probabilidad de que el modelo 

asigne una puntuación de riesgo mayor a la transacción fraudulenta. 

En cuanto al comportamiento de la curva, se observa un aumento significativo en los 

valores iniciales del eje X, lo que indica que el modelo logra identificar una proporción relevante 

de fraudes manteniendo una tasa reducida de falsos positivos. Sin embargo, a medida que aumenta 

la sensibilidad y avanza el eje Y, la curva tiende a aplanarse, lo que indica que para detectar los 

fraudes más difíciles el modelo comienza a incrementar la cantidad de transacciones legítimas 

clasificadas erróneamente como fraudulentas 

 

4.2.3 Modelo de Random Forest 

 Configuración general del modelo 

El algoritmo Random Forest El algoritmo Random Forest fue seleccionado como uno de 

los modelos principales para la detección temprana de fraude en pagos en línea debido a su 

naturaleza ensemble basada en técnicas de bagging, su capacidad para manejar grandes volúmenes 

de datos y su reconocida robustez frente al sobreajuste. Tal como se detalla en la metodología, el 

modelo fue entrenado mediante una estrategia que combinó la optimización de hiperparámetros 

utilizando RandomizedSearchCV, validación cruzada y técnicas de balanceo de clases. 

Bajo una estrategia experimental controlada, se definieron dos escenarios de 

preprocesamiento, los cuales fueron evaluados considerando dos variantes del modelo: una con 

aplicación de la técnica SMOTE para el balanceo de clases y otra sin su aplicación. En todos los 

experimentos se mantuvieron constantes el valor del parámetro random_state igual a 128, el 

número de iteraciones del modelo (n_estimators) fijado en 30, así como el uso del mismo conjunto 

de entrenamiento y prueba. Adicionalmente, se empleó un conjunto idéntico de variables 
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predictoras finales, excluyendo de manera explícita aquellas que podían inducir fuga de 

información, y se respetó la definición establecida para cada escenario de preprocesamiento. 

4.2.3.1 Escenario 1 (S1): Escalado de múltiples variables temporales y monetarias 
 

En este escenario se aplicó un proceso de estandarización mediante StandardScaler a las 

variables numéricas amount, hora_del_dia y dia_del_mes. La inclusión conjunta de estas variables 

estandarizadas tiene como objetivo capturar simultáneamente patrones asociados tanto a la 

magnitud monetaria de las transacciones como a su comportamiento temporal. De este modo, se 

busca que el modelo pueda aprender relaciones no lineales entre el monto de la transacción y el 

momento en que esta ocurre, lo cual resulta especialmente relevante en el contexto de la detección 

de fraude, donde ciertos comportamientos anómalos pueden manifestarse en combinaciones 

específicas de valores temporales y financieros 

Tabla 7 

Resultados de las métricas del modelo Random Forest 

ESCALADOR Y 
CODIFICADOR 

MEJORES 
HIPERPARÁMETROS Y 
MEJOR SCORE 

MÉTRICAS TASAS 

DATOS ESCALADOS 
(AMOUNT, 
HORA_DEL_DIA, 
DIA_DEL_MES) 
CODIFICACIÓN ONE-
HOT (TYPE_*) 
BALANCEO CON 
SMOTE 

Mejores hiperparámetros: 
n_estimators: 30 max_depth: 
10 max_features: 'sqrt' 
min_samples_split: 2 
min_samples_leaf: 4 bootstrap: 
True Mejor score (ROC-AUC): 
≈ 0.9679 

Accuracy: ≈ 
0.905 Precision 
(fraude): ≈ 0.45 
Recall (fraude): ≈ 
0.93 F1-score 
(fraude): ≈ 0.60 
Specificity: ≈ 
0.999 

Falsos 
negativos: 173 
Falsos 
positivos: 125 
288 Tasa de 
falsos 
negativos: ≈ 
0.105 Tasa de 
falsos 
positivos: ≈ 
0.098 

Nota: La tabla muestra los resultados de los mejores hiperparámetros, métricas y tasas del modelo 

Random Forest.  
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Fuente: Elaboración propia 

En la Tabla 7, que presenta el Classification Report del modelo Random Forest, se 

evidencia claramente el impacto del desbalance de clases sobre el desempeño del clasificador. 

Para la clase 0 (transacciones no fraudulentas), el modelo alcanza una precisión muy alta (0.9998) 

y un recall de 0.9058, lo que indica que la mayoría de las transacciones legítimas son 

correctamente identificadas, aunque existe un porcentaje no despreciable de falsos positivos 

asociados a la detección de fraude. 

En contraste, para la clase 1 (fraude), el modelo logra un recall elevado (0.8831), lo que 

representa una buena capacidad para detectar eventos fraudulentos reales. Sin embargo, la 

precisión extremadamente baja (0.0120) evidencia que una gran proporción de las transacciones 

clasificadas como fraude corresponden en realidad a operaciones legítimas. Este comportamiento 

refleja un alto número de falsos positivos, consecuencia directa de priorizar la detección de fraude 

en un contexto donde la clase positiva es altamente minoritaria. 

El accuracy global (0.9058) debe interpretarse con cautela, ya que está fuertemente 

influenciado por el correcto desempeño sobre la clase mayoritaria y no representa por sí solo una 

medida adecuada de la calidad del modelo en la detección de fraude. De forma similar, el 

promedio ponderado presenta valores elevados debido al peso de la clase 0, mientras que el macro 

promedio revela una caída significativa en las métricas, evidenciando la asimetría en el 

rendimiento entre ambas clases. 

En conjunto, este reporte confirma que el modelo adopta una estrategia orientada a 

maximizar la detección de fraude (recall) a costa de una reducción considerable en la precisión, lo 

que implica un aumento en las alertas falsas 

Figura 27 
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Reporte de Classification Report Mejor RF 

 

Nota: La figura presenta el reporte de clasificación del modelo Random Forest aplicado al 

conjunto de prueba, mostrando las métricas de precisión, recall, F1-score y soporte para cada 

clase, así como los promedios globales.  

Fuente: Elaboración Propia. 

Se presentan las gráficas del mejor modelo obtenido.  

En la figura 26 y la figura 27 correspondientes a la importancia de variables (Gini) y al 

análisis SHAP permiten identificar y contrastar el peso relativo y el efecto de las variables 

predictoras en el modelo Random Forest. En la gráfica de importancia por Gini se observa que 

variables como amount, dia_del_mes y type_TRANSFER concentran la mayor contribución al 

proceso de partición de los árboles, indicando que son determinantes para la reducción de 

impureza durante el entrenamiento del modelo. No obstante, esta métrica refleja únicamente la 

frecuencia y utilidad de las variables en las divisiones, sin informar sobre el sentido del impacto. 

En este contexto, el análisis SHAP complementa dicha información al mostrar cómo los valores 

altos o bajos de cada variable influyen positiva o negativamente en la predicción de fraude. Se 
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evidencia que valores elevados de amount y transacciones del tipo TRANSFER o CASH_OUT 

tienden a incrementar la probabilidad de fraude, mientras que variables como type_PAYMENT y 

type_DEBIT presentan un impacto limitado o cercano a cero, lo que sugiere una menor capacidad 

discriminativa. Asimismo, variables temporales como hora_del_dia y dia_del_mes muestran 

efectos moderados y dependientes del contexto, lo que indica que su influencia no es lineal ni 

dominante por sí sola. En conjunto, ambas figuras confirman que el modelo basa sus decisiones 

principalmente en el monto, el tipo de transacción y ciertos patrones temporales, proporcionando 

una interpretación coherente del comportamiento del Random Forest sin asumir causalidad 

directa. 

Figura 28 

Importancia de las características del modelo Random Forest 

 

Nota: Se observa que el monto de la transacción, el tipo de operación y ciertas variables 

temporales concentran la mayor contribución al proceso de decisión del modelo. 

Fuente: Elaboración propia. 

Figura 29 
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Influencia de las características en el modelo Random Forest 

 

Nota: Se evidencia que valores altos del monto y determinados tipos de transacción incrementan 

la probabilidad de fraude, mientras que otras variables muestran un efecto limitado.  

Fuente: Elaboración propia. 

 Mejor Modelo Obtenido 

Random Forest 

Figura 30 

Matriz de Confusión S1- RF sin SMOTE 
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Nota: La figura muestra la matriz de confusión obtenida en el conjunto de prueba, donde se 

identifican los verdaderos positivos, verdaderos negativos, falsos positivos y falsos negativos.  

Fuente: Elaboración propia. 

Figura 31 

Curva KS S1- RF sin SMOTE 
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Nota: La figura presenta la curva KS del modelo, la cual compara las distribuciones acumuladas 

de las clases fraude y no fraude, evidenciando la capacidad del modelo para separar ambas clases.  

Fuente: Elaboración Propia 

Figura 32 

Curva ROC S1- RF sin SMOTE 

 

Nota: La figura muestra la curva ROC del modelo evaluado, representando la relación entre la tasa 

de verdaderos positivos y la tasa de falsos positivos para distintos umbrales de decisión.  

Fuente: Elaboración propia. 

Figura 33 

Matriz de Correlación S1- RF con SMOTE 
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Nota: La figura muestra la matriz de confusión obtenida en el conjunto de prueba, donde se 

resumen los aciertos y errores del modelo al clasificar transacciones fraudulentas y no 

fraudulentas.  

Fuente: Elaboración propia 

Figura 34 

Curva KS S1- RF con SMOTE 

 

Nota: La figura presenta la curva KS del modelo, evidenciando la diferencia máxima entre las 

distribuciones acumuladas de las clases fraude y no fraude, como medida de la capacidad 

discriminativa del modelo.  

Fuente: Elaboración propia. 
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Figura 35 

Curva ROC S1- RF con SMOTE 

 

Nota: La figura muestra la curva ROC del modelo evaluado, ilustrando su desempeño global en la 

discriminación entre clases mediante la relación entre la tasa de verdaderos positivos y falsos 

positivos.  

Fuente: Elaboración propia. 

Figura 36 

Matriz de Confusión S2-RF sin SMOTE 
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Nota: La figura presenta la matriz de confusión obtenida a partir del modelo Random Forest 

evaluado sobre el conjunto de prueba, mostrando la distribución de verdaderos positivos, 

verdaderos negativos, falsos positivos y falsos negativos. Esta representación permite analizar el 

desempeño del modelo en la detección de transacciones fraudulentas frente a transacciones 

legítimas.  

Fuente: Elaboración propia. 

Figura 37 

Curva KS S2-RF sin SMOTE 

 

Nota: La figura muestra la curva KS (Kolmogórov–Smirnov), donde se comparan las funciones de 

distribución acumulada de las clases fraude y no fraude. El valor máximo de separación entre 

ambas curvas evidencia la capacidad del modelo para discriminar entre transacciones fraudulentas 

y no fraudulentas.  

Fuente: Elaboración propia. 

Figura 38 

Curva ROC S2-RF sin SMOTE 
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Nota: La figura corresponde a la curva ROC (Receiver Operating Characteristic), la cual 

representa la relación entre la tasa de verdaderos positivos y la tasa de falsos positivos para 

distintos umbrales de decisión. El área bajo la curva (AUC) refleja el poder discriminativo global 

del modelo.  

Fuente: Elaboración propia. 

Figura 39 

Matriz de Confusión S2-RF con SMOTE 

 

Nota: La figura muestra la matriz de confusión obtenida para el modelo de clasificación, donde se 

visualiza la distribución de predicciones correctas e incorrectas entre las clases analizadas.  

Fuente: Elaboración propia. 
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Figura 40 

Curva KS S2-RF con SMOTE 

 

Nota: La figura presenta la curva KS del modelo, utilizada para analizar la separación entre las 

distribuciones acumuladas de las clases consideradas en el proceso de clasificación.  

Fuente: Elaboración propia. 

Figura 41 

Curva ROC- RF con SMOTE 

 

Nota: La figura muestra la curva ROC del modelo, empleada para evaluar la relación entre la tasa 

de verdaderos positivos y la tasa de falsos positivos en distintos umbrales de decisión. 

Fuente: Elaboración propia. 
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4.2.4 Modelo Redes Neuronales 

En la Tabla 9 se detallan los mejores hiperparámetros encontrados para la arquitectura de la 

Red Neuronal Artificial y se reporta la efectividad del modelo a través de sus métricas de 

evaluación y su matriz de confusión, tras aplicar la técnica de balanceo SMOTE y estandarización 

de variables. 

Tabla 8 

Resultados de las métricas del modelo entrenado con Redes Neuronales 

Mejor valor obtenido en 
los hiperparámetros 

Métricas de clasificación Tasas 

3 Capas Ocultas (256, 128, 
64 neuronas) 
 
Dropout (0.3, 0.3, 0.2) + 
BatchNormalization 
 
Adam (Learning Rate = 
0.0005) 
 
Batch Size: 2048 

Accuracy: 0.99 
Precision: 0.79 
Recall: 0.55 
F1-score: 0.65 
Support: 1,482 

Falsos Negativos: 657 
Falsos Positivos: 223 

Nota: El umbral de decisión fue ajustado manualmente para maximizar la captura de fraude. 

Fuente: Elaboración Propia 

La Tabla 9 resume el desempeño del modelo de Redes Neuronales Artificiales (Perceptrón 

Multicapa) configurado para abordar la problemática de detección de fraude en un conjunto de 

datos altamente desbalanceado. 

Para empezar, en lo que respecta a la configuración de hiperparámetros, se estableció que 

una estructura de tres capas ocultas con reducción gradual de neuronas (256, 128, 64) resultó ser la 

más eficaz para abstraer patrones complejos en las 8 variables predictivas. El empleo de métodos 

de regularización, en particular Dropout y BatchNormalization, combinados con el optimizador 

Adam (con un índice de aprendizaje de 0.0005), fue fundamental para estabilizar el entrenamiento 

y prevenir el sobreajuste, lo que posibilitó que el modelo generalizara apropiadamente los datos de 
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validación. Además, la combinación de StandardScaler con la técnica de balanceo SMOTE fue 

crucial para impedir que las predicciones de la red neuronal se inclinaran hacia la clase 

mayoritaria. 

Respecto a las métricas de evaluación, la clase fraude logró un valor de 0.82 en términos 

de precisión (Precision). Este resultado señala una fiabilidad operativa elevada: de cada centenar 

de alertas producidas por el sistema, 82 corresponden a intentos verdaderos de fraude. Esto se 

traduce en que la tasa de falsos positivos es muy baja (179 casos), lo que reduce los conflictos con 

los clientes legítimos y la carga administrativa. 

Por otro lado, una decisión estratégica fundamentada en el umbral de corte de 0.70 es 

reflejada por el Recall (Sensibilidad) de 0.55. Aunque el modelo permite que se produzcan un 

porcentaje de fraudes (667 falsos negativos), esta configuración garantiza que las suspensiones del 

servicio (bloqueos de cuentas o tarjetas) solo sucedan cuando hay una certeza muy elevada de 

actividad ilegal. Este balance es corroborado por un F1-Score de 0.66, que evidencia que el 

modelo es técnicamente sólido y mejor que una predicción aleatoria, poniendo la calidad de la 

alerta por encima del número de detecciones. 

Figura 42 

Matriz de Confusión del modelo entrenado con Redes Neuronales 
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Nota: La matriz muestra un modelo con una precisión conservadora para la clase positiva, debido 

a que el umbral es 0.8, lo que da como resultado 815 verdaderos positivos en comparación con 

657 falsos negativos, y una especificidad alta (98,305 aciertos en la clase cero). 

Fuente: Elaboración Propia 

La matriz de confusión, analizada por debajo del umbral de decisión estricto de 0.70, 

muestra una operativa muy eficaz en términos de confiabilidad. En un universo de 100,000 

transacciones, el modelo muestra que da más importancia a la certeza que a la cobertura, 

produciendo solo alrededor de 223 falsos positivos. Esto significa que la precisión es del 79%, 

asegurando así que el equipo de fraude no pierda tiempo examinando alertas falsas. Por otro lado, 

el modelo logró detectar de manera correcta alrededor de 815 fraudes verdaderos (verdaderos 

positivos). A pesar de que esto significa un Recall del 55% y se pierde una fracción de fraudes 

sofisticados, la baja tasa de ruido lo hace un modelo óptimo para sistemas automáticos de bloqueo 

en los que el error (bloquear a un cliente inocente) es extremadamente costoso. 
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Figura 43 

Curva ROC 

 

Nota: El modelo tiene un buen rendimiento para distinguir entre clases, como lo muestra el 

gráfico, que presenta un AUC (Área Bajo la Curva) de 0.83. El hecho de que la curva se desvíe de 

la línea diagonal de referencia indica una capacidad para predecir que es considerablemente más 

alta que el azar. 

Fuente: Elaboración Propia 

La curva ROC demuestra una sólida capacidad de discriminación, lo que verifica que la red 

neuronal ha logrado distinguir las clases con eficacia. Aunque se optó por un umbral conservador 

(0.70) que penaliza la sensibilidad (Recall), el Área Bajo la Curva (AUC) se conserva en niveles 

competitivos (estimación > 0.90). Esto señala que el modelo otorga de manera constante 

probabilidades más elevadas a las transacciones fraudulentas que a las legítimas. La curva indica 

que, si la institución optara por aceptar más falsos positivos en el futuro, no sería necesario volver 

a entrenar el algoritmo; simplemente tendría que disminuir el umbral de decisión para mejorar la 

detección del fraude. 
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Figura 44 

Curva de Aprendizaje (Pérdida) 

 

Nota: Luego de las primeras épocas, se nota una convergencia estable. La pérdida de validación se 

mantiene por debajo y constante en comparación con la de entrenamiento, lo que indica que el 

modelo no está sobreajustado (overfitting) y generaliza adecuadamente. 

Fuente: Elaboración Propia 

El estudio de las curvas de función de pérdida (Loss) evidencia un método de 

entrenamiento estable y que no presenta overfitting. La convergencia paralela de las líneas de 

validación y entrenamiento sugiere que la estructura de la red (con Dropout y regularización) 

logró generalizar los patrones adquiridos a partir de datos sintéticos (SMOTE) a los datos reales en 

el conjunto de prueba. Que se obtenga una precisión tan elevada (79%) en validación indica que el 

modelo no memorizó el ruido, sino que identificó patrones estructurales sólidos que definen al 

fraude, lo cual valida la calidad del preprocesamiento y de la arquitectura elegida. 
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Figura 45 

Influencia de las características (SHAP) 

 

Nota: El gráfico señala a la variable type_CASH_OUT y a amount como las que tienen el mayor 

efecto en las predicciones del modelo. Los valores de la derecha en rojo señalan que cuando estas 

variables son elevadas, la probabilidad de que se trate de la clase positiva es más alta, lo cual 

ofrece claridad acerca del razonamiento interno del clasificador. 

Fuente: Elaboración Propia 

En resumen, el modelo predice el riesgo a partir del tipo y cantidad de transacción, 

mostrando una tendencia evidente en la que las operaciones de retiro de efectivo (CASH_OUT) y 

transferencias (TRANSFER) incrementan significativamente la probabilidad de fraude. No 

obstante, es contracorriente que las cantidades altas funcionan como un elemento de seguridad 

(reducen el riesgo), lo cual indica que el modelo ha comprendido que los ataques fraudulentos en 

este contexto buscan ser invisibles a través de transacciones con valores bajos o medios en vez de 

grandes sumas. 

Figura 46 

Importancia Media Global de las Variables (SHAP) 
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Nota: En función del efecto medio que tienen las variables en las predicciones del modelo, el 

gráfico establece una jerarquía para ellas. Los predictores más significativos son el monto de la 

transacción (amount) y el tipo de operación (type_CASH_OUT), mientras que el tipo de débito 

(type_DEBIT) es el que menos afecta al rendimiento del clasificador. 

Fuente: Elaboración Propia 

El estudio de la relevancia global SHAP muestra que el modelo da prioridad a las 

propiedades operativas y económicas en vez de a las temporales. La variable amount es el 

predictor más importante, seguida por la naturaleza de la transacción (en particular 

type_CASH_OUT), lo que significa que el volumen de dinero y la forma en que se retiran los 

fondos son las señales de advertencia más relevantes para este algoritmo. 
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CAPITULO 5 

5. CONCLUSIONES Y RECOMENDACIONES 

5.1 Conclusiones 

 Para concluir, la investigación concluye que el modelo óptimo para la detección de fraude 

es la Red Neuronal Artificial. Esta logra identificar patrones no lineales complejos en los 

que las transacciones de salida de dinero (CASH_OUT y TRANSFER) y el monto son los 

principales indicadores de riesgo. El modelo demostró ser coherente en el análisis de 

interpretabilidad SHAP, evidenciando una conducta particular en la que los ataques 

fraudulentos se enfocan estratégicamente en valores medios y bajos para no ser notados, 

evitando las cantidades excesivamente elevadas, mientras que factores como type_DEBIT 

resultaron sin importancia para la predicción. 

 Los resultados obtenidos permiten concluir que el modelo XGBoost entrenado sin la 

aplicación de técnicas de sobremuestreo constituye la alternativa más adecuada para el 

problema de detección de fraude analizado. Este enfoque demostró una alta capacidad 

discriminativa, reflejada en valores elevados del AUC-ROC, así como un desempeño 

equilibrado entre la detección de transacciones fraudulentas y la correcta clasificación de 

transacciones legítimas. A diferencia del modelo con SMOTE, el XGBoost sin balanceo 

logró mantener una precisión significativamente superior para la clase fraudulenta, 

reduciendo de forma considerable la generación de falsos positivos, aspecto clave en 

contextos financieros reales. Si bien el recall no alcanzó su valor máximo, el modelo 

presentó un compromiso razonable entre sensibilidad y precisión, lo que respalda su 

idoneidad como modelo final para la detección de fraude en escenarios caracterizados por 

un fuerte desbalance de clases. 
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 De los resultados obtenidos se concluye que el modelo de árbol de decisión muestra un 

desempeño estable en la clasificación de transacciones, especialmente en la identificación 

de la clase no fraudulenta. El modelo logra clasificar prácticamente todas las transacciones 

legítimas, lo que se refleja en los valores perfectos de precisión, recall y F1-score. En la 

detección de fraude, el modelo muestra un comportamiento aceptable en términos de 

precisión, ya que una gran proporción de transacciones clasificadas como fraudulentas 

corresponden en realidad a fraude real. Sin embargo, su capacidad para detectar todos los 

casos fraudulentos es limitada, como lo indica el valor de recall dado por el fuerte 

desequilibrio en el conjunto de datos y demuestra la dificultad del modelo para aprender 

adecuadamente los patrones asociados con la clase minoritaria. 

5.2 Recomendaciones 

 Se aconseja, como principal recomendación, implementar este modelo neuronal de manera 

operativa y purgar las variables sin aporte (como type_DEBIT) para mejorar la eficiencia de 

las computadoras y seguir una estrategia de supervisión híbrida. Esta táctica debe fusionar 

la alta capacidad del algoritmo para identificar fraudes sutiles con reglas de negocio 

concretas que supervisen operaciones de montos extraordinariamente altos, que el modelo 

suele calificar como seguras, asegurando de esta manera una cobertura de seguridad integral 

y adaptable a través del empleo de umbrales de decisión dinámicos. 

 Con base en los resultados del estudio, se recomienda la implementación del modelo 

XGBoost sin técnicas de sobremuestreo como herramienta principal para la detección de 

fraude, priorizando su uso en conjunto con un análisis adecuado del umbral de decisión para 

ajustar el nivel de sensibilidad según los requerimientos operativos de la entidad. Asimismo, 

se sugiere que futuras investigaciones exploren ajustes finos de hiperparámetros y estrategias 

alternativas de manejo del desbalance, como el uso de ponderación de clases o enfoques de 
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aprendizaje costo-sensible, con el objetivo de incrementar el recall sin comprometer de 

manera significativa la precisión del modelo. 

5.3 Limitaciones 

 Una de las principales limitaciones de este estudio fue la dificultad de acceder a un conjunto 

de datos real de transacciones fraudulentas debido a las limitaciones de confidencialidad y 

seguridad inherentes al sector financiero. Como resultado, trabajamos con un conjunto de 

datos sintéticos que, si bien nos permite reproducir escenarios realistas y evaluar el 

comportamiento de los modelos, puede no reflejar completamente la complejidad y 

variabilidad de los patrones de fraude observados en un entorno real. 

 El importante desequilibrio en el conjunto de datos de PaySim significa que incluso con 

modelos optimizados, el rendimiento de clasificación de las transacciones fraudulentas es 

inferior al observado para las transacciones legítimas, lo que dificulta reducir por completo 

las falsas alarmas. 

 Se ha observado que el uso de métodos de balanceo sintético como SMOTE, si bien mejora 

la capacidad del modelo para detectar fraude, también aumenta el número de falsos 

positivos, lo que puede amenazar su viabilidad operativa si este efecto no se controla 

adecuadamente. 

 Alcance “demo/prototipo”: el portal implementa el flujo y la gestión de reportes, pero no 

constituye un producto final con todas las capacidades operativas (p. ej., monitoreo, analítica 

avanzada, auditoría completa). 

 Persistencia local: usa SQLite en un archivo local, lo que limita concurrencia, escalabilidad 

multiusuario y administración de copias/backup como en un motor servidor 

(PostgreSQL/MySQL). 
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 Integración con modelos no automatizada: las evidencias/imágenes provienen de scripts 

Python y se consumen como insumos; no hay un pipeline automático (ETL/MLflow/API de 

inferencia) que ejecute modelos en tiempo real desde el portal. 

 Dataset y reproducibilidad: los scripts Python dependen de datasets locales (ej. CSV externo) 

y de configuraciones del entorno; la ejecución no está “empaquetada” como pipeline 

reproducible con control de versiones de datos. 

 Seguridad en modo académico: autenticación JWT y roles existen, pero faltan controles 

típicos de producción (rotación de secretos, políticas de contraseñas robustas, rate limiting, 

hardening, registros de seguridad, gestión de sesiones/refresh tokens). 

 Autorización basada en rol/relación (limitada): el control de acceso se basa en roles y 

asignaciones (viewer↔analysts), pero no hay un modelo completo de permisos granulares 

por acción/objeto ni políticas avanzadas. 

 Gestión de usuarios básica: el CRUD de usuarios y asignaciones está implementado, pero 

sin flujos de recuperación de cuenta, gestión de perfiles, doble factor (2FA), ni 

administración avanzada. 

 Auditoría parcial: existe historial/registro básico de acciones de reportes, pero no se 

implementa un sistema completo de auditoría (quién vio qué, trazas detalladas, 

exportaciones, retención). 

 Exportación PDF dependiente de headless browser: la generación de PDF usa Puppeteer; 

esto puede requerir recursos (CPU/RAM) y configuración del entorno, y puede ser sensible 

a cambios de HTML o a timeouts en equipos con pocas capacidades. 
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 Interfaz web simple (sin framework): el frontend es HTML/JS estático; no hay SPA con 

manejo avanzado de estado, pruebas de UI, ni componentes reutilizables a gran escala. 

 Validación y pruebas: no se observa una suite formal de tests automatizados 

(unit/integration/e2e) para garantizar estabilidad ante cambios. 

 Estado del dominio “fraude” acotado: el sistema gestiona reportes y evidencias, pero no 

implementa un módulo completo de casos/transacciones reales, reglas de negocio bancarias 

ni conexión a sistemas externos. 

 Dependencia del entorno Windows/local: ejecución y rutas pueden depender del equipo 

(puertos, permisos, instalación de Node/Java/Python), lo que limita portabilidad inmediata 

sin documentación adicional. 
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ANEXOS 
Figura 47  

Anexo 1 

 

Fuente: Elaboración Propia 

Figura 48 

Anexo 2 

 

Fuente: Elaboración Propia 
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Figura 49 

Anexo 3 

 

Fuente: Elaboración Propia 

Figura 50 

Anexo 4 

 

Fuente: Elaboración Propia 
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Figura 51 

Anexo 5 

 

Fuente: Elaboración Propia 

Figura 52 

Anexo 6 

 

Fuente: Elaboración Propia 

 

  



151 
Fraude en Pagos en Línea 
 
 

 
 

QUITO – ECUADOR | 2024 

Figura 53 

Anexo 7 

 

Fuente: Elaboración Propia 

Figura 54 

Anexo 8 

 

Fuente: Elaboración Propia 
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Figura 55 

Anexo 9 

 

Fuente: Elaboración Propia 

Figura 56 

Anexo 10 

 

Fuente: Elaboración Propia 
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Figura 57 

Anexo 11 

 

Fuente: Elaboración Propia 

Figura 58 

Anexo 12 

 

Fuente: Elaboración Propia 
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Figura 59 

Anexo 13 

 

Fuente: Elaboración Propia 

Figura 60 

Anexo 14 

 

Fuente: Elaboración Propia 
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Figura 61 

Anexo 15 

 

Fuente: Elaboración Propia 

Figura 62 

Anexo 16 

 

Fuente: Elaboración Propia 
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Figura 63 

Anexo 17 

 

Fuente: Elaboración Propia 

Figura 64 

Anexo 18 

 

Fuente: Elaboración Propia 
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Figura 65 

Anexo 19 

 

Fuente: Elaboración Propia 

Figura 66 

Anexo 20 

 

Fuente: Elaboración Propia 
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Figura 67 

Anexo 21 

 

Fuente: Elaboración Propia 

Figura 68 

Anexo 22 

 

Fuente: Elaboración Propia 

 


