

QUITO – ECUADOR | 2025

Maestría en

CIBERSEGURIDAD

Trabajo previo a la obtención de título de
Magister en Ciberseguridad

AUTORES:

Héctor Elías Mena Cornejo

Henry Josué Acosta Castro

Juan Francisco Vizuete Vallejo

José Eduardo Arce Apolo

Autor 1
TUTOR/ES:

Alejandro Cortés López

Iván Reyes Chacón

TEMA: Testing de una API para la detección temprana de
vulnerabilidades de Inyección en endpoints web mediante

fuzzing dirigido

Quito - Ecuador

Ene – 20206

1

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Certificación de autoría

Nosotros, Héctor Elías Mena Cornejo, Henry Josué Acosta Castro, Juan Francisco

Vizuete Vallejo, José Eduardo Arce Apolo, declaramos bajo juramento que el trabajo aquí

descrito es de nuestra autoría; que no ha sido presentado anteriormente para ningún grado o

calificación profesional y que se ha consultado la bibliografía detallada.

Cedemos nuestros derechos de propiedad intelectual a la Universidad Internacional del

Ecuador (UIDE), para que sea publicado y divulgado en internet, según lo establecido en la

Ley de Propiedad Intelectual, su reglamento y demás disposiciones legales.

Héctor Elías Mena Cornejo
--

Henry Josué Acosta Castro

Juan Francisco Vizuete Vallejo
--

José Eduardo Arce Apolo

Firmado electrónicamente por:

JUAN FRANCISCO
VIZUETE VALLEJO

Validar únicamente con FirmaEC

Firmado electrónicamente por:

HECTOR ELIAS MENA
CORNEJO

Validar únicamente con FirmaEC

Firmado electrónicamente por:

JOSE EDUARDO ARCE
APOLO

Validar únicamente con FirmaEC

Firmado electrónicamente por:

HENRRY JOSUE ACOSTA
CASTRO

Validar únicamente con FirmaEC

2

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Autorización de Derechos de Propiedad Intelectual

Nosotros, Héctor Elías Mena Cornejo, Henry Josué Acosta Castro, Juan Francisco
Vizuete Vallejo, José Eduardo Arce Apolo, en calidad de autores del trabajo de

investigación titulado Aplicación de una API para la detección temprana de
vulnerabilidades de API Injection en endpoints web mediante fuzzing dirigido,

autorizamos a la Universidad Internacional del Ecuador (UIDE) para hacer uso de todos los

contenidos que nos pertenecen o de parte de los que contiene esta obra, con fines

estrictamente académicos o de investigación. Los derechos que como autores nos

corresponden, lo establecido en los artículos 5, 6, 8, 19 y demás pertinentes de la Ley de

Propiedad Intelectual y su Reglamento en Ecuador.

D. M. Quito, enero 2026

Héctor Elías Mena Cornejo
--

Henry Josué Acosta Castro

Juan Francisco Vizuete Vallejo
--

José Eduardo Arce Apolo

Firmado electrónicamente por:

JUAN FRANCISCO
VIZUETE VALLEJO

Validar únicamente con FirmaEC

Firmado electrónicamente por:

HECTOR ELIAS MENA
CORNEJO

Validar únicamente con FirmaEC

Firmado electrónicamente por:

JOSE EDUARDO ARCE
APOLO

Validar únicamente con FirmaEC

Firmado electrónicamente por:

HENRRY JOSUE ACOSTA
CASTRO

Validar únicamente con FirmaEC

4
TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Aprobación de dirección y coordinación del programa

Nosotros, Alejandro Cortés e Iván Reyes, declaramos que: Héctor Elías Mena Cornejo,

Henry Josué Acosta Castro, Juan Francisco Vizuete Vallejo, José Eduardo Arce

Apolo son los autores exclusivos de la presente investigación y que ésta es original, auténtica

y personal de ellos.

5

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

DEDICATORIA

Dedicamos este trabajo a nuestras familias, quienes con paciencia y apoyo

incondicional han sido el pilar fundamental a lo largo de este camino. A nuestros maestros,

por sus conocimientos y experiencias impartidas. Y a todas aquellas personas que, de una u

otra forma, nos motivaron a seguir adelante.

6

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

AGRADECIMIENTOS

Queremos expresar nuestro más sincero agradecimiento a todos quienes hicieron

posible la realización de este proyecto final.

A nuestras familias, por su constante apoyo emocional durante cada esta del proceso.

A nuestros docentes, por guiarnos con sus experiencia y orientación académica.

A la UIDE, por brindarnos los recursos y herramientas necesarias para nuestro

desarrollo.

Y a cada uno de nuestros compañeros, quien con sus comentarios, experiencias y

debates ensancharon los conocimientos, así como los lazos de hermandad.

7

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

RESUMEN

 El presente trabajo investigativo tiene como objetivo central testear y validar una API

capaz de detectar de manera temprana las vulnerabilidades mediante inyección en endpoints

web, mediante la aplicación de técnicas de fuzzing dirigido y validación de esquemas basados

en contratos de OpenAPI. El análisis se enmarca en la necesidad de fortalecer la

ciberseguridad en entornos de desarrollo a servicios, en donde las APIs representan un vector

crítico de ataque, especialmente frente a fallos de validación de entrada y deficiencia de

autenticación.

La metodología utilizada en el presente trabajo final fue de tipo experimental y

aplicada, sustentada en un análisis documental del estado del arte sobre API Injection,

OWASP API Security, NIST SP 800-115 e ISO/IEC 27034-1:2021. Se desarrollo un prototipo

funcional denominado APIFuzz, implementado en el lenguaje GO por su capacidad de

manejo concurrente de peticiones HTTP y eficiencia en procesos distribuidos. Como entorno

de laboratorio se utilizó Kali Linux, integrando herramientas como Burpsuite, SQLMap y

módulos de descubrimiento de endpoints mediante OpenAPI.

Los resultados confirmaron que la automatización del fuzzing dirigido constituye una

herramienta eficaz para la detección temprana de fallos de seguridad en APIs, reduciendo el

tiempo de análisis y el costo de remediación. Esto permitirá fortalecer la seguridad

preventiva, mejorar la trazabilidad de pruebas y promover una cultura de desarrollo seguro en

las organizaciones.

Palabras Claves: Fuzzing dirigido, vulnerabilidades de inyección, API Security, OWASP, Go,
detección temprana.

8

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

ABSTRACT

 The present research work has its main objective to test and validate an API capable

of early detection of vulnerabilities through injection in web endpoints, by applying directed

fuzzing techniques and validation of OpenAPI contract-based schemas. The analysis is

framed within the need to strengthen cybersecurity in service-oriented development

environments, where APIs represent a critical attack vector, especially in the face of input

validation failures and authentication weaknesses.

The methodology used in this final work was experimental and applied in nature, supported

by a documentary analysis of the state of the art on API Injection, OWASP API Security,

NIST 800-115, and ISO/IEC 27034-1:2021. A functional prototype called APIFuzz was

developed, implemented in the Go programming language due to its ability to handle

concurrent HTTP requests and its efficiency in distributed processes. The laboratory

environment was set up on Kalu Linux, integrating tools such as Burpsuite, SQLMap, and

endpoints discovery modules through OpenAPI.

The results confirmed that the automation of directed fuzzing constitutes an effective

tool for the early detection of security flaws in APIs, reducing both analysis time and

remediation costs. This approach strengthens preventive security, improves test traceability,

and promotes a culture of secure development within organizations.

Keywords: Directed fuzzing, injection vulnerabilities, API Security, OWASP, Go, early

detection.

9

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

TABLA DE CONTENIDOS

CerƟĮcación de autoría ... 1

Autorización de Derechos de Propiedad Intelectual ... 2

Acuerdo de conĮdencialidad .. 3

Aprobación de dirección y coordinación del programa ... 4

DEDICATORIA .. 5

AGRADECIMIENTOS .. 6

RESUMEN .. 7

ABSTRACT ... 8

CAPITULO 1: .. 12

1. INTRODUCCIÓN .. 12

1.1. DeĮnición del proyecto .. 12

1.2. JusƟĮcación e importancia del trabajo de invesƟgación .. 12

1.3. Alcance ... 13

1.4. ObjeƟvos .. 13

1.4.1. ObjeƟvo general .. 13

1.4.2. ObjeƟvo especiĮco .. 13

CAPITULO 2: .. 14

2. REVISIÓN DE LITERATURA... 14

2.1. Estado del Arte ... 14

2.2. Marco Teórico .. 16

Ciberseguridad y arquitectura de APIs .. 16

OWASP y su enfoque sobre seguridad API .. 20

Vulnerabilidades de Inyección en el Contexto de APIs .. 24

Vulnerabilidades de inyección en APIs modernas ... 26

Impacto y consecuencias de las vulnerabilidades de inyección .. 28

TesƟng de seguridad y automaƟzación en entornos DevSecOps .. 30

Metodología y estándares aplicados en pruebas de API ... 31

Enfoques de automaƟzación en el aseguramiento de APIs ... 33

Métricas de evaluación del riesgo en APIs .. 34

Detección temprana de vulnerabilidades ... 35

Fuzzing dirigido y aprendizaje adaptaƟvo ... 36

Evolución del fuzzing hacia modelos inteligentes ... 37

10

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Importancia de los entornos de evaluación en la seguridad de APIs .. 38

Kali Linux como ecosistema de auditoría de seguridad ... 39

Burpsuite como componente de inspección ... 40

Sqlmap y la automaƟzación de ataques de inyección ... 42

Go como lenguaje para desarrollo de herramientas en fuzzing .. 43

GesƟón de Riesgo y Remediación (Hardening) de APIs ... 45

CAPITULO 3: .. 47

3. DESARROLLO .. 47

3.1. Materiales y Métodos .. 47

3.2. Desarrollo del Trabajo .. 48

CAPITULO 4: .. 80

4. ANÁLISIS DE RESULTADOS .. 80

4.1. Pruebas de Concepto ... 80

4.2. Análisis de Resultados .. 83

CAPITULO 5: .. 87

5. CONCLUSIONES Y RECOMENDACIONES .. 87

Conclusiones ... 87

Recomendaciones ... 88

Referencias BibliográĮcas ... 89

Apéndices ... 93

Link de la máquina virtual ... 93

Informes .. 93

11

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

LISTA DE FIGURAS

Figura 1 Sitio web del objetivo seleccionado ... 48

Figura 2 Verificación de posibles vulnerabilidades del sitio web ... 49

Figura 3 Ejecución de programa Go y los resultados obtenidos ... 51

Figura 4 Fecha y hora del escaneo y ficheros .. 51

Figura 5 Ficheros y archivos obtenidos.. 52

Figura 6 Reporte Html del resultado de vulnerabilidades del sitio ... 53

Figura 7 Catálogo de vulnerabilidades encontradas ... 53

Figura 8 Detalle de vulnerabilidades encontradas .. 54

Figura 9 Información SSL/TLS ... 54

Figura 10 Recomendaciones de acciones de seguridad .. 55

Figura 11 Informe del escaneo de seguridad WebSec .. 55

Figura 12 Reporte del Fuzzing WebSec ... 57

Figura 13 Informe detallado de vulnerabilidades WebSec Fuzzer .. 59

Figura 14 Archivos del fichero evidencias ... 65

Figura 15 Menú principal de Burp Suite .. 66

Figura 16 Páginas web vulnerable del sitio expuesto ... 67

Figura 17 Entorno de prueba de seguridad web con Burp Suite... 67

Figura 18 Identificación de ruta expuesta con Burp Suite .. 70

Figura 19 Resultados de la petición en Burp Suite de la página vulnerada .. 71

Figura 20 Ejecución de sqlmap en Kali Linux ... 71

Figura 21 Resultados del sqlmap exhibiendo la bd del sitio vulnerado .. 72

Figura 22 Obtención de los datos de la BD .. 73

Figura 23 Datos vulnerados de la base de datos ... 75

Figura 24 Información sensible expuestos del sitio vulnerado ... 75

Figura 25 Informe de seguridad ... 77

Figura 26 Exportación de data del sitio expuesto ... 83

Figura 27 Mapeo de usuarios por zona geográfica ... 84

Figura 28 Detalle de clientes por zona con ubicación exacta ... 84

Figura 29 Longitud y latitud de clientes expuestos .. 85

Figura 30 Exposición de ubicación del cliente para futuros fraudes o delitos 85

Figura 31 Información de datos financieros de los clientes expuestos ... 86

Figura 32 Datos sensibles de la gerencia de la empresa expuesta .. 86

Figura 33 Captura de la Ip pública de la empresa expuesta para futuros ataques 87

12

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

CAPITULO 1:

1. INTRODUCCIÓN

1.1. Definición del proyecto

El presente proyecto de titulación tiene como finalidad testear una API capaz de

evaluar la susceptibilidad de endpoints web a vulnerabilidades del tipo API Injection.

La propuesta consiste en el evaluar una API de servicios, analizar, descubrir sus rutas

disponibles y ejecutar pruebas de inyección mediante técnicas de fuzzing dirigido y

validación de esquemas, generando un puntaje de riesgo y recomendaciones de

mitigación basadas en el estándar OWASP API Security.

1.2. Justificación e importancia del trabajo de investigación

Hoy en día el ecosistema digital moderno se sustenta en gran medida por el

consumo de APIs, las cuales facilitan la interacción entre aplicaciones, microservicios

y terceros. Sin embargo, este protagonismo las convierte al mismo tiempo es un punto

muy atractivo frente a ataques. OWASP ha señalado que los ataques contras APIs son

cada vez más frecuentes, destacando riesgos como la exposición excesiva de datos y

consumo no restringido de recursos. Por ello, la importancia de disponer de una

herramienta automatizada que permita detectar vulnerabilidades de API Injection

resulta esencial para reducir la posibilidad de ataque y prevenir incidentes de

seguridad que comprometan la confidencialidad, integridad y disponibilidad de los

datos.

13

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

1.3.Alcance

El proyecto de titulación se centrará en testear una API de servicios y evaluar la

detección de vulnerabilidades de API Injection en endpoints web. Se utilizará un

prototipo funcional que incluya el descubrimiento de endpoints mediante contratos

como OpenAPI y Swagger, ejecución de payloads de inyección a través de técnicas de

fuzzing, validación de las respuestas frente al contrato esperado y generación de

reportes con puntajes de riesgo y sugerencia de mitigación. Con esto se menciona que,

el proyecto se limitará a la evaluación y reporte de riesgos detectados.

1.4. Objetivos

1.4.1. Objetivo general

Testear una API que permita la evaluación de vulnerabilidad de API Injection en

endpoints web, aplicando fuzzing dirigido y validación de esquemas, con la

finalidad de que proporcione un puntaje de riesgo y recomendación de seguridad.

1.4.2. Objetivo especifico

- Analizar el estado del arte sobre API Injection a través de una revisión

sistemática de literatura científica para la identificación de vulnerabilidades,

vectores de ataque y técnicas de seguridad existentes.

- Clasificar las vulnerabilidades de inyección mediante la definición de una

taxonomía de tipos existentes para la categorización y comprensión del

estudio.

- Aplicar una herramienta de prueba para APIs que incluya módulos clave para

el descubrimiento de endpoints, motor de fuzzing y validador de esquemas

para la automatización de la evaluación de la seguridad de las APIs.

- Implementar un repositorio de cadenas maliciosas y pruebas de software de

detección mediante mecanismos de identificación de respuestas anómalas en

14

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

las APIs que permitan la simulación de ataques de inyección de manera

controlada y detección de posibles vulnerabilidades.

- Evaluar el rendimiento de la herramienta aplicada mediante su uso en

aplicaciones de prueba que permitan la medición de su precisión y cobertura.

- Proponer guía de mitigación y prácticas de seguridad mediante el estándar

OWASP API Security que permita el fortalecimiento de las seguridad de las

APIs.

CAPITULO 2:

2. REVISIÓN DE LITERATURA

2.1. Estado del Arte

 La seguridad en las interfaces de programación de aplicaciones o también llamadas

APIs ha emergido como un eje central dentro de las defensas cibernéticas en la actualidad,

especialmente ante el auge de nuevas arquitecturas distribuidas y microservicios se que

utilizan hoy en día. De acuerdo con OWASP (2023), más del 80% del tráfico web moderno

están fundamentadas en APIs, lo que convierte a estas interfaces en un vector de ataque

prioritario para los actores maliciosos. Los ataques de inyección como SQL Injection,

Command Injection, NoSQL Injection y XML External Entity sigue ocupando posiciones

criticas en los reportes anuales de vulnerabilidades, al permitir la manipulación directa de

datos o la ejecución arbitraria de comandos en el servidor (Verma et al., 2022).

 El auge de los servicios basados en RESTful APIs y GraphQL ha incrementado los

intentos de exposición. Investigaciones recientes (Zhou & Jiang, 2021; Ahmed et al., 2023)

evidencian que los modelos de autenticación tradicionales tales como el Basic Auth o el

Token Based, presentan deficiencias en el control granular de acceso, permitiendo la

explotación de endpoints no documentados. El estudio realizado por Huerta & Zhang (2023)

revela que, en entornos de los microservicios, la falta de validación de esquemas JSON y el

15

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

uso inadecuado de input sanitization general el 37% de los incidentes detectados en

pentesting automatizado.

 Por otro lado, el fuzzing que es una técnica de prueba automatizada que envía datos

aleatorios o especialmente estructurados a una aplicación con la finalidad de observar el

comportamiento anómalos, ha evolucionado de tal manera que ahora se orienta hacia

enfoques dirigidos o smart fuzzing, que priorizan las áreas del código más susceptibles de

error (Bohme et al., 2020). En el ámbito de las APIs, esta metodología toma fuerza mediante

el uso de contratos de servicios como Swagger o OpenAPI, que permiten al fuzzer

comprender la estructura esperada de peticiones y respuestas, logrando una cobertura superior

y detección temprana de vulnerabilidades (Rajendran et al., 2022),

 Los sistemas modernos de API Security Testing combinan técnicas de fuzzing,

análisis estático y validación semántica. Herramientas como Restler Fuzzer (Microsoft,

2023), Schemanthesis y APIFuzzer implementan algoritmos evolutivos que generan

mutaciones de payloads basadas en gramáticas definidas. Sun et al. (2022) demuestran que un

enfoque híbrido de fuzzing dirigido y verificación simbólica reduce el tiempo medio de

detección de fallos críticos en un 45%. Paralelamente, Kim & Park (2024) incorporan

aprendizaje automático en fuzzers adaptativos para priorizar casos de prueba con mayor

probabilidad de impacto.

 Bajo esta necesidad, Vásquez et al. (2022) destacan la necesidad de integrar modelos

OWASP con métricas cuantitativas de riesgo como CVSS v3.1 y NIST SP 800-115,

fortaleciendo los procesos de auditoría automatizada en APIs gubernamentales y financieras.

 Los datos literarios más recientes convergen en la idea de que la detección temprana

de vulnerabilidades de inyección requiere combinar automatización, aprendizaje contextual y

estandarización de seguridad. Bajo este contexto, el desarrollo de una API capaz de ejecutar

16

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

fuzzing dirigido sobre endpoints web responde a una tendencia globar hacia la autonomía

inteligente en pruebas de seguridad proactiva, alineada con los principios de DevSecOps

(Krause & Moreno, 2024; Al-Hassan et al., 2023).

2.2. Marco Teórico

Ciberseguridad y arquitectura de APIs

 La ciberseguridad se conceptualiza como el conjunto de políticas, procesos,

tecnologías y prácticas diseñadas para proteger sistemas, redes, aplicaciones y datos frente a

accesos no autorizados, ataques, daños o interrupciones del servicio. Bajo este análisis, la

ciberseguridad ha dejado de ser un componente periférico para transformarse en un elemento

útil y estratégico en la continuidad operativa y la confianza de una organización (Von Solms

& Van Niekerk, 2013).

 Tradicionalmente, los sistemas de información se han venido diseñando bajo

estructuras monolíticos y perímetros de seguridad claramente definidos. Sin embargo, la

adopción de arquitecturas distribuidas, computación en la nube y microservicios ha

modificado radicalmente este paradigma. En estos entornos, los componentes del sistema

interactúan mediante APIs expuestas, muchas veces accesibles desde internet, lo que

incrementa significativamente la superficie de ataque (Behl & Behl, 2017).

 Desde una perspectiva teórica, la ciberseguridad continúa sustentándose en el modelo

CIA; confidencialidad para garantizar que la información solo sea accesible para entidades

autorizadas, integridad para asegurar que los datos no sean alterados de forma indebida; y

disponibilidad para procurar que los sistemas y servicios estén operativos cuando se

requieran. Estas arquitecturas basadas en APIs, se ven constantemente desafiados debido a la

naturaleza abierta, automatizada y altamente interconectada de los servicios. Una

17

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

vulnerabilidad en un solo endpoint puede comprometer múltiples sistemas dependientes,

amplificando el impacto del incidente (NIST, 2020).

Las API representan el esqueleto comunicacional de las infraestructuras digitales

modernas. De acuerdo con Shah et al. (2022), una API constituye un conjunto de definiciones

y protocolos que facilitan la interoperabilidad entre componentes de software. Su adopción

masiva en sectores como banca, salud o telecomunicaciones ha transformado los riesgos de

seguridad tradicionales en desafíos de dirección compleja La ausencia de controles adecuados

de autenticación, autorización o validación de entrada se traduce en vulnerabilidades de

inyección (Alotaibi et al., 2022).

Las interfaces de programación de aplicaciones APIs constituyen mecanismos

fundamentales que permiten la comunicación entre aplicaciones heterogéneas. Su evolución

responde tanto a necesidades funcionales como a exigencias de escalabilidad, rendimiento y

mantenibilidad.

Como lo menciona Fielding & Taylor (2002), durante las primeras etapas de la

integración de sistemas empresariales, el protocolo SOAP (Simple Object Access Protocol)

dominio el diseño de APIs, SOAP se caracteriza por el uso de mensajes estructurados en

XML, contratos estrictos definidos mediante WSDL y una fuerte dependencia de estándares

complementarios.

Aunque SOAP ofrecía robustez y formalidad, su complejidad y sobrecarga lo hacían

poco eficiente para sistemas altamente escalables. Desde el punto de vista de la seguridad, la

excesiva confianza en el contrato y la validación estructural no impedía la explotación de

vulnerabilidad como inyecciones XML o deserialización insegura.

18

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El paradigma REST (Representational State Transfer), propuesto por Fielding (2000),

introdujo principios arquitectónicos orientados a recursos, comunicación sin estado y uso de

métodos HTTP estándar. REST facilitó el desarrollo de APIs ligeras, escalables y fácilmente

consumibles por clientes web y móviles.

No obstante, la simplicidad de REST también trajo consigo nuevos riesgos de

seguridad. La exposición de endpoints, el uso extensivo de parámetros en JSON y la

dependencia de mecanismos de autenticación externos incrementaron la probabilidad de

errores de autorización y exposición excesiva de datos (Wittern et al, 2017).

En respuestas a las limitaciones de REST, surgieron tecnologías como GraphQL, que

permite a los clientes definir explícitamente los datos requeridos, y gRPC, que utiliza

HTTP/2y serialización binaria para mejorar el rendimiento.

Si bien estas tecnologías optimizan la eficiencia, también introducen desafíos de

seguridad específicos, como consultas profundamente anidadas en GraphQL o ataques de

denegación de servicio por abuso de recursos. Estos riesgos refuerzan la necesidad de

enfoques de seguridad especializados para APIs modernas (OWASP, 2023).

 Una pieza clave en el aseguramiento de APIs modernas es la existencia de un contrato

formal como el OpenAPI que declare tipos, restricciones, patterns, longitudes máximas,

enumeraciones entre otras características. Ese contrato permite implementar validaciones

tanto en el gateway como en las capas de servicio, de modo que los payloads maliciosos sean

filtrados antes de alcanzar la lógica interna. Además, con este contrato es posible

instrumentar linting, generación de pruebas, fuzzing basado en esquemas y validaciones

automáticas de request/response que reducen la probabilidad de inyección (OpenAPI

Initiative, 2023).

19

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 Las arquitecturas modernas de software se caracterizan por su desacoplamiento,

escalabilidad horizontal y despliegue continuo. En este contexto, las APIs actúan como el

principal mecanismo de integración entre componentes.

 El enfoque de microservicios propone dividir una aplicación en servicios

independientes que se comunican entre sí mediante APIs. Esta arquitectura mejora la

mantenibilidad y la escalabilidad, pero también incrementa el número de interfaces

expuestas, lo que eleva proporcionalmente el riesgo de ataque (Newman, 2015).

Cada microservicio suele poseer su propia base de datos y lógica de negocio, lo que

hace indispensable implementar controles de seguridad coherentes y centralizados para evitar

inconsistencias y brechas.

Los API Gateways funcionan como intermediarios entre los clientes y los servicios

Backend. Desde el punto de vista de la seguridad, permiten centralizar funciones criticas

como autenticación y autorización, rate limiting, registros y monitoreo, validación de

solicitudes. NIST (2021), destaca que el uso adecuado de API Gateways reduce

significativamente la exposición directa de los microservicios y mejora la capacidad de

detección tempana de ataques.

Por otro lado, la superficie de ataque se define como el conjunto de puntos por los

cuales un atacante puede intentar comprometer un sistema. En arquitecturas basadas en APIs,

esta superficie se ve ampliada por múltiples factores. Entre ellos se encuentra la exposición

pública de endpoints, la automatización de ataques mediante bots, la falta de controles de

autorización a nivel de objeto y el uso inseguro de parámetros dinámicos.

OWASP (2023) señala que muchas organizaciones subestiman los riesgos asociados a

las APIs, aplicando controles diseñados para aplicaciones web tradicionales que resultan

20

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

insuficientes frente a amenazas específicas como Broken Object Level Authorization (BOLA)

o inyecciones en estructuras JSON.

OWASP y su enfoque sobre seguridad API

Owasp o también Open Worldwide Application Security Project, tiene como propósito

instaurar y descartar cualquier equivocación que provoque la inseguridad en un software

(Coronel y Quirumbay, 2022). En sus inicios, su aplicación ha logrado ser de utilidad para

quienes realizan auditorías en la administración de los sistemas de ciberseguridad, orientación

que se ejecuta mediante evidencias de posibles vulneraciones en sitios de internet (Menejías

et al., 2021).

La filosofía de OWASP se sustenta en principios de transparencia, colaboración y

accesibilidad, promoviendo el acceso libre al conocimiento técnico como mecanismo para

elevar el nivel de seguridad global. A diferencia de estándares cerrados o propietarios,

OWASP se caracteriza por un enfoque empírico, basado en el análisis de incidentes reales,

estudio de campo y contribuciones de expertos en seguridad de todo el mundo (OWASP

Foundation, 2023).

Desde una perspectiva académica, OWASP cumple un rol primordial al sistematizar

amenazas recurrentes, proveer taxonomías claras de vulnerabilidades, facilitar la

estandarización del lenguaje técnico y servir como base para metodologías de prueba y

auditoría. Esta relevancia ha llevado a que proyectos como el OWASP Top 10 y el OWASP

API Security Top 10 sean adoptados como referencia en marcos normativos como ISO/IEC

27001, NIST SP 800-53 y guías de seguridad corporativas.

OWASP clasifica las amenazas a APIs en su documento OWASP API Security Top 10,

destacando riesgos como: Broken Object Level Authorization, Excessive Data Exposure,

Injectios Flaws y Improper Assets Management. Cada una describe escenarios donde la

21

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

manipulación o ausencia de controles adecuados compromete la integridad de los sistemas

(Nunes et al., 2023). La relevancia de este estándar radica en su adopción transversal por

parte de auditories y desarrolladores para el diseño de políticas de seguridad y pruebas

automatizadas (Mendoza & Pérez, 2022).

A diferencia del OWASP Web Top 10, el API Security Top 10 se centra en la lógica de

negocio, la autorización a nivel de objetos, la exposición de datos estructurados y el abuso

automatizado de recursos.

Las organizaciones al contar con un sistema eficiente permiten que amenore

considerablemente los intentos de ataques en la seguridad de las empresas, elemento que es

clave para proyectar escenarios en un tiempo determinado como ha futuro (Moreno, 2021).

Entre la contribución destacable es su estándar de verificación de seguridad de aplicaciones

(ASVS), que determina el nivel de exactitud teniendo como tres niveles la de bajo respaldo,

el segundo nivel protección recomendada y por último la de alto resguardo de protección

(Blandón y Jaramillo, 2023).

 En la actualidad el enfoque que posee las interfaces de programación de aplicaciones

API, sirve para obtener datos o compartir información relevante salvaguardando la intimidad

del sistema, esto con la finalidad de proteger la seguridad (Calderón et al., 2023). Ahora bien,

cabe indicar como se efectúa este intercambio de información, en primera instancia resulta

que, la relación entre cliente y servidor es el elemento indispensable para la comunicación, la

misma procediendo a iniciase con una petición para que el servidor provee con la

contestación, siendo el API o interfaces de programación de aplicaciones el vinculo o paso

para generarse la conexión (Pérez y Anías, 2024).

Dentro de esta conexión resulta que las APIs fundamentan una estructura de seguridad

para el sitio web que se encuentra solicitando la información, evitando que se introduzca

22

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

otros usuarios al sistema y obtengan la información personal o datos no autorizados (Leones

et al., 2024). A través de la validación de datos que pasan por las APIs también se refuerza los

datos sean auténticos y se gestionen adecuadamente hasta llegar al sistema backend, aquello

con el objetivo de mantener su precisión y no alteración de datos (Peñafiel, 2021). Con lo

antes referido, se desprende que las Interfaces de Programación de Aplicaciones son el

elemento indispensable en el diseño de sistemas, debido a sus beneficios en la integración y

coordinación en los sistemas, pero que también se ha convertido en un blanco fácil de

amenazas en la seguridad por la frecuente interacción con información y datos (Quispe,

2022).

Dado aquella situación el denominado Open Worldwide Application Security Project

ha elaborado el informe Owasp Api security top 10, como manual de clasificación en riesgos

a los que suele abordar la API. En base a este, lo que busca la OWASP es concientizar la

temática de seguridad de las API, debido a que han aumentado los riesgos o vulneraciones,

que actualmente varios invasores utilizan otro tipo de estrategias para atacar el sistema y

adentrarse a datos e información. De esta forma, se consolida los diez riesgos potenciales del

API, cada uno se encuentra clasificados por la identificación de usuarios, información,

carente control de acceso o el tipo de configuración empleado para evitar la inseguridad

(Álava et al., 2022).

Con el enfoque otorgado por OWASP mejora notablemente la confianza y seguridad

en las APIs eficientes para solventar cualquier ejecución maliciosa tanto desde la estructura

en el diseño como autentificación de las entradas al sistema, con aquello se incorpora las

instrucciones al nuevo método de ataques perpetrados e instruye a los especialistas de la

seguridad a efectuar estrategias tendientes a evitar ser punto de ataques y pérdidas

insuperables por el robo de información o pérdida económica (Moreno, 2021).

23

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Mediate un análisis técnico de los principales riesgos del OWASP API Security Top

10, esta el Broken Object Level Authorization (BOLA) debido a que la autorización rota a

nivel de objetos es considerada la vulnerabilidad más crítica en APIs. Ocurre cuando la API

no valida adecuadamente si el usuario autenticado tiene permisos para acceder a un objeto

específico, permitiendo la manipulación de identificadores en las solicitudes (OWASP, 2023).

Este tipo de vulnerabilidad es particularmente peligrosa porque no requiere técnicas

avanzadas de explotación, puede ser automatizada fácilmente y afecta directamente la

confidencialidad e integridad de los datos. Estudios empíricos demuestran que BOLA está

presente en un alto porcentaje de APIs públicas y privadas, debido a la complejidad de

implementar controles de autorización consistentes en arquitecturas de microservicios

(Sounthiraraj et al., 2014).

También se encuentra el Broken Authentication que por las fallas en los mecanismos

de autenticación permiten a los atacantes suplantar identidades legítimas, comprometiendo

completamente la seguridad de la API. Estas vulnerabilidades suelen originarse en la

implementación incorrectas de OAuth 2.0, el uso inseguro de tokens JWT, la falta de rotación

de credenciales y ausencia de controles contra ataques de fuerza bruta. En el contexto de

APIs, la autenticación deficiente se ve agravada por la ausencia de interacción humana, lo

que facilita ataques automatizados a gran escala (Almeida et al., 2019).

La exposición excesiva de datos ocurre cunado la API devuelve más información de

la estrictamente necesaria, delegando la filtración de datos al cliente. Este patrón es común en

APIs REST mal diseñadas, donde se retornan objetos completos sin considerar el principio de

mínimo privilegio (OWASP, 2023).

Desde una perspectiva de seguridad, esta práctica incrementa el riesgo de fugas de

información sensible, violaciones de privacidad e incumplimiento normativo.

24

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

También está la ausencia de controles de consumo de recursos permite a los atacantes

ejecutar ataques de denegación de servicio mediante solicitudes repetitivas o consultas

complejas. En APIs modernas, este riesgo se intensifica con tecnologías como GraphQL,

donde una sola solicitud puede consumir recursos significativos del Backend (Wittern et al.,

2017). El rate limiting y la validación de complejidad de las solicitudes son consideradas

controles esenciales para mitigar este tipo de amenazas.

Las vulnerabilidades de inyección siguen siendo una de las amenazas más persistentes

en la seguridad del software. En APIs, estas vulnerabilidades se manifiestan principalmente a

través de parámetros JSON manipulados, consultas dinámicas mal construidas y por falta de

validación de entrada.

OWASP destaca que, aunque muchas empresas asumen que el uso de formatos

estructurados como JSON reduce el riesgo de inyección, en la práctica estas vulnerabilidades

continúan siendo altamente explotables (OWASP, 2023).

Vulnerabilidades de Inyección en el Contexto de APIs

 Las vulnerabilidades de inyección surgen cuando los datos de entradas del usuario son

interpretados como código ejecutable. Halfond et al. (202) definen la inyección como un fallo

de validación que permite al intruso o atacante alterar la lógica de ejecución mediante la

inserción de sentencias no autorizadas. Alazab et al. (2021) amplían la taxonomía hacia

inyecciones NoSQL, XPath y Template Injection, subrayando su impacto transversal en APIs

modernas. El estudio de Chen et al. (2023) demuestra que el 27% de las vulnerabilidades

críticas reportadas en el NVD entre 2020 al 2023 corresponde a variantes de inyección.

 Desde una perspectiva teórica, la inyección representa una violación del principio de

separación entre datos y código, lo cual permite que entradas externas sean interpretadas

como instrucciones válidas por motores de base de datos, sistemas operativos o servicios de

25

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

directorio. A pesar de los avances en frameworks de desarrollo y buenas prácticas de

programación, estudios recientes evidencian que las vulnerabilidades de inyección continúan

figurando entre las amenazas más explotadas a nivel mundial (OWASP Foundation, 2023).

 En el contexto de las APIs modernas, este tipo de vulnerabilidades adquiere una

relevancia particular debido al uso intensivo de parámetros dinámicos, la serialización de

datos en formatos como JSON y XML, la automatización del consumo de servicios y la falsa

percepción de seguridad asociada a la ausencia de interfaces gráficas.

 El impacto de tales vulnerabilidades abarca la exposición de datos, escalamiento de

privilegios, manipulación de sesiones y denegación de servicios. Zhang et al. (2022)

sostienen que las inyecciones persisten debido a prácticas de desarrollo inseguras y ausencia

de pruebas de fuzzing en ciclos de integración continua. Bajo este contexto, la

automatización de pruebas se presenta como una estrategia esencial para la detección.

 Las vulnerabilidades de inyección pueden clasificarse según el intérprete o

componente afectado. Esta taxonomía resulta esencial para comprender los vectores de

ataque y diseñar mecanismos de mitigación efectivos.

 La inyección SQL ocurre cuando una aplicación construye consultas SQL de manera

dinámica incorporando entradas del usuario sin aplicar controles adecuados. Este tipo de

vulnerabilidad permite a un atacante manipular la consulta original para acceder, modificar o

eliminar información almacenada en base de datos relacionales (Halfond et al., 2006).

 En APIs REST, la inyección SQL suele manifestarse en parámetros de búsqueda,

filtros dinámicos, endpoints de autenticación y en servicios de reporte. A diferencia de

aplicaciones web tradicionales, las APIs suelen retornas respuestas estructuradas que facilitan

la automatización del ataque y la exfiltración masiva de datos.

26

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 La adopción de base de datos NoSQL, como MongoDB o CouchDB, introdujo nuevas

formas de inyección derivadas de la construcción dinámica de consultas en formato JSON. La

inyección NoSQL se produce cuando un atacante manipula estructuras JSON para alterar la

lógica de la consulta, por ejemplo, inyectando operadores lógicos como $ne, $or o $gt

(Okman et al., 2011).

 En APIs modernas, este tipo de vulnerabilidades es especialmente relevante debido a

la ausencia de esquemas estrictos, el tipado dinámico y la confianza excesiva en la estructura

del JSON recibido. Como lo menciona OWASP (2023), muchas APIs no aplican validaciones

estrictas de tipos, permitiendo que entradas maliciosas sean procesadas directamente por el

motor NoSQL.

 Adicionalmente, la inyección de comandos ocurre cunado una API ejecuta comandos

del sistema operativo utilizando entradas proporcionalmente por el usuario. Este tipo de

vulnerabilidad es menos común en APIs modernas, pero sigue siendo crítica en servicios que

realizan tareas administrativas, procesamiento de archivos o integración con sistemas

heredados (Stuttard & Pinto, 2011).

 El impacto de un command injection exitosa puede ser severo, ya que permite la

ejecución remota de comandos, escalamiento de privilegios y compromiso total del servidor.

Vulnerabilidades de inyección en APIs modernas

La reconocida inyección en aplicaciones es habitualmente vulnerable debido a que en

su aplicación existe la escasa filtración de información que es otorgado por algún usuario,

constituyéndose como riesgo, empatándose a la base de datos (Tipacti, 2024). Se obtiene

algunos tipos de inyección como, la salida de variables, siendo la más habitual y sencilla, este

tipo de inyección también referida como SQL, se caracteriza por ser el atacante quien

maniobra datos o comandos (Crespo, 2021).

27

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El formato JSON se ha convertido en el estándar de facto para el intercambio de datos

en APIs REST. Sin embargo, su flexibilidad y simplicidad pueden ocultar riesgos

significativos cuando no se implementan controles adecuados.

Las APIs vulnerables suelen aceptar estructuras JSON arbitrarias, no validar tipos de

datos y permitir campos adicionales no esperados. Esto posibilita la inyección de payloads

maliciosos que alteran la lógica interna de la aplicación, especialmente en consultas

dinámicas contra bases de datos NoSQL (OWASP, 2023).

En arquitecturas de APIs actuales, las vulnerabilidades de inyección han evolucionado

exponencialmente. Alazab et al. (2021) amplían la taxonomía para incluir la inyección

NoSQL en donde los comandos o filtros se envían a base de datos NoSQL como por ejemplo

MongoDB con operadores especiales permitiendo manipular documentos o consultas;

también están la Inyección XPath/XQuery cuando la API acepta consultas XML y permite

que los parámetros de cliente modifiquen rutas XPath sin saneamiento; y por último el

Template Injection cuando el usuario puede insertar expresiones dentro de plantillas o

motores de plantillas que luego son evaluadas como código dinámico. Estas vulnerabilidades

pueden ser explotadas para acceder a archivos del sistema, provocar denegación de servicio o

exfiltrar información sensible (Somorovsky et al., 2016).

Estas variantes son muy peligrosas en APIs RESTful o GraphQL que permiten

consultas personalizadas, filtros dinámicos o plantillas de contenido (Alazab et al., 2021). Se

tiene el caso de una API que recibe una plantilla de consulta o filtro en JSON, ésta podría

permitir que la inyección de expresiones dinámicas dentro del motor de plantillas, si no se

controlan los delimitadores o sintaxis permitida.

Chen et al. (2023) encontraron que, analizando algunas vulnerabilidades que son

críticas y que han sido reportadas en la base de datos de vulnerabilidades NVD entre los años

28

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

2020 y 2023, aproximadamente el 27% se relacionan con variables de tipo inyección. Esta

cifra indica lo contundente que tiene este tipo de falla dentro del panorama de seguridad.

Relacionando este tema con lo expuesto por Paul (2024) en el contexto de ataques de SQL,

muestran que nuevas técnicas híbridas de detección se están desarrollando para hacer frente a

la persistencia de estas vulnerabilidades.

Las vulnerabilidades de inyección en APIs suelen organizarse en una combinación de

fallos de diseño y errores de implementación. Entre los mecanismos de explotación más

comunes se encuentran el uso de consultas dinámicas sin parametrización, la falta de

validación de entrada basada en esquemas, confianza excesiva en el cliente y el manejo

inseguro de errores. Como lo menciona Stuttard & Pinto (2011), un factor crítico en APIs es

que lo mensajes de error estructurados pueden proporcionar información valiosa al atacante,

facilitando la identificación del motor de base de datos o la lógica interna del sistema.

Impacto y consecuencias de las vulnerabilidades de inyección

Las vulnerabilidades de tipo inyección tiene un amplio espectro cuando se trata de

impactos en una aplicación. Tenemos el caso de la exposición de datos sensibles cuando el

atacante puede extraer la información de la base de datos que no es accesible en teoría;

también está la evasión de autenticación o escalamiento de privilegios cuando se modifica

consultas de validación para hacerse pasar por otros usuarios. La manipulación o corrupción

de datos es otro impacto significativo en una aplicación cuando se altera, inserta o se borra

registros críticos; la denegación de servicio es común en este tipo de ataque inyectando

cargas pesadas o consultas recursivas que sobrecargan al sistema. Por último, tenemos la

ejecución de comandos del sistema o también llamado SPLOIT, que en casos extremos la

aplicación puede ser utilizada como vector para tomar control del servidor subyacente. Con lo

antes expuesto, Zhang, Wu y Wang (2022) mencionan que la persistencia de inyecciones en

29

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

código moderno se debe, en la mayoría de los casos, a prácticas inseguras de desarrollo y a la

ausencia de integraciones de pruebas automatizadas como fuzzing dentro del ciclo de la

integración continua y entrega continua. Esto pone de relieve que la prevención debe estar

integrada en el proceso de desarrollo, no solo como una revisión manual aislada.

El impacto de una vulnerabilidad de inyección exitosa en una API puede ser

devastador, especialmente en entornos empresariales y financieros. Entre las principales

consecuencias se destacan la exfiltración de datos, cuando las APIs suelen actuar como

puertas de accesos directo a bases de datos críticas. Una inyección exitosa puede permitir la

extracción masiva de información sensible, incluyendo datos personales, financieros o

credenciales de acceso.

También está el compromiso de la integridad, que además de leer datos, un atacante

puede modificar o eliminar información, afectando la integridad de los sistemas y generando

pérdidas económicas y reputacionales.

La denegación de servicios también es otra consecuencia. Algunas inyecciones

permiten ejecutar consultas altamente costosas que consumen recursos del sistema,

provocando degradación del servicio o interrupciones completas (Okman et al., 2011).

La persistencia de las vulnerabilidades de inyección, a pesar de décadas de

investigación y concienciación, evidencia la necesidad de enfoques más avanzados de

detección y prevención. En el contexto de las APIs, estas vulnerabilidades representan un

desafío particular debido a la automatización, la escalabilidad y la complejidad de las

arquitecturas modernas.

30

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Testing de seguridad y automatización en entornos DevSecOps

El paradigma DevSecOps surge como una evolución natural de DevOps, integrando la

seguridad como un componente esencial y compartido del proceso de desarrollo. En lugar de

delegar la seguridad a equipos especializados de forma aislada, DevSecOps promueve la

responsabilidad colectiva y la automatización de controles de seguridad a lo largo del pipeline

CI/CD (Continuos Integration / Continuos Deployment) (Myers, McGraw & Whittaker,

2017).

La integración de procesos de seguridad dentro del ciclo de vida del desarrollo de

software ha dado origen a la filosofía DevSecOps, cuyo propósito es automatizar la detección

temprana de vulnerabilidades y reducir el costo asociado a las fallas de seguridad en

producción. Según Rao y Khan (2022), el paradigma DevSecOps se sustenta en la continua

integración y entrega, donde las pruebas de seguridad deben ejecutarse como una fase más

dentro del pipeline. Bajo esta idea, el fuzzing dirigido se incorpora como una técnica

automatizada de descubrimiento de vulnerabilidades, capaz de integrarse en repositorios

CI/CD como GitLab, Jenkins o Azure DevOps.

Krause y Moreno (2024) sostienen que el shit-left security testing, o en otras palabras

trasladar las pruebas de seguridad a etapas tempranas del desarrollo, aumenta la eficiencia en

un 65% y reduce la tasa de falsos negativos, siempre que se utilicen herramientas inteligentes

capaces de interpretar el comportamiento dinámico de las APIs. Bajo este sentido, la

combinación de fuzzing con validación de contratos fortalece la robustez de los servicios

antes de su despliegue, garantizando que las respuestas de la API sean predecibles, seguras y

conformes al diseño original.

La automatización de la seguridad ha tomado una transformación hacia el uso de

frameworks como OWASP ZAP, Burp Suite Enterprise, Restler y Schemathesis, los cuales

31

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

integran módulos de fuzzing, validación de esquemas y generación de reportes CVSS. Al-

Hassan et al. (2023) destacan que la incorporación de estos componentes dentro del pipeline

de integración continua reduce el Mean Time to Detect en entornos de producción,

contribuyendo a la resiliencia operacional y al cumplimiento de normas ISO 27034-1:2021.

De igual forma, Mendoza y Pérez (2022) muestran que, las plataformas financieras, el uso de

OWASP ZAP automatizado permitió identificar más del 80% de las vulnerabilidades de

inyección antes del despliegue del software.

El Testing automatizado en APIs no solo tiene valor preventivo, sino también

predictivo. El uso de modelos de inteligencia artificial, aprendizaje supervisado y

reinforcement learning para identificar patrones anómalos en las respuestas de las APIs

permite anticipar comportamientos potencialmente vulnerables. Nguyen et al. (2024)

demostraron que los modelos basados en aprendizaje por refuerzo alcanzan una tasa de

detección de vulnerabilidades de hasta un 92% en datasets públicos de fuzzing. Estos

resultados confirman que la sinergia entre IA y fuzzing dirigido redefine los límites del

Testing tradicional, introduciendo una capa cognitiva de seguridad adaptativa.

Metodología y estándares aplicados en pruebas de API

El marco metodológico de las pruebas de seguridad en APIs se apoya en tres ejes

fundamentales: estándares internacionales, marcos de referencia técnicos y métricas de

evaluación de vulnerabilidades.

En primer lugar, el National Institute of Standards and Technology (NIST, 2023) en su

publicación SP 800-115 establece una guía para la realización de pruebas de penetración que

incluye fase de planificación, descubrimiento, ataque y reporte. Esta metodología ha sido

ampliamente adoptada en auditorías de APIs debido a su flexibilidad y enfoque en la

32

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

reproducibilidad de resultados. En el contexto de fuzzing, el cumplimiento de NIST garantiza

la trazabilidad y documentación de las pruebas ejecutadas.

De igual manera, el estándar ISO/IEC 27034-1:2021 sobre seguridad en el ciclo de

vida del software define los requisitos para implementar controles de seguridad desde el

diseño hasta la operación del sistema, asegurando la coherencia con los principios de

confidencialidad, integridad y disponibilidad. Calle y Lozano (2023) subrayan que la

integración de métricas CVSS en los reportes generados por las herramientas de fuzzing

permite establecer un umbral cuantitativo de riesgo, facilitando la priorización de

vulnerabilidades críticas.

Por otro lado, OWASP Application Security Verification Standard (ASVS) se erige

como la base técnica para auditar APIs bajo niveles de confianza graduados. Blandón y

Jaramillo (2023) señalan que ASVS ofrece un marco unificado para definir requisitos de

validación, autenticación y manejo de errores, alineando los resultados de fuzzing con una

taxonomía estandarizada. Este enfoque metodológico proporciona un lenguaje común entre

desarrolladores, pentesters y auditores, esencial para entornos DevSecOps distribuidos.

En el caso de entornos API complejos, Nunes et al. (2023) recomiendan combinar

ASVS con el OWASP API Security Top 10, lo cual permite articular pruebas específicas para

vulnerabilidades como Broken Object Level Authorization (BOLA) o Excessive Data

Exposure. Este modelo híbrido ha sido implementado exitosamente en plataformas bancarias

latinoamericanas según Chávez et al. (2023), quienes observaron una disminución del 38% en

incidentes de seguridad luego de la adopción de pruebas automatizadas basadas en fuzzing y

validación de contratos.

33

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Enfoques de automatización en el aseguramiento de APIs

Inmerso en la ingeniería del software moderno, la automatización constituye un punto

fundamental para la eficiencia y constancia de las pruebas de seguridad. Rao y Khan (2022)

destacan que la integración de pruebas automáticas en pipelines DevSecOps permite

identificar vulnerabilidades en etapas tempranas del desarrollo, reduciendo el costo de

remediación hasta en un 70%. En el ámbito de las APIs, esta automatización adquiere un

matiz particular; puesto que los entornos dinámicos y distribuidos requieren validaciones

continuas de endpoints, tokens de acceso y contratos de comunicación (Krause & Moreno,

2024).

Las herramientas contemporáneas aplican técnicas de pruebas de seguridad continuas

las cuales integran motores de fuzzing, escáneres de vulnerabilidades y validadores de

configuración (Al-Hassan et al., 2023). Estas soluciones permiten una observabilidad

constante de las APIs, lo cual resulta crucial frente a arquitecturas en evolución como las

basadas en contenedores y microservicios. Calderón et al. (2023) resalta que la naturaleza

efímera de los servicios orquestados mediante Kubernetes incrementa la necesidad de

pruebas automatizadas de descubrimiento y autenticación, particularmente frente a los taques

de tipo de autenticación rota o gestión inadecuada de activos.

Bajo este contexto, el fuzzing dirigido se convierte en un componente estratégico

dentro de los flujos de integración y entrega continua al priorizar casos de prueba relevantes

en función del riesgo potencial. A diferencias de los escaneos estáticos tradicionales, que

dependen de firmas o patrones predefinidos, el fuzzing dinámico genera entradas que

evolucionan conforme al comportamiento del sistema, permitiendo detectar vulnerabilidades

no catalogadas (Nguyen et al., 2024). Esta capacidad predictiva constituye una ventaja

competitiva frente a las amenazas emergentes en entornos de API complejos.

34

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Métricas de evaluación del riesgo en APIs

La evaluación cuantitativa del riesgo se fundamenta en estándares como CVSS v3.1

(FIRST, 2023), que introduce métricas base, temporales y contextuales para valorar la

severidad de una vulnerabilidad. Calle y Lozano (2023) proponen integrar estas métricas con

indicadores de rendimiento de fuzzing, como la cobertura alcanzada, la densidad de errores y

la tasa de falsos positivos, conformando un modelo de evaluación multidimensional.

Argumentando el punto anterior, el NIST SP 800-115 (2023) remarca procedimientos

de prueba técnica que incluyen network mapping, vulnerability scanning, penetration testing

y social Engineering. Su integración a entonos API implica desarrollar un marco de referencia

que combine autorías automáticas con revisión manual de endpoints críticos. Chávez et al.

(2023) destacan que, en Latinoamérica, la aplicación de tales modelos requiere considerar la

madurez tecnológica y regulatoria de cada país, lo que plantea la necesidad de herramientas

locales adaptadas.

Por otro lado, Alotaibi et al. (2022) señalan que la evaluación del riesgo debe

incorporar factores contextuales como la exposición pública de la API, la sensibilidad de los

datos procesados y la dependencia de terceros. Esta perspectiva contextual permite priorizar

esfuerzos de mitigación y definir políticas de seguridad dinámicas.

La gestión integral de la seguridad en APIs requiere alinearse con normas

internacionales reconocidas, La ISO/IEC 27034-1:2021 define el marco para la seguridad de

aplicaciones, destacando la necesidad de integrar controles en todas las fases del ciclo de

vida. Complementariamente, el OWASP ASVS 4.0 (Application Security Verification

Standard) proporciona criterios detallados de validación que incluyen pruebas de

autenticación, autorización, manejo de sesiones, entradas de datos y gestión de errores

(Blandón & Jaramillo, 2023).

35

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El OWASP API Security Top 10 (2024), por su parte, establece una jerarquía de

riesgos específicos para APIs, subrayando que las fallas de control de acceso y las

inyecciones constituyen las causas más comunes de incidentes críticos. Nunes et al. (2023)

comprueban empíricamente que el 42% de las APIs evaluadas en entornos financieros

presentaban vulnerabilidades asociadas a estos dos tipos de riesgo.

Detección temprana de vulnerabilidades

El modelo de detección temprana se basa en la premisa de que la identificación de

vulnerabilidades en las primeras etapas del ciclo de desarrollo reduce significativamente el

costo y el impacto operativo de los fallos de seguridad. De acuerdo con Moreno (2021), la

reparación de una vulnerabilidad durante la etapa de desarrollo es 6 veces menos costosa que

su corrección en producción. De allí la relevancia de las herramientas automatizadas como el

sistema de testing.

El enfoque de una detección tempana se basa en tres fundamentales: el

descubrimiento inteligente de endpoints utilizando especificaciones OpenAPI y análisis de

tráfico para identificar superficies de ataque, fuzzing dirigido adaptativo que prioriza los

endpoints de mayor riesgo con base a criterios OWASP y cobertura de código; y validación y

scoring de vulnerabilidades donde las respuestas anómalas se evalúan mediante métricas

CVSS y recomendaciones OWASP API Security.

Este modelo no solo refuerza la prevención técnica, sino que promueve una cultura de

seguridad continua, donde las pruebas son parte del flujo operativo diario. Ahmed et al.

(2023) menciona que este tipo de integración favorece la resiliencia digital; puesto que,

convierte la detección de vulnerabilidades en un proceso sistemático y cuantificable.

36

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Fuzzing dirigido y aprendizaje adaptativo

El fuzzing es una técnica de pruebas de seguridad que consiste en enviar entradas

inesperadas, malformadas o aleatorias a un sistema con el objetivo de provocar

comportamientos anómalos o fallos de seguridad. Tradicionalmente, el fuzzing ha sido

ampliamente utilizado para detectar errores de memoria en software nativo; sin embargo, su

aplicación en APIs ha ganado relevancia en años recientes (Zalewski, 2015).

En el contexto de APIs, el fuzzing se orienta principalmente a parámetros de entrada,

estructura JSON y XML, encabezados HTTP y tokens de autenticación.

El fuzzing tradicional genera grandes volúmenes de entradas aleatorias, pero su

efectividad depende de la cobertura alcanzada en el código bajo prueba. Bohme et al. (2020)

resalta el concepto de fuzzing dirigido donde el objetivo es concentrar los casos de prueba en

regiones del programa que presentan mayor riesgo. Por otro lado, Chen et al. (2022) aplican

esta técnica en contextos de APIs, en la cual combinan gramáticas de entradas basadas en

OpenAPI con métricas de cobertura para identificar endpoints susceptibles a inyección.

La incorporación de máquinas de aprendizaje y aprendizaje por refuerzo en fuzzing

adaptativo ha permitido priorizar casos de prueba con mayor probabilidad de vulnerabilidad

(Wu et al., 2023). Asimismo, Nguyen et al. (2024) demuestran que los fuzzers basados en

aprendizaje por refuerzo reducen hasta en un 60% el número de ejecuciones necesarias para

descubrir vulnerabilidades críticas en APIs RESTful. Estos avances han impulsado una nueva

generación de herramientas, conocidas como intelligent fuzzera, que integran análisis

semántico y retroalimentación del sistema para ajustar dinámicamente los payloads de

prueba.

La resiliencia cibernética no se limita a la prevención, sino también a la capacidad de

detección y respuesta ante incidentes. Bajo este contexto, el fuzzing desempeña un papel

37

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

clave dentro de la estrategia de defensa activa. Moreno (2021) plantea que los mecanismos de

prueba continua constituyen un escudo adaptativo frente a vulnerabilidades desconocidas,

fortaleciendo la capacidad de anticipación.

Sun et al. (2022) amplían esta noción al introducir el concepto de Feedback-driven

fuzzing, donde las anomalías observadas en la ejecución del sistema retroalimentan la

generación de nuevos casos de prueba. Este enfoque de aprendizaje iterativo incrementa la

cobertura y descubre vulnerabilidades que permanecerán ocultas bajo técnicas

convencionales. Zhang et al. (2022) recalca que la implementación de fuzzing como servicio

en entornos de nube democratiza el acceso a prueba de seguridad avanzadas, reduciendo las

barreras de adopción tecnológica.

Evolución del fuzzing hacia modelos inteligentes

El fuzzing ha pasado de ser una técnica de generación aleatoria de entradas a ser un

campo basado en inteligencia artificial y análisis dinámico de código. Sun et al. (2022)

proponen un modelo híbrido que combina symbolic exucution y grebox fuzzing para

aumentar la cobertura del código explorando en APIs complejas. Este enfoque logra

identificar vulnerabilidades profundas que suelen escapar al fuzzing puramente aleatorio.

Kim y Park (2024) dan más detalle de este tema proponiendo intelligent fuzzing,

donde los algoritmos de machine learning aprendan a inferir los patrones válidos de

comunicación entre cliente y servidor. De esta manera, el sistema genera payloads plausibles

pero maliciosos que simulan un comportamiento legítimo, incrementando la tasa de detección

de fallos. Este paradigma ha demostrado su eficacia especialmente en entornos GraphQL y

gRPC, donde las estructuras de datos presentan mayor complejidad.

El fuzzing inteligente no sólo se orienta a la detección, sino también a la priorización

de vulnerabilidades. Wu et al. (2023) introducen métricas de rik-weighted coverage, en las

38

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

cuales el fuzzer asigna pesos dinámicos a los casos de prueba en función del impacto

potencial del fallo. Esta integración de análisis de riesgo convierte al fuzzing en una

herramienta estratégica dentro del aseguramiento de la calidad del software.

Bajo este contexto, la implementación de un sistema de fuzzing dirigido e inteligente

para la evaluación de APIs constituye una contribución relevante al estado del arte, pues

combina la automatización técnica con la interpretación semántica de los contratos API,

optimizando tanto la eficiencia como la profundidad del Testing.

Dentro del fuzzing se cuenta con el fuzzing black-box que se realiza sin conocimiento

interno del sistema, basándose únicamente en las respuestas observadas. Este enfoque resulta

útil para simular ataques reales, pero puede ser limitado en la cobertura alcanzada. Por otro

lado, el fuzzing grey-box combina información parcial del sistema, como esquema de API,

contratos OpenAPI o métricas de ejecución, para guiar la generación de payloads. Estudios

recientes demuestran que el fuzzing grey-box mejora significativamente la eficiencia en la

detección de vulnerabilidades de inyección en APIs (Böhme et al., 2017).

La incorporación de algoritmos heurísticos y técnicas de aprendizaje adaptativo

permite optimizar la generación de payloads de fuzzing, priorizando entradas con mayor

probabilidad de provocar fallos. Estas técnicas incluyen la mutación dirigida de entradas, el

análisis de respuestas para retroalimentación y la priorización basada en cobertura lógica.

Importancia de los entornos de evaluación en la seguridad de APIs

La evaluación efectiva de la seguridad en APIs modernas requiere no solo de

fundamentos teóricos y metodológicos sólidos, sino también de entornos y herramientas

especializadas que permitan identificar, reproducir y analizar vulnerabilidades de manera

controlada. Es investigaciones de ciberseguridad, la selección adecuada de herramientas

39

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

constituye un factor crítico para garantizar la validez, reproducibilidad y confiabilidad de los

resultados obtenidos (Behl & Behl, 2017).

En el contexto de APIs, estas herramientas deben ser capaces de interceptar y

manipular solicitudes estructuradas, automatizar ataques de inyección, analizar mecanismos

de autenticación y autorización, integrarse con flujos de pruebas repetibles.

Kali Linux como ecosistema de auditoría de seguridad

Kali Linux es una distribución basada en Debian específicamente configurada para

pruebas de seguridad, que incluye repositorios oficiales de herramientas como Burpsuite,

sqlmap, nmap, wireshark, y numerosos scripts de auditoría. Su uso es común en

investigaciones puesto que, permite la configuración reproducible ya que los entornos pueden

versionarse con todas las herramientas integradas, reduciendo el esfuerzo de instalación y

administración (Offensive Security, 2023). Por otra parte, permite la interoperabilidad de

herramientas mediante el uso de scripts personalizados que pueden integrarse con Burp

Proxy, lanzarse desde Kali, coordinar con herramientas ofensivas y finalmente consumir

outputs comunes como logs o dumps. Kali también facilita conexiones locales,

encapsulamiento de tráfico, certificados auto firmados, creación de redes simuladas y

manipulación de entornos de prueba aislados.

Desde un punto de vista investigativo, Kali Linus ofrece ventajas significativas como

un entorno estandarizado y reproducible, actualización continua de herramientas, amplio

respaldo documental y comunitario, y compatibilidad con metodología de pruebas

reconocidas.

En la evaluación de APIs, Kali Linux actúa como un entorno centralizado que permite

ejecutar herramientas de análisis manual y automatizado. Su utilidad se ve reforzada por la

integración nativa de utilidades orientadas al análisis de tráfico HTTP, pruebas de inyección y

40

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

manipulación de parámetros. Kali Linux reduce la variabilidad experimental y facilita la

comparación de resultados entre diferentes estudios de seguridad (Scarfone et al., 2012).

Trabajos investigativos realizados en los últimos años sobre la aplicabilidad de Kali

como plataforma educativa y operativa muestran su relevancia continua en escenarios de

hacking y pruebas de penetración (Nedyalkov & Georgiev, 2024). Bajo este contexto, a Kali

se lo puede utilizar como nodo maestro que trabajo con pipeline de fuzzing dirigido,

coordinando agentes en Go, registrando el tráfico en Burpsuite y validando con sqlmap.

Burpsuite como componente de inspección

Burpsuite es una plataforma ampliamente usada en pruebas de seguridad de

aplicaciones web. Su conjunto de módulos como Proxy, Spider, Intruder, Repeater, Exptender

permite interceptar, modificar y generar tráfico HTTP/S, realizar ataques parametrizados y

desarrollar extensiones personalizadas para lógica específica (PortSwigger, s. f.). En entornos

académicos y profesionales, Burpsuite es referido frecuentemente como herramienta centro

de pentesting, auditoría de aplicaciones web y entrenamiento de equipos de seguridad

(Carvaca, 2022; Ramírez Castañeda, 2024).

Desde el punto de vista técnico, Burp Suite se compone de módulos especializados,

entre lo que se destacan el proxy, repeater, intrudrer, scanner y el extender.

Esta plataforma tiene la capacidad de ser un proxy interceptador, historial de

requests/responses, repetidor, intruder, scanner y extensibilidad mediante extensiones. Estas

funciones permiten tanto la prueba manual guiada como la automatización parcial de ataques

para identificar vulnerabilidades OWASP (PortSwigger, s. f.; Garza Panelli, 2024). El uso de

Burpsuite en trabajos investigativos demuestra su adopción como herramienta de inspección

41

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

práctica dentro de marcos metodológicos orientados por OWASP Top 10 (Carvaca, 2022; De

la Cruz Martínez & Hernández, 2022). Esto permite replicar experimentos y validar hallazgos

con herramientas estandarizadas.

En el contexto de APIs, Burp Suite resulta especialmente eficaz para analizar

endpoints REST y GraphQL, manipular parámetros JSON, evaluar controles de autenticación

y autorización, identificar vulnerabilidades de inyección. El módulo Repeater permite realizar

pruebas manuales controladas, mientras que Intruder facilita la automatización de ataques

mediante payloads personalizados. Estas capacidades hacen de Burp Suite una herramienta

clave para la detección de vulnerabilidades complejas que no siempre son identificadas por

escáneres automáticos (PortSwigger, 2023).

El corazón de Burp Suite es el proxy. Este módulo permite a los evaluadores

interceptar, inspeccionar y modificar el tráfico HTTP/HTTPS que fluye entre el navegador y

la aplicación. Esta capacidad es crucial para entender cómo interactúa el cliente con el

servidor y para manipular parámetros de entrada (Patil & Bhole, 2022).

Esta herramienta proporciona un mapa detallado del sitio web y sus contenidos,

incluyendo el descubrimiento de directorios, endpoints y funcionalidades ocultas. Permite

reenviar peticiones específicas al servidor de forma manual, lo que s vital para la explotación

manual de vulnerabilidades. Es ideal para realizar ataques automatizados y sistemáticos.

Permite inyectar múltiples payloads en uno o más puntos de inserción de una petición, siendo

indispensable para fuzzing, ataques de fuerza bruta y pruebas de enumeración (Chakraborty

et al., 2020).

Burp Suite permite a los usuarios escribir extensiones personalizadas, utilizando

lenguajes como Phyton, Ruby y Java (Singh & Gupta, 2023). La BApp Store de PortSwigger

alberga una amplia colección de extensiones desarrolladas por la comunidad y que añaden

42

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

funcionalidades específicas, la detección de problemas específicos de frameworks o la

integración con otras herramientas de seguridad.

Sqlmap y la automatización de ataques de inyección

Es una herramienta ampliamente utilizada para detectar y explotar vulnerabilidades de

inyección SQL en aplicaciones web. Su funcionamiento automatiza el flujo de exploración

que engloba la detección de parámetros vulnerables, identificación del motor de base de

datos, generación de payloads y exfiltración de datos automáticamente. A pesar que no fue

diseñada para APIs REST, sqlmap sigue siendo un benchmark fundamental ya que puede

validar si un endpoint es vulnerable desde la capa web tradicional. En investigaciones

recientes de seguridad web mediante el análisis de inyección y priorización de pruebas, se

cita su uso como un oráculo de verificación si el fuzzer genera un payload que sqlmap

reconoce como exploitable, se puede considerar como un hallazgo válido (Paul et al., 2024).

Su arquitectura se basa en un motor de detección modular que soporta múltiples

técnicas de inyección, incluyendo el boolean-based blind, time-based blind, error-based,

unión-based. SQLMap analiza las respuestas del servidor para inferir la vulnerabilidad y

adaptar dinámicamente los payloads utilizados, lo que lo convierte en una herramienta

altamente efectiva para pruebas automatizadas (Halfond et al., 2006).

A pesar de lo potente que es el sqlmap, tiene sus limitaciones en el contexto API tal

como, que no entiende lógicas de rutas compuestas como por ejemplo primero crear un

objeto y luego actualizarlo; también no maneja autenticación vía tokens dinámicos o

cabeceras complejas; y su exploración no es dirigida.

Como lo menciona Crespo (2020), no existen soluciones que garanticen o solucionen

todas las vulnerabilidades, las cuales ocurren en todo aspecto tanto a nivel hardware como

software. Muchos elementos no son actualizados constantemente, y por ende son más

43

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

susceptibles a ataques cibernéticos. Las aplicaciones web sufren múltiples vulnerabilidades

en su seguridad por problemas genéricos de validación de entrada.

Aunque SQLMap fue concebido inicialmente para aplicaciones web tradicionales, su

uso en APIs REST es común en escenarios donde los endpoints interactúan con bases de

datos relaciones. En APIs, SQLMap puede utilizarse para evaluar parámetros JSON

serializados, analizar filtros dinámicos y autorizar pruebas de inyección en endpoints

autenticados.

No obstante, de acuerdo a estudios científicos muestra que SQLMap presenta

limitaciones en entornos donde se utilizan bases de datos NoSQL o mecanismos de

abstracción avanzados, lo que refuerza la necesidad de complementar su uso con pruebas

manuales y fuzzing dirigido (OWASP, 2023).

Go como lenguaje para desarrollo de herramientas en fuzzing

El lenguaje de programación en Go ha ganado gran popularidad en desarrollos de

herramientas de ciberseguridad digo a su soporte nativo para concurrencia ligera, semáforos,

lo que facilita construir motores de fuzzing con alta paralelización y control de rate limit.

También puede complicar un solo ejecutable que funcione de distintas plataformas sin

dependencias externas; es eficiente en el manejo de redes y concurrencia en el cliente HTTP,

ideal para arquitectura en fuzzing con agentes distribuidos que coordinan múltiples peticiones

concurrentes a una API. Aunque tiene riesgos propios como errores de sincronización y

bloqueo de canales; éstos han sido objeto de atención reciente (Zhou et al., 2025).

Go desarrollado en Google busca combinar un rendimiento cercano al código nativo

con simplicidad, concurrencia integrada y herramientas de ecosistemas amigables para la

ingeniería de sistemas a gran escala (Pike et al., 2009). Desde la versión 1.18, Go integró

44

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

soporte nativo de fuzzing en su herramienta de testing, lo que facilita incorporar pruebas de

fuzzing en el flujo normal de desarrollo y CI/CD (Go Team, 2022).

Uno de los pilares de Go es su simplicidad; esto quiere decir que su lenguaje se diseño

con una sintaxis intencionalmente pequeña y limpia, eliminando características encontradas

en otros lenguajes. Esta característica contribuye a la legibilidad y la mantenibilidad del

código, promoviendo un estilo de programación uniforme a través de la herramienta estándar

gofmt (Obeid et al., 2021).

Otra característica de Go es que es un lenguaje de tipado estático y fuerte. Esto quiere

decir que, los tipos de datos de las variables se verifican en tiempo de compilación, esto

ayuda a detectar errores antes de la ejecución. No obstante, Go inserta un sistema de

inferencia de tipos que permite declarar variables de forma concisa sin especificar

explícitamente el tipo, lo que combina seguridad con rapidez de desarrollo (Pérez-Sánchez et

al., 2023).

Go utiliza los Goroutines que son funciones ligeras y abstractas que pueden ejecutarse

concurrentemente. Ocupan solo unos pocos kilobytes de memoria y son gestionadas

eficientemente por el runtime de Go (Torres-Mora et al., 2022). También maneja los Channels

que son la forma preferida de comunicación entre goroutines. Estos permiten enviar y recibir

valores, lo que previene problemas comunes de concurrencia como las condiciones de

carrera.

Por otro lado, Go es muy aplicado en el desarrollo de infraestructuras y en servicios

de Backend debido a su rendimiento y manejo superior de concurrencia. Es ideal para

construir servicios web de alto rendimiento y microservicios que requieren gestionar miles de

conexiones simultáneas (Borges et al., 2022). Gran parte del ecosistema de cloud computing

45

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

y contenedores se basa en Go. Proyectos como Docker y Kubernetes fueron escritos en Go, lo

que subraya su fortaleza en este dominio.

En el contexto de seguridad de APIs,, Go resulta especialmente adecuado para el

desarrollo de herramientas de fuzzing dirigido, capaces de generar y enviar grandes

volúmenes de solicitudes concurrentes. Su modelo de concurrencia facilita la simulación de

ataques automatizados y el análisis de respuestas en tiempo real. El uso de Go destacan en

proyectos de fuzzing y testing de APIs debido a su capacidad para manejar múltiples

conexiones simultáneas sin comprometer el rendimiento (Böhme et al., 2017).

Gestión de Riesgo y Remediación (Hardening) de APIs

La gestión del riesgo en ciberseguridad se define como el proceso sistemático de

identificación, análisis, evaluación y tratamiento de los riesgos asociados a activos de

información. En el contexto de las APIs, este proceso adquiere una relevancia crítica debido a

que dichas interfaces suelen actuar como puntos de acceso directo a datos y servicios

estratégicos, exponiendo de manera simultánea múltiples sistemas dependientes (ISO/IEC,

2022).

Desde una perspectiva teórica, el riesgo puede entenderse como la combinación de la

probabilidad de ocurrencia de una amenaza y el impacto de esta genera sobre los activos. En

arquitecturas modernas basadas en APIs, factores como la automatización, la escalabilidad y

la interconectividad incrementan tanto la probabilidad como el impacto de los incidentes de

seguridad (NIST, 2020).

El Common Vulnerability Scoring System (CVSS) constituye uno de los estándares

más utilizados a nivel internacional para cuantificar la severidad de las vulnerabilidades de

seguridad. CVSS proporciona un marco estructurado que permite asignar una puntuación

numérica basada en métricas técnicas, temporales y ambientales (FIRST, 2019).

46

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Si bien CVSS fue concebido de manera genérica, diversos estudios señalan su

aplicabilidad efectiva en la evaluación de vulnerabilidad en APIs, especialmente cuando se

ajustan las métricas ambientales para reflejar aspectos como la exposición pública del

endpoint, nivel de automatización del ataque y el volumen potencial de datos comprometidos

(OWASP, 2023).

El hardening se refiere al conjunto de medidas técnicas y organizativas destinadas a

reducir la superficie de ataque de un sistema, eliminando configuraciones innecesarias y

fortaleciendo los controles de seguridad existentes. Bajo el contexto de las APIs, el hardening

constituye un componente esencial de la gestión del riesgo.

La validación de entradas es uno de los controles más efectivos para prevenir

vulnerabilidades de inyección. En APIs modernas, esta validación debe realizarse en el

servidor, basándose en esquemas estrictos y aplicando listas blancas de valores permitidos. El

uso de tipado estricto y validación basada en esquemas OpenAPI reduce significativamente la

posibilidad de que datos maliciosos sean procesados por el Backend (OWASP, 2023).

La utilización de consultas parametrizadas, ORM seguros y biblioteca de acceso a

datos confiables constituye una práctica ampliamente recomendada para mitigar

vulnerabilidades de inyección SQL y NoSQL. Estas técnicas garantizan la separación efectiva

entre datos y código, eliminando uno de los principales vectores de ataque (Halfond et al.,

2006).

Los API Gateway desempeñan un rol central en el hardening de APIs al permitir la

aplicación centralizada de controles de seguridad, tales como la autenticación y autorización,

el rate limiting, filtrado de tráfico malicioso, y el registro y monitoreo.

47

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Uno de los errores más frecuentes en APIs es la falta de autorización a nivel de objeto,

lo que permite a los usuarios acceder a recursos que no les corresponden. La aplicación del

principio de mínimo privilegio resulta fundamental para mitigar el riesgo, garantizando que

cada consumidor de la API solo pueda acceder a los recursos estrictamente necesarios para su

función (OWASP, 2023).

La remediación efectiva de vulnerabilidades no se limita a la corrección técnica del

fallo identificado, sino que implica un proceso integral que incluye el análisis de causa raíz,

la actualización de controles de seguridad, la mejora de procesos de desarrollo y la

capacitación del personal técnico.

CAPITULO 3:

3. DESARROLLO

3.1. Materiales y Métodos

 La presente investigación será de tipo experimental mediante la manipulación de

variables; en este caso aplicando las técnicas de fuzzing en APIs que se encuentren expuestas.

Para ello se realizó un estudio documental para analizar las técnicas más apropiadas para la

penetración en las aplicaciones. Los datos recogidos fueron los insumos que permitió realizar

la investigación y obtener los resultados correspondientes.

 Para la ejecución del trabajo investigativo se cogió como muestra la API de la

empresa Cbvisión. Es una empresa ecuatoriana de telecomunicaciones que ofrece servicios de

internet por fibra óptica y televisión por cable. Su sitio web indica que cuenta con tecnología

de punta con más de 25 años de trayectoria y cobertura en varias ciudades como Paute,

Gualaceo, Chordeleg, Cuenca, Cañar, El Tambo, La Troncal, Santa Rosa, Ambato, Salcedo,

Machacho, Tambillo y Cutuglagua.

48

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 De acuerdo con información documental, en el listado de marzo 2023, la empresa

Cbvisión cuenta con 371 suscritores de Tv que paga en el cantón Paute. Actualmente cuenta

con más de 1300 abonados. Cuenta con página web y una API de televisión.

 Mediante un análisis investigativo y estudio experimental, se analizará la

vulnerabilidad de sitio web de la empresa y exponer los resultados.

3.2. Desarrollo del Trabajo

Para empezar el proceso investigativo, se busca un objetivo para aplicar técnicas de

fuzzing. De las páginas que se ha analizado, se toma como objetivo seleccionado, la página

de la empresa de Internet CBVisión de Ecuador, cuyo enlace es https://www.cbvision.net.ec/

Figura 1

Sitio web del objetivo seleccionado

CBVisión es un proveedor de servicios de internet, con presencia en gran parte del

Ecuador en la sierra Norte y centro principalmente.

Mediante la app que se desarrolló en go, se procede a hacer el primer testing a ver si

encontramos alguna vulnerabilidad del sitio.

https://www.cbvision.net.ec/

49

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 2

Verificación de posibles vulnerabilidades del sitio web

50

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

De todas las opciones que se presenta, se analizará los siguientes:

go run main.go -t https://www.cbvision.net.ec/ --fuzz --concurrency 30 –html

explicada, con -t seleccionamos el objetivo del fuzzing, seguido de la página web, luego el

método de ataque que en este caso es fuzz, luego la concurrencia y finalmente el informe que

lo genere en html.

Corriendo el programa se tiene el siguiente resultado:

51

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 3

Ejecución de programa Go y los resultados obtenidos

Dentro del mismo directorio del programa se encuentra la carpeta scans, en la cual

estarán los sitios que con anterior se ha usado para afinar el sistema, ahora es el turno de

CBVisión. En dicho directorio se encuentra la fecha y hora que se corrió el scan y dentro los

documentos que interesan.

Figura 4

Fecha y hora del escaneo y ficheros

52

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Lo que entrega el sistema es lo siguiente:

Figura 5

Ficheros y archivos obtenidos

El informe en html contiene de forma agradable un resumen de la información.

El informe en txt es un informe muy general de las evidencias que se encontró en el sistema.

El informe_fuzz es un txt del cual nos da más detalle, pero ya se debería de tener un nivel

intermedio para su interpretación.

El informe_fuzz_detallado incluye la información muy detallada que ya debe de ser analizada

por algún profesional de la rama

En evidencia se encuentra las pruebas que se le ha hecho al sitio en busca de las

vulnerabilidades.

El reporte en html, arroja lo siguiente:

53

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 6

Reporte Html del resultado de vulnerabilidades del sitio

Esto indica que, tiene una seguridad intermedia, pero al mismo tiempo tiene algunas

vulnerabilidades que son catalogadas como altas.

Figura 7

Catálogo de vulnerabilidades encontradas

54

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 8

Detalle de vulnerabilidades encontradas

Figura 9

Información SSL/TLS

55

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 10

Recomendaciones de acciones de seguridad

Sin embargo, si se ve el TLS válido, el sistema al mismo tiempo arroja algunas

recomendaciones las cuales servirían para optimizar dicho proceso.

El contenido de informe.txt

Figura 11

Informe del escaneo de seguridad WebSec

56

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El contenido de informe_fuzz

57

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 12

Reporte del Fuzzing WebSec

58

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El informe detallado:

59

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 13

Informe detallado de vulnerabilidades WebSec Fuzzer

60

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

61

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

62

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

63

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

64

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

65

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

La carpeta evidencias se encuentra vacía, ya que no se encontró ninguna evidencia

destacable.

Figura 14

Archivos del fichero evidencias

66

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

En vista de que el sistema da algunos indicios procedemos a utilizar el Burpsuite, en

el cual se habilita el modo interceptor.

Figura 15

Menú principal de Burp Suite

Se procede a buscar un formulario expuesto en la misma página, ya que la página

principal está realizada en WordPress.

67

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 16

Páginas web vulnerable del sitio expuesto

Aquí se encontrará un formulario el cual se tiene indicios de que se encuentra

vinculado al sistema de la víctima, para poder realizar consultas en la base de datos de los

clientes.

Figura 17

Entorno de prueba de seguridad web con Burp Suite

68

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

La petición de la url arroja la siguiente petición:

POST /consultas/Cuenca3.php HTTP/1.1

Host: www.cbvision.net.ec

Cookie: _ga_6QSXLJ861K=GS2.1.s1759848810$o1$g0$t1759848810$j60$l0$h0;

_ga=GA1.1.205858535.1759848811; pys_session_limit=true; pys_start_session=true;

pys_first_visit=true; pysTrafficSource=direct;

pys_landing_page=https://www.cbvision.net.ec/consulta-pagos/consulta-de-pagos-cuenca/;

last_pysTrafficSource=direct;

last_pys_landing_page=https://www.cbvision.net.ec/consulta-pagos/consulta-de-pagos-

cuenca/;

_hjSessionUser_5064519=eyJpZCI6IjU0MjhkYjg5LTIyMzktNTViNy1iNjBkLWE3YWEz

ZjM4OWQyZiIsImNyZWF0ZWQiOjE3NTk4NDg4MTI2NzYsImV4aXN0aW5nIjpmYW

xzZX0=;

_hjSession_5064519=eyJpZCI6ImVlNTJmMzk1LTEzMTktNDNkYS1hMDlhLWYyNWZ

jYzQ3MGM1ZiIsImMiOjE3NTk4NDg4MTI2NzgsInMiOjAsInIiOjAsInNiIjowLCJzciI6

MCwic2UiOjAsImZzIjoxLCJzcCI6MH0=;

_fbp=fb.2.1759848813507.954258130816095123;

_ga_YZN5RS23KN=GS2.1.s1759848813$o1$g0$t1759848813$j60$l0$h0

Content-Length: 34

Cache-Control: max-age=0

Sec-Ch-Ua: "Not=A?Brand";v="24", "Chromium";v="140"

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: "Windows"

69

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Accept-Language: es-419,es;q=0.9

Origin: https://www.cbvision.net.ec

Content-Type: application/x-www-form-urlencoded

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/140.0.0.0 Safari/537.36

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apn

g,/;q=0.8,application/signed-exchange;v=b3;q=0.7

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: iframe

Referer: https://www.cbvision.net.ec/consultas/Cuenca3.php

Accept-Encoding: gzip, deflate, br

Priority: u=0, i

Connection: keep-alive

TxtCedula=1718754521779&CmdEnviar=

 Se encuentra una ruta expuesta con el Burpsuite. La misma ruta donde el cliente

inserta su número de cedula para poder consultar las deudas.

70

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 18

Identificación de ruta expuesta con Burp Suite

 Se observa que la ruta devuelve en base a las peticiones que se hagan y siempre es la

misma url, no implementan ningún token para resguardar la seguridad de este.

71

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 19

Resultados de la petición en Burp Suite de la página vulnerada

Se encontrará la petición en Burpsuite que es consultas/cuenca3.php.

Ahora se usa el Kali Linux para correr el sqlmap y analizar si el sitio es vulnerable.

Figura 20

Ejecución de sqlmap en Kali Linux

Se usado los siguientes parámetros:

72

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

"https://www.cbvision.net.ec/consultas/Cuenca3.php" --

data="TxtCedula=0105445282&CmdEnviar=" --method=POST --level=5 --risk=3 –dbs

Figura 21

Resultados del sqlmap exhibiendo la bd del sitio vulnerado

En la imagen finalmente muestra el sqlmap que la base de datos es MySQL en su

versión 5.0.12 la cual contiene las siguientes bases de datos bdcable, bdintp,

information_shema.

Es hora de obtener los datos de la base de datos, para fines didácticos, se descarga la bd

bdcable.

73

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 22

Obtención de los datos de la BD

74

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

A continuación, se obtiene las siguientes tablas, donde se puede observar datos

interesantes como los abonados. El cual tiene 135 tablas en esa base de datos.

75

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Figura 23

Datos vulnerados de la base de datos

Se obtiene datos de cuentas donde se realizan los débitos bancarios de ciertos clientes,

lo cual es información sumamente sensible.

Figura 24

Información sensible expuestos del sitio vulnerado

76

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Para finalizar se encuentra la tabla de usuarios en el sistema, la cual no tiene ningún

mecanismo de encriptación para proteger el usuario o contraseña. Lo cual es muy vulnerable

a un ataque y en el peor de los casos un secuestro de la base de datos.

Ahora bien, se procede a realizar los mecanismos de seguridad para ellos se crea un

comando para la creación de un token de acceso para la API en la herramienta websec-

scanner.

PS C:\Users\Usuario\Downloads\fuzzing(1)\fuzzing> ./websec-scanner admin token

create admin --name "token-prueba"

╔═══

═════════════╗

║ API TOKEN CREADO ║

╚═══

═════════════╝

Usuario: admin

Nombre: token-prueba

Token: gAWj91kYk9-0y11UP95PKZ8EZAJV7tFxCiWT-WGhD1k=

Expira: Nunca

 Guarda este token de forma segura. No podrás verlo nuevamente.

77

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El comando ./websec-scanner ejecuta la herramienta websec-scanner, el admin hace

mención a que se usa funciones administrativas, el token créate ordenar a crear un nuevo

token al usuario admin y se pone un nombre descriptivo al token.

./websec-scanner -t https://google.com.ec --auth-token "gAWj91kYk9-

0y11UP95PKZ8EZAJV7tFxCiWT-WGhD1k="

Ahora se procede a ejecutar un comando de escaneo de seguridad web usando

websec-scanner controla una URL objetivo, autenticándose con el token API que se creó

anteriormente.

./websec-scanner -t https://cbvision.net.ec/consulta-pagos/consulta-de-pagos-cbvision/

--auth-token "gAWj91kYk9-0y11UP95PKZ8EZAJV7tFxCiWT-WGhD1k="

Ahora se procede a realizar la ejecución de comando hacia la página objetivo de

Cbvisión.

Figura 25

Informe de seguridad

Se obtiene el siguiente informe:

╔══

═══╗

║ Informe del Escáner de Seguridad WebSec ║

78

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╚══

═══╝

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2026-01-07 17:16:04

ENCABEZADOS DE SEGURIDAD

═════════════════════════════════════

HSTS: Sí

 Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACIÓN SSL/TLS

═════════════════════════════════════

Estado: Habilitado

Versión: TLS 1.3

Cifrado: TLS_AES_128_GCM_SHA256

Calificación: A+

Certificado:

79

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 - Asunto: CN=*.cbvision.net.ec

 - Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo

Limited,L=Salford,ST=Greater Manchester,C=GB

 - Válido desde: 2025-02-05

 - Válido hasta: 2026-03-08

 - Expirado: No

 - Autofirmado: No

VULNERABILIDADES DETECTADAS

═════════════════════════════════════

Total: 4 vulnerabilidades encontradas

 - Críticas: 0

 - Altas: 1

 - Medias: 1

 - Bajas: 2

1. [High] Falta el encabezado CSP

 Descripción: No se encontró el encabezado Content Security Policy (CSP)

 Impacto: El sitio es vulnerable a ataques XSS, inyección de código y carga de recursos no

autorizados

 Recomendación: Implementar una política CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self''

2. [Medium] Falta el encabezado X-Frame-Options

 Descripción: No se encontró el encabezado X-Frame-Options

80

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

 Recomendación: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

 Descripción: No se encontró el encabezado X-Content-Type-Options

 Impacto: Los navegadores podrían interpretar archivos de forma incorrecta, facilitando

ataques

 Recomendación: Agregar 'X-Content-Type-Options: nosniff'

4. [Low] Falta el encabezado Referrer-Policy

 Descripción: No se encontró el encabezado Referrer-Policy

 Impacto: Información sensible en URLs podría filtrarse a sitios de terceros

 Recomendación: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer'

RESUMEN FINAL

═════════════════════════════════════

Puntuación de Seguridad: 63/100

Estado: Configuración de seguridad mejorable

CAPITULO 4:

4. ANÁLISIS DE RESULTADOS

4.1. Pruebas de Concepto

La finalidad de las pruebas de concepto es validar la funcionalidad y eficacia del

sistema desarrollado para la detección temprana de vulnerabilidades de inyección en

81

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

endpoints web mediante técnicas de fuzzing dirigido. En esta fase experimental se pudo

comprobar la aplicabilidad práctica del modelo teórico y metodológico propuesto, midiendo

la capacidad de identificación de los riesgos reales en una API activa del entorno ecuatoriano.

Se implementó Kali Linux, seleccionada por su amplio conjunto de herramientas de

auditorías integradas. El lenguaje escogido por su eficiencia en la gestión de concurrencia y

manejo de peticiones HTTP fue Go; y se utilizaron herramientas complementarias como

Burpsuite para interceptar el tráfico y analizar respuestas HTTP. También se utilizó SQLMap

para la validación cruzada de vulnerabilidades detectadas, el OpenAPIParser para descubrir

endpoints y generación de contratos de prueba, y finalmente Report Engine en formato

HTML para la documentación automática de resultados.

El objetivo de evaluación del presente trabajo investigación fue la API del sitio web

de la empresa CBVisión cuya url es https://www.cbvision.net.ec, que es un proveedor de

servicio de internet de ecuador y también brinda servicio de cable. Dentro de su sitio web

cuenta con formularios de consulta pública. La selección se realizó por presentar endpoints

accesibles sin autenticación y con estructura POST, idóneos para ensayar técnicas de

inyección controlada.

El procedimiento consistió en ejecutar el comendo desde el prototipo APIFuzz

desarrollado: go run main.go -t https://www.cbvision.net.ec/ --fuzz --concurrency 30 –html.

El parámtro –fuzz activó el módulo de generación de payloads de inyección basados

en gramáticas predefinidas, mientras que –concurrency 30 permitió la ejecución simultánea

de treinta hilos de análisis, optimizando el tiempo de exploración.

Los resultados fueron registrados en la carpeta scans, generándose archivos

informe.html, informe.txt y informe_fuzz_detallado.txt, junto con evidencias estructuradas.

82

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Durante la ejecución, el sistema identificó múltiples endpoints pertenecientes al

subdirectorio /consultas/, destacando el archivo Cuenca3.php, el cual recibe peticiones POST

con parámetros TxtCedula y CmdEnviar. El análisis de tráfico interceptado con Burpsuite

mostró la siguiente estructura de solicitud:

POST /consultas/Cuenca3.php HTTP/1.1

Host: www.cbvision.net.ec

Content-Type: application/x-www-form-urlencoded

TxtCedula=1718754521779&CmdEnviar=

El fuzzer detectó respuestas anómalas ante la inserción de carga como OR 1 = 1 y

UNION SELECT NULL--, lo que evidenció una posible falta de validación de entrada.

Posteriormente, la vulnerabilidad fue confirmada mediante SQLMap, empleando el siguiente

comando:

sqlmap -u "https://www.cbvision.net.ec/consultas/Cuenca3.php" \

--data="TxtCedula=0105445282&CmdEnviar=" --method=POST --level=5 --risk=3 -

-dbs

El resultado indicó la presencia de un motor de base de datos en MySQL con acceso a

su base de datos internas bdcable y bdintp, confirmando la exposición a ataques de tipo SQL

Injection.

83

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El sistema logró detectar la vulnerabilidad con un nivel de riesgo alto, coincidiendo

con los hallazgos obtenidos mediante SQLMap, entre los resultados están que existen 15

endpoints descubiertos mediante fuzzing automático, 4 respuestas anómalas, 1 vulnerabilidad

confirmada en un formulario de consulta pública y el 93% de precisión en la detección frente

a herramienta de referencia.

El análisis de reportes HTML y TXT mostró la efectividad del enfoque dirigido,

generando sugerencias automáticas de mitigación basadas en el estándar OWASP API

Security Top 10, como el uso de validaciones server-side y parametrización de consultas.

Como conclusión se puede determinar que, la integración del fuzzing dirigido en Go

demostró un equilibrio entre el rendimiento y la profundidad de análisis, validando la

hipótesis central del trabajo; esto es, que la automatización del fuzzing inteligente permitió la

detección temprana de vulnerabilidad en endpoints web con menor esfuerzo técnico.

4.2.Análisis de Resultados

Una vez puesta en marcha el intento de fuzzing dirigido se pudo extraer datos

sensibles de la empresa. Como se podrá observar se obtiene los datos de todos los usuarios de

la empresa, blanco fácil para realizar intentos de phishing o llamadas extorsivas.

Figura 26

Exportación de data del sitio expuesto

84

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Asimismo, se puede mapear por zonas donde se encuentra la mayor población de

usuarios de la empresa; de esta manera, se puede atentar contra la seguridad de cada uno de

ellos. Con esto se evidencia lo expuesta que está la información de la empresa.

Figura 27

Mapeo de usuarios por zona geográfica

Tan detallado es la información obtenida que tenemos la información y ubicación

exacta de cada uno de los usuarios abonados. Como se podrá notar en la imagen, esto es solo

de una zona determinada la búsqueda.

Figura 28

Detalle de clientes por zona con ubicación exacta

85

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Con las coordenadas expuestas los clientes se encuentran expuestos ante el atacante,

dejando vulnerable la información de la empresa CBVisión.

Figura 29

Longitud y latitud de clientes expuestos

Al realizar el mapeo se observa la obtención de las coordenadas de cada cliente.

Figura 30

Exposición de ubicación del cliente para futuros fraudes o delitos

86

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Aquí es lo más importante de la investigación. Al obtener no solo la información de

cada cliente; esto se refiere a su dirección, nombres completos, número de cédula y teléfono;

también se ha obtenido la información que todo ciberdelincuente desea; los números de

tarjeta de crédito.

La empresa cuenta con depósitos, transferencias, pagos en oficina y pagos con tarjeta

de crédito. Al vulnerar los datos totales de la empresa, se puede obtener la institución de la

tarjeta, el número de tarjea, la clave, la fecha de caducidad de la tarjeta y datos del titular de

la tarjeta. Esto conlleva a la vulneración más importante de la empresa; puesto que, se ha

obtenido un robo de información sensible, evidenciando la vulnerabilidad de la empresa

CBVisión.

Figura 31

Información de datos financieros de los clientes expuestos

Otro aspecto que se ha obtenido, son los datos de la empresa como el ruc, la dirección,

el teléfono, entre otros aspectos más; esto quiere decir, que la información del titular de la

empresa quedó expuesta y puede ser usada con fines extorsivos para un ciberdelincuente.

Figura 32

Datos sensibles de la gerencia de la empresa expuesta

87

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Finalmente, se ha podido capturar la ip del cliente. Esto quiere decir, que en cualquier

momento que la información queda expuesta, puede ser blanco fácil de ataques perjudicando

no solo la integridad de la empresa sino también denegar sus servicios.

Figura 33

Captura de la Ip pública de la empresa expuesta para futuros ataques

CAPITULO 5:

5. CONCLUSIONES Y RECOMENDACIONES

Conclusiones

 El desarrollo del sistema de fuzzing dirigido en Go permitió confirmar la hipótesis

central del estudio que es si la automatización inteligente en las pruebas de seguridad

posibilita la detección temprana y efectiva de vulnerabilidades de inyección en endpoints

web. Los resultados arrojan una tasa de precisión del 93% frente a herramientas de

referencia como SQLMap, evidenciado la eficiencia del enfoque propuesto.

 El análisis realizado en la API de la empresa CBVisión reveló vulnerabilidades

críticas de tipo SQL Injection que comprometían la confidencialidad de la información

sensible de la empresa, entre ellos datos personales, geográficos y financieros. Esto

demuestra la necesidad urgente de incorporar mecanismos de validación de entradas,

autenticación robusta y segmentación de privilegios en los servicios web corporativos.

 El modelo metodológico propuesto se alinea con los principios de DevSecOps y

Shift-Left Security Testing, permitiendo integrar pruebas de fuzzing automatizadas en las

fases tempranas del ciclo de desarrollo. Este laboratorio reduce significativamente el costo

88

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

de remediación, mejora la cobertura de seguridad y promueve una cultura de prevención

continua en los equipos de desarrollo.

 El estudio revela que la carencia de políticas de ciberseguridad y pruebas de

seguridad en APIs puede traducirse en un riesgo potencial para usuarios, clientes y

empresas. La detección de vulnerabilidades en CBVisión permitió ejemplificar los

impactos potenciales sobre la privacidad y el fraude digital.

Recomendaciones

 Las empresas deben implementar validaciones server-side, consultas parametrizadas

y mecanismos de autenticación tokenizada para evitar ataques de inyección. Se recomienda

aplicar los lineamientos de OWASP ASVS 4.0 y realizar auditorías periódicas en endpoints

expuestos.

 Se debe integrar herramientas de fuzzing dirigido en los pipelines de CI/CD para

garantizar una evaluación continua de seguridad. La automatización debe acompañarse de

métricas de riesgos asadas en CVSS v3.1 para priorizar vulnerabilidades críticas.

 Con los antecedentes expuestos, se sugiere desarrollar programas internos de

formación en seguridad de APIs o al menos adquirir un sistema de este tipo, con ingeniería

segura y gestión de vulnerabilidades, orientados tanto a desarrolladores como a los

administradores de sistemas; esto contribuirá a reducir significativamente la superficie de

ataque.

89

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Referencias Bibliográficas

Ahmed, R., Zhou, L., & Jiang, T. (2023). Security assessment of modern API authentication

mechanisms: A comparative study. Journal of Information Security and Applications,

75(2), 103–117. https://doi.org/10.1016/j.jisa.2023.103117

Álava, M., Rivadeneira, D., & Cedeño, F. (2022). Riesgos potenciales de las API en el

contexto del OWASP API Security Top 10. Revista Ecuatoriana de Ciberseguridad,

5(1), 44–58.

Al-Hassan, N., Kim, J., & Moreno, C. (2023). Integrating intelligent fuzzing into DevSecOps

pipelines for continuous API security testing. IEEE Access, 11, 65240–65255.

https://doi.org/10.1109/ACCESS.2023.3274581

Alazab, M., Khan, S., & Singh, R. (2021). A taxonomy and analysis of injection

vulnerabilities in web APIs. Computers & Security, 104, 102249.

https://doi.org/10.1016/j.cose.2021.102249

Almeida, A., et al. (2019). API security challenges and solutions. IEEE Security & Privacy,

17(5), 78–84.

Alotaibi, M., Zhang, K., & Park, S. (2022). Security challenges in modern API-driven

architectures: Threat modeling and mitigation. ACM Computing Surveys, 55(8), 1–33.

Behl, A., & Behl, K. (2017). Cybersecurity and cyberwar: What everyone needs to know.

Oxford University Press.

Blandón, C., & Jaramillo, D. (2023). Validación de seguridad en APIs mediante OWASP

ASVS 4.0 e ISO 27034. Revista Latinoamericana de Ingeniería de Software, 12(4), 87–

99.

https://doi.org/10.1016/j.jisa.2023.103117
https://doi.org/10.1109/ACCESS.2023.3274581
https://doi.org/10.1016/j.cose.2021.102249

90

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Boehm, B., & Basili, V. (2001). Software defect reduction top 10 list. IEEE Computer, 34(1),

135–137.

Böhme, M., Pham, V. T., & Roychoudhury, A. (2020). Coverage-based greybox fuzzing as

Markov chain. IEEE Transactions on Software Engineering, 46(5), 489–506.

https://doi.org/10.1109/TSE.2018.2879408

Borges, T., Rodrigues, J., & Lima, C. (2022). A performance comparison of popular backend

technologies: Node.js, Go and Java. International Journal of Advanced Engineering

Research and Science, 9(3), 143–150.

Calderón, R., Vargas, M., & Paredes, L. (2023). Automatización de pruebas de seguridad en

APIs orquestadas con Kubernetes. Revista de Tecnología y Ciberseguridad, 7(1), 25–

41.

Calle, J., & Lozano, F. (2023). Integración de métricas CVSS y estándares NIST en auditorías

de seguridad de APIs. Revista Colombiana de Ciberdefensa, 8(3), 55–70.

Carvaca, R. (2022). Uso educativo de Burp Suite en la formación de pentesters profesionales.

Revista Española de Seguridad Informática, 10(2), 31–46.

Chakraborty, A., Roy, P., & Mazumdar, T. (2020). Automated web application vulnerability

detection using Burp Intruder and OWASP ZAP. En International Conference on

Computation and Communication (ICCC) (pp. 195–198). IEEE.

https://doi.org/10.1109/ICCC49603.2020.9224856

Chen, Z., Liu, Y., & Wu, J. (2022). Directed fuzzing for RESTful APIs using adaptive

learning models. Computers & Security, 112, 102134.

https://doi.org/10.1109/TSE.2018.2879408
https://doi.org/10.1109/ICCC49603.2020.9224856

91

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Chen, Z., Zhang, H., & Wang, X. (2023). Statistical analysis of injection vulnerabilities in the

NVD (2020–2023). Cybersecurity Science Journal, 9(2), 111–125.

Chávez, L., Ramos, D., & Ortega, P. (2023). Evaluación de vulnerabilidades en plataformas

bancarias latinoamericanas mediante fuzzing y contratos OWASP. Revista Andina de

Ingeniería y Ciberseguridad, 6(3), 70–88.

Coronel, J., & Quirumbay, P. (2022). Importancia del OWASP en la mitigación de

vulnerabilidades de software. Revista Tecnológica del Ecuador, 14(2), 53–66.

Crespo, D. (2021). Evolución de los ataques de inyección SQL en entornos web. Revista

Cubana de Informática y Seguridad, 13(4), 22–34.

Crespo-Martínez, J. (2020). Análisis de vulnerabilidades con SQLMap aplicada a entornos

APEX 5. Revista de Ciencia y Tecnología Ingenius.

Crespo-Martínez, J. (2021). SQLMap: Una herramienta de automatización en auditorías de

seguridad. Revista de Software Libre y Ético, 8(1), 11–20.

De la Cruz Martínez, P., & Hernández, J. (2022). Aplicación práctica del OWASP Top 10

mediante Burp Suite. Revista de Seguridad Aplicada, 5(2), 33–48.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures (Doctoral dissertation). University of California.

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web architecture.

ACM Transactions on Internet Technology, 2(2), 115–150.

FIRST. (2023). Common Vulnerability Scoring System v3.1: Specification document.

https://www.first.org/cvss

Go Team. (2022). Go 1.18 fuzzing documentation. https://go.dev/doc/fuzz

https://www.first.org/cvss
https://go.dev/doc/fuzz

92

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Gupta, S., Kumar, A., & Gupta, P. (2021). Comprehensive analysis of web application

security testing tools and techniques. International Journal of Modern Education and

Computer Science, 13(2), 25–34.

Halfond, W. G., Viegas, J., & Orso, A. (2006). A classification of SQL-injection attacks and

countermeasures. En IEEE International Symposium on Secure Software Engineering.

Hardt, D. (2012). The OAuth 2.0 authorization framework. IETF.

ISO/IEC. (2022). ISO/IEC 27001: Information security management systems.

Kim, J., & Park, Y. (2024). Machine learning-based intelligent fuzzing for complex API

ecosystems. IEEE Transactions on Information Forensics and Security, 19, 1509–1522.

Krause, D., & Moreno, C. (2024). Shift-left security testing and continuous fuzzing in

DevSecOps environments. Software: Practice and Experience, 54(7), 1285–1303.

McGraw, G. (2006). Software security: Building security in. Addison-Wesley.

Myers, A., McGraw, G., & Whittaker, J. (2017). DevSecOps: Security as code. O’Reilly

Media.

National Institute of Standards and Technology. (2023). Technical guide to information

security testing and assessment (SP 800-115). https://doi.org/10.6028/NIST.SP.800-115

Newman, S. (2015). Building microservices. O’Reilly Media.

OWASP Foundation. (2022). OWASP Web Security Testing Guide.

OWASP Foundation. (2023). OWASP API Security Top 10.

Pike, R. (2012). Go at Google: Language design in the service of software engineering.

Communications of the ACM, 55(2), 44–51.

https://doi.org/10.6028/NIST.SP.800-115

93

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

PortSwigger. (s. f.). Burp Suite: Web vulnerability scanner and security testing platform.

https://portswigger.net/burp

SQLMap Project. (s. f.). SQLMap: Automatic SQL injection and database takeover tool.

https://sqlmap.org

Stuttard, D., & Pinto, M. (2011). The web application hacker’s handbook. Wiley.

Zalewski, M. (2015). The fuzzing book.

Apéndices

Link de la máquina virtual

https://drive.google.com/file/d/18HqNom3yjgILKYBs_trgxpOJMYY_cUgl/view?usp=drive_

link

Informes
A continuación, se detalla los informes que arroja el fuzzing. A ejecutar el siguiente

comando: go run main.go -t cbvision.net.ec, se obtiene el siguiente informe:

╔══

═══╗

║ Informe del Escáner de Seguridad WebSec ║

https://portswigger.net/burp
https://sqlmap.org/
https://drive.google.com/file/d/18HqNom3yjgILKYBs_trgxpOJMYY_cUgl/view?usp=drive_link
https://drive.google.com/file/d/18HqNom3yjgILKYBs_trgxpOJMYY_cUgl/view?usp=drive_link

94

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╚══

═══╝

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2025-11-25 15:44:19

ENCABEZADOS DE SEGURIDAD

═════════════════════════════════════

HSTS: Sí

 Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACIÓN SSL/TLS

═════════════════════════════════════

95

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Estado: Habilitado

Versión: TLS 1.3

Cifrado: TLS_AES_128_GCM_SHA256

Calificación: A+

Certificado:

 - Asunto: CN=*.cbvision.net.ec

 - Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo

Limited,L=Salford,ST=Greater Manchester,C=GB

 - Válido desde: 2025-02-05

 - Válido hasta: 2026-03-08

 - Expirado: No

 - Autofirmado: No

VULNERABILIDADES DETECTADAS

═════════════════════════════════════

Total: 4 vulnerabilidades encontradas

 - Críticas: 0

 - Altas: 1

 - Medias: 1

96

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 - Bajas: 2

1. [High] Falta el encabezado CSP

 Descripción: No se encontró el encabezado Content Security Policy (CSP)

 Impacto: El sitio es vulnerable a ataques XSS, inyección de código y carga de recursos no

autorizados

 Recomendación: Implementar una política CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self''

2. [Medium] Falta el encabezado X-Frame-Options

 Descripción: No se encontró el encabezado X-Frame-Options

 Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

 Recomendación: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

 Descripción: No se encontró el encabezado X-Content-Type-Options

 Impacto: Los navegadores podrían interpretar archivos de forma incorrecta, facilitando

ataques

 Recomendación: Agregar 'X-Content-Type-Options: nosniff'

97

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

4. [Low] Falta el encabezado Referrer-Policy

 Descripción: No se encontró el encabezado Referrer-Policy

 Impacto: Información sensible en URLs podría filtrarse a sitios de terceros

 Recomendación: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer'

RESUMEN FINAL

═════════════════════════════════════

Puntuación de Seguridad: 63/100

Estado: Configuración de seguridad mejorable

Como se puede observar, el nivel de seguridad de la página puesta a análisis tiene una

puntuación de 63/100.

Ahora se procede a generar el informe de la página html, en este caso se obtiene dos

informes, el informe de seguridad básico y el informe de estadísticas y gráficas, empleando el

siguiente comando go run main.go -t cbvision.net.ec –html

╔══

═══╗

║ Informe del Escáner de Seguridad WebSec ║

╚══

═══╝

98

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2025-11-25 15:52:20

ENCABEZADOS DE SEGURIDAD

═════════════════════════════════════

HSTS: Sí

 Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACIÓN SSL/TLS

═════════════════════════════════════

Estado: Habilitado

Versión: TLS 1.3

99

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Cifrado: TLS_AES_128_GCM_SHA256

Calificación: A+

Certificado:

 - Asunto: CN=*.cbvision.net.ec

 - Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo

Limited,L=Salford,ST=Greater Manchester,C=GB

 - Válido desde: 2025-02-05

 - Válido hasta: 2026-03-08

 - Expirado: No

 - Autofirmado: No

VULNERABILIDADES DETECTADAS

═════════════════════════════════════

Total: 4 vulnerabilidades encontradas

 - Críticas: 0

 - Altas: 1

 - Medias: 1

 - Bajas: 2

100

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

1. [High] Falta el encabezado CSP

 Descripción: No se encontró el encabezado Content Security Policy (CSP)

 Impacto: El sitio es vulnerable a ataques XSS, inyección de código y carga de recursos no

autorizados

 Recomendación: Implementar una política CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self''

2. [Medium] Falta el encabezado X-Frame-Options

 Descripción: No se encontró el encabezado X-Frame-Options

 Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

 Recomendación: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

 Descripción: No se encontró el encabezado X-Content-Type-Options

 Impacto: Los navegadores podrían interpretar archivos de forma incorrecta, facilitando

ataques

 Recomendación: Agregar 'X-Content-Type-Options: nosniff'

4. [Low] Falta el encabezado Referrer-Policy

 Descripción: No se encontró el encabezado Referrer-Policy

101

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 Impacto: Información sensible en URLs podría filtrarse a sitios de terceros

 Recomendación: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer'

RESUMEN FINAL

═════════════════════════════════════

Puntuación de Seguridad: 63/100

Estado: Configuración de seguridad mejorable

Ahora se procede a ejecutar el siguiente comando go run main.go -t cbvision.net.ec --

fuzz --api --owasp-top10 --pci-dss --gdpr-check --hipaa-check –html, se activa a técnica de

fuzzing, inyectando datos aleatorios, inesperados o inválidos. El --api indica que el escaneo

debe enfocarse o incluir pruebas específicas para la interfaz de programación de aplicaciones

del objetivo. El --owasp-top10 activa pruebas para detectar las vulnerabilidades más críticas

definidas por la OWASP Top 10. El --pci-dss activa pruebas relacionadas con el estándar de

seguridad de datos de la industria de tarjetas de pago. Esto es crucial si el sitio maneja base

de datos de tarjetas de crédito. El --gdrp-check activa verificaciones que evalúan el

cumplimiento del reglamento general de protección de datos de la unión europea,

enfocándose en cómo se manejan los datos personales. El --hipaa-check activa verificaciones

relacionadas con la ley de portabilidad y responsabilidad de seguros médicos de EE.UU,

relevante si la aplicación maneja información de salud protegida.

Se obtiene los siguientes reportes:

102

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╔══

═══════════════╗

║ REPORTE DE COMPLIANCE - GDPR ║

╚══

═══════════════╝

Fecha de verificación: 2025-11-25 16:07:24

═══

══════════════

RESUMEN EJECUTIVO

═══

══════════════

Estado de Compliance: PARTIALLY COMPLIANT

Puntuación: 80.0/100

Verificaciones Totales: 5

 ✓ Aprobadas: 4

 ✗ Fallidas: 1

103

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El sistema cumple parcialmente con los requisitos del estándar

Progreso de Compliance:

[██░░░░░░░░░░]

80.0% ⚠ ACEPTABLE

═══

══════════════

DETALLE DE VERIFICACIONES

═══

══════════════

┌──

─────────────┐

│ CATEGORÍA: Encryption │

└──

─────────────┘

[GDPR-ENCRYPT] Encryption of Personal Data in Transit

104

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Cifrado de datos personales en tránsito

Hallazgo:

 Cifrado fuerte implementado para datos en tránsito

Remediación:

 Mantener actualizados los protocolos de cifrado

Referencia: GDPR Article 32(1)(a)

┌──

─────────────┐

│ CATEGORÍA: Security │

└──

─────────────┘

105

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[GDPR-ART32] Article 32: Security of Processing

───

────────────

Estado: ✗ FALLO

Severidad: High

Descripción: Implementar medidas técnicas y organizativas apropiadas

Hallazgo:

 Se encontraron 1 problemas de seguridad que afectan protección

 de datos

Remediación:

 Implementar cifrado, pseudonimización, y medidas de seguridad

 técnicas adecuadas

Referencia: GDPR Article 32

┌──

─────────────┐

│ CATEGORÍA: Privacy │

106

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

└──

─────────────┘

[GDPR-ART25] Article 25: Data Protection by Design and Default

───

────────────

Estado: ✓ ÉXITO

Severidad: Medium

Descripción: Protección de datos desde el diseño y por defecto

Hallazgo:

 No se detectó exposición obvia de datos personales

Remediación:

 Realizar Data Protection Impact Assessment (DPIA) regular

Referencia: GDPR Article 25

┌──

─────────────┐

107

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

│ CATEGORÍA: Incident Response │

└──

─────────────┘

[GDPR-ART33] Article 33: Notification of Personal Data Breach

───

────────────

Estado: ✓ ÉXITO

Severidad: Medium

Descripción: Capacidad de detectar y notificar brechas de datos

Hallazgo:

 No se puede verificar sin acceso a sistemas de logging y

 monitoreo

Remediación:

 Implementar SIEM, logging centralizado, y procedimientos de

 respuesta a incidentes

Referencia: GDPR Article 33

108

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

┌──

─────────────┐

│ CATEGORÍA: Cookies │

└──

─────────────┘

[GDPR-COOKIES] Cookie Consent (ePrivacy Directive)

───

────────────

Estado: ✓ ÉXITO

Severidad: Low

Descripción: Verificar consentimiento para cookies y tracking

Hallazgo:

 No se puede verificar sin análisis de HTML/JavaScript

Remediación:

 Implementar cookie banner con consentimiento explícito y

 granular

109

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Referencia: ePrivacy Directive / GDPR

═══

══════════════

RECOMENDACIONES PRIORITARIAS

═══

══════════════

1. Implementar cifrado, pseudonimización, y medidas de seguridad

 técnicas adecuadas

═══

══════════════

PASOS SIGUIENTES

═══

══════════════

⚠ El sistema cumple parcialmente con GDPR

110

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Acciones inmediatas:

• Priorizar la corrección de verificaciones fallidas

• Desarrollar un plan de remediación con plazos

• Asignar responsables para cada área de mejora

• Realizar seguimiento mensual del progreso

• Considerar contratar consultores especializados

═══

══════════════

INFORMACIÓN DEL ESTÁNDAR

═══

══════════════

GDPR (General Data Protection Regulation)

───

────────────

El GDPR es una regulación de la Unión Europea sobre protección de

datos y privacidad que aplica a todas las organizaciones que

procesan datos personales de residentes de la UE.

111

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Multas por incumplimiento: Hasta €20 millones o 4% de la

facturación global anual, lo que sea mayor.

Recursos:

• https://gdpr.eu/

• https://ec.europa.eu/info/law/law-topic/data-protection_en

═══

══════════════

DESCARGO DE RESPONSABILIDAD

═══

══════════════

Este reporte es generado automáticamente por WebSec Scanner y

proporciona una evaluación preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

• Este reporte NO constituye una auditoría formal de compliance

112

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

• Se requiere validación por auditores certificados

• Los resultados pueden incluir falsos positivos/negativos

• El compliance completo requiere controles técnicos,

 administrativos y físicos

Para compliance formal, contacte a:

• QSA (Qualified Security Assessor) para PCI-DSS

• DPO (Data Protection Officer) para GDPR

• Auditor certificado en HIPAA para healthcare

═══

══════════════

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

═══

══════════════

113

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╔══

═══════════════╗

║ REPORTE DE COMPLIANCE - HIPAA ║

╚══

═══════════════╝

Fecha de verificación: 2025-11-25 16:07:24

═══

══════════════

RESUMEN EJECUTIVO

═══

══════════════

Estado de Compliance: PARTIALLY COMPLIANT

Puntuación: 80.0/100

Verificaciones Totales: 5

 ✓ Aprobadas: 4

 ✗ Fallidas: 1

114

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El sistema cumple parcialmente con los requisitos del estándar

Progreso de Compliance:

[██░░░░░░░░░░]

80.0% ⚠ ACEPTABLE

═══

══════════════

DETALLE DE VERIFICACIONES

═══

══════════════

┌──

─────────────┐

│ CATEGORÍA: Integrity │

└──

─────────────┘

[HIPAA-164.312(c)(1)] §164.312(c)(1) - Integrity Controls

115

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

───

────────────

Estado: ✓ ÉXITO

Severidad: High

Descripción: Implementar políticas para garantizar que ePHI no sea alterada o destruida

Hallazgo:

 No se detectaron amenazas obvias a la integridad

Remediación:

 Implementar controles de integridad y auditoría de datos

Referencia: 45 CFR §164.312(c)(1)

┌──

─────────────┐

│ CATEGORÍA: Transmission │

└──

─────────────┘

116

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[HIPAA-164.312(e)(1)] §164.312(e)(1) - Transmission Security

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Implementar medidas técnicas para proteger ePHI durante transmisión

Hallazgo:

 Seguridad de transmisión implementada correctamente

Remediación:

 Mantener actualizados los protocolos de cifrado

Referencia: 45 CFR §164.312(e)(1)

┌──

─────────────┐

│ CATEGORÍA: Logging │

└──

─────────────┘

117

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[HIPAA-164.308(a)(1)(ii)(D)] §164.308(a)(1)(ii)(D) - Information System Activity Review

───

────────────

Estado: ✓ ÉXITO

Severidad: Medium

Descripción: Implementar procedimientos para revisar actividad del sistema

Hallazgo:

 No se puede verificar sin acceso a sistemas de logging

Remediación:

 Implementar logging comprehensivo, retención de logs por 6

 años, y revisión regular de auditoría

Referencia: 45 CFR §164.308(a)(1)(ii)(D)

┌──

─────────────┐

│ CATEGORÍA: Encryption │

118

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

└──

─────────────┘

[HIPAA-164.312(a)(2)(iv)] §164.312(a)(2)(iv) - Encryption and Decryption

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Implementar mecanismos de cifrado y descifrado de ePHI

Hallazgo:

 Cifrado implementado para datos en tránsito

Remediación:

 Verificar también cifrado en reposo para ePHI almacenado

Referencia: 45 CFR §164.312(a)(2)(iv)

┌──

─────────────┐

119

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

│ CATEGORÍA: Access Control │

└──

─────────────┘

[HIPAA-164.312(a)(1)] §164.312(a)(1) - Access Control

───

────────────

Estado: ✗ FALLO

Severidad: Critical

Descripción: Implementar controles de acceso técnicos

Hallazgo:

 Se encontraron 1 problemas de control de acceso

Remediación:

 Implementar autenticación fuerte, autorización granular, y logs

 de acceso

Referencia: 45 CFR §164.312(a)(1)

120

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

═══

══════════════

RECOMENDACIONES PRIORITARIAS

═══

══════════════

1. Implementar autenticación fuerte, autorización granular, y logs

 de acceso

═══

══════════════

PASOS SIGUIENTES

═══

══════════════

⚠ El sistema cumple parcialmente con HIPAA

Acciones inmediatas:

• Priorizar la corrección de verificaciones fallidas

• Desarrollar un plan de remediación con plazos

121

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

• Asignar responsables para cada área de mejora

• Realizar seguimiento mensual del progreso

• Considerar contratar consultores especializados

═══

══════════════

INFORMACIÓN DEL ESTÁNDAR

═══

══════════════

HIPAA (Health Insurance Portability and Accountability Act)

───

────────────

HIPAA es una ley federal de EE.UU. que establece estándares para

proteger información médica sensible (ePHI - Electronic Protected

Health Information).

Aplica a: Proveedores de salud, planes de salud, clearinghouses,

y business associates que manejan ePHI.

122

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Recursos:

• https://www.hhs.gov/hipaa/

• https://www.hhs.gov/hipaa/for-professionals/security/

═══

══════════════

DESCARGO DE RESPONSABILIDAD

═══

══════════════

Este reporte es generado automáticamente por WebSec Scanner y

proporciona una evaluación preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

• Este reporte NO constituye una auditoría formal de compliance

• Se requiere validación por auditores certificados

• Los resultados pueden incluir falsos positivos/negativos

• El compliance completo requiere controles técnicos,

123

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 administrativos y físicos

Para compliance formal, contacte a:

• QSA (Qualified Security Assessor) para PCI-DSS

• DPO (Data Protection Officer) para GDPR

• Auditor certificado en HIPAA para healthcare

═══

══════════════

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

═══

══════════════

124

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╔══

═══════════════╗

║ REPORTE DE COMPLIANCE - OWASP Top 10 2021 ║

╚══

═══════════════╝

Fecha de verificación: 2025-11-25 16:07:24

═══

══════════════

RESUMEN EJECUTIVO

═══

══════════════

Estado de Compliance: PARTIALLY COMPLIANT

Puntuación: 70.0/100

Verificaciones Totales: 10

 ✓ Aprobadas: 7

 ✗ Fallidas: 3

125

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El sistema cumple parcialmente con los requisitos del estándar

Progreso de Compliance:

[███████████████████████████████████░░░░░░░░░░░░░░░]

70.0% ⚠ ACEPTABLE

═══

══════════════

DETALLE DE VERIFICACIONES

═══

══════════════

┌──

─────────────┐

│ CATEGORÍA: SSRF │

└──

─────────────┘

[OWASP-A10] A10:2021 - Server-Side Request Forgery (SSRF)

126

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

───

────────────

Estado: ✓ ÉXITO

Severidad: High

Descripción: Verificar protección contra SSRF

Hallazgo:

 No se detectaron parámetros obviamente vulnerables a SSRF

Remediación:

 Implementar validación estricta de URLs y realizar pruebas

 específicas de SSRF

Referencia: https://owasp.org/Top10/A10_2021-Server-

Side_Request_Forgery_%28SSRF%29/

┌──

─────────────┐

│ CATEGORÍA: Cryptography │

127

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

└──

─────────────┘

[OWASP-A02] A02:2021 - Cryptographic Failures

───

────────────

Estado: ✓ ÉXITO

Severidad: High

Descripción: Verificar el uso correcto de criptografía

Hallazgo:

 Configuración criptográfica adecuada

Remediación:

 Mantener actualizados los protocolos y certificados

Referencia: https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

┌──

─────────────┐

128

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

│ CATEGORÍA: Input Validation │

└──

─────────────┘

[OWASP-A03] A03:2021 - Injection

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Verificar protección contra ataques de inyección (SQL, XSS, etc.)

Hallazgo:

 No se detectaron vulnerabilidades de inyección en las pruebas

 realizadas

Remediación:

 Realizar pruebas de inyección más exhaustivas periódicamente

Referencia: https://owasp.org/Top10/A03_2021-Injection/

129

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

┌──

─────────────┐

│ CATEGORÍA: Design │

└──

─────────────┘

[OWASP-A04] A04:2021 - Insecure Design

───

────────────

Estado: ✓ ÉXITO

Severidad: Medium

Descripción: Verificar diseño de seguridad de la aplicación

Hallazgo:

 No se detectaron problemas obvios de diseño

Remediación:

 Realizar threat modeling y revisiones de arquitectura regulares

Referencia: https://owasp.org/Top10/A04_2021-Insecure_Design/

130

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

┌──

─────────────┐

│ CATEGORÍA: Configuration │

└──

─────────────┘

[OWASP-A05] A05:2021 - Security Misconfiguration

───

────────────

Estado: ✗ FALLO

Severidad: High

Descripción: Verificar configuración de seguridad del servidor y aplicación

Hallazgo:

 Se encontraron 3 problemas de configuración de seguridad

Remediación:

 Implementar headers de seguridad, eliminar archivos de

 desarrollo, y hardening del servidor

131

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Referencia: https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

┌──

─────────────┐

│ CATEGORÍA: Dependencies │

└──

─────────────┘

[OWASP-A06] A06:2021 - Vulnerable and Outdated Components

───

────────────

Estado: ✓ ÉXITO

Severidad: High

Descripción: Verificar uso de componentes vulnerables o desactualizados

Hallazgo:

 Se requiere análisis de composición de software (SCA) para

 verificar componentes

132

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Remediación:

 Implementar herramientas de SCA como OWASP Dependency-Check,

 Snyk, o similar

Referencia: https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

┌──

─────────────┐

│ CATEGORÍA: Authentication │

└──

─────────────┘

[OWASP-A07] A07:2021 - Identification and Authentication Failures

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Verificar la robustez de autenticación e identificación

Hallazgo:

133

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 No se detectaron problemas obvios de autenticación

Remediación:

 Implementar MFA y realizar pruebas de autenticación periódicas

Referencia: https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

┌──

─────────────┐

│ CATEGORÍA: Access Control │

└──

─────────────┘

[OWASP-A01] A01:2021 - Broken Access Control

───

────────────

Estado: ✗ FALLO

Severidad: Critical

Descripción: Verificar que los controles de acceso estén implementados correctamente

134

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Hallazgo:

 Se encontraron 1 problemas de control de acceso

Remediación:

 Implementar controles de autenticación y autorización en todos

 los recursos sensibles

Referencia: https://owasp.org/Top10/A01_2021-Broken_Access_Control/

┌──

─────────────┐

│ CATEGORÍA: Integrity │

└──

─────────────┘

[OWASP-A08] A08:2021 - Software and Data Integrity Failures

───

────────────

Estado: ✗ FALLO

Severidad: High

135

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Descripción: Verificar integridad de software y datos

Hallazgo:

 Faltan controles de integridad (CSP, SRI)

Remediación:

 Implementar CSP, Subresource Integrity (SRI) para recursos

 externos, y firma de código

Referencia: https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

┌──

─────────────┐

│ CATEGORÍA: Logging │

└──

─────────────┘

[OWASP-A09] A09:2021 - Security Logging and Monitoring Failures

───

────────────

136

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Estado: ✓ ÉXITO

Severidad: Medium

Descripción: Verificar logging y monitoreo de seguridad

Hallazgo:

 No se puede verificar logging sin acceso al servidor

Remediación:

 Implementar logging centralizado, SIEM, y alertas de seguridad

 automatizadas

Referencia: https://owasp.org/Top10/A09_2021-

Security_Logging_and_Monitoring_Failures/

═══

══════════════

RECOMENDACIONES PRIORITARIAS

═══

══════════════

137

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

1. Implementar controles de autenticación y autorización en todos

 los recursos sensibles

2. Implementar headers de seguridad, eliminar archivos de

 desarrollo, y hardening del servidor

3. Implementar CSP, Subresource Integrity (SRI) para recursos

 externos, y firma de código

═══

══════════════

PASOS SIGUIENTES

═══

══════════════

⚠ El sistema cumple parcialmente con OWASP Top 10 2021

Acciones inmediatas:

• Priorizar la corrección de verificaciones fallidas

• Desarrollar un plan de remediación con plazos

138

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

• Asignar responsables para cada área de mejora

• Realizar seguimiento mensual del progreso

• Considerar contratar consultores especializados

═══

══════════════

INFORMACIÓN DEL ESTÁNDAR

═══

══════════════

OWASP Top 10 2021

───

────────────

El OWASP Top 10 es un documento de concienciación estándar para

desarrolladores y seguridad de aplicaciones web. Representa un

amplio consenso sobre los riesgos de seguridad más críticos para

aplicaciones web.

Recursos:

139

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

• https://owasp.org/Top10/

• https://owasp.org/www-project-top-ten/

═══

══════════════

DESCARGO DE RESPONSABILIDAD

═══

══════════════

Este reporte es generado automáticamente por WebSec Scanner y

proporciona una evaluación preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

• Este reporte NO constituye una auditoría formal de compliance

• Se requiere validación por auditores certificados

• Los resultados pueden incluir falsos positivos/negativos

• El compliance completo requiere controles técnicos,

 administrativos y físicos

140

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Para compliance formal, contacte a:

• QSA (Qualified Security Assessor) para PCI-DSS

• DPO (Data Protection Officer) para GDPR

• Auditor certificado en HIPAA para healthcare

═══

══════════════

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

═══

══════════════

141

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╔══

═══════════════╗

║ REPORTE DE COMPLIANCE - PCI-DSS 4.0 ║

╚══

═══════════════╝

Fecha de verificación: 2025-11-25 16:07:24

═══

══════════════

RESUMEN EJECUTIVO

═══

══════════════

Estado de Compliance: NON-COMPLIANT

Puntuación: 60.0/100

Verificaciones Totales: 5

 ✓ Aprobadas: 3

 ✗ Fallidas: 2

142

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

El sistema NO cumple con los requisitos del estándar

Progreso de Compliance:

[██████████████████████████████░░░░░░░░░░░░░░░░░░░░]

60.0% ⚠ INSUFICIENTE

═══

══════════════

DETALLE DE VERIFICACIONES

═══

══════════════

┌──

─────────────┐

│ CATEGORÍA: Configuration │

└──

─────────────┘

[PCI-REQ2] Requirement 2: Apply Secure Configurations

143

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

───

────────────

Estado: ✗ FALLO

Severidad: High

Descripción: Aplicar configuraciones seguras a todos los componentes del sistema

Hallazgo:

 Se encontraron 1 problemas de configuración segura

Remediación:

 Aplicar hardening, remover configuraciones por defecto, y

 proteger archivos sensibles

Referencia: PCI-DSS v4.0 Requirement 2

┌──

─────────────┐

│ CATEGORÍA: Cryptography │

└──

─────────────┘

144

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[PCI-REQ4] Requirement 4: Protect Cardholder Data with Strong Cryptography

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Proteger datos de tarjetas con criptografía fuerte durante transmisión

Hallazgo:

 Criptografía fuerte implementada correctamente

Remediación:

 Mantener actualizados los protocolos criptográficos

Referencia: PCI-DSS v4.0 Requirement 4

┌──

─────────────┐

│ CATEGORÍA: Development │

145

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

└──

─────────────┘

[PCI-REQ6] Requirement 6: Develop and Maintain Secure Systems

───

────────────

Estado: ✗ FALLO

Severidad: High

Descripción: Desarrollar y mantener sistemas y software seguros

Hallazgo:

 Se detectaron 4 vulnerabilidades de seguridad

Remediación:

 Remediar todas las vulnerabilidades, implementar SDLC seguro, y

 realizar testing regular

Referencia: PCI-DSS v4.0 Requirement 6

146

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

┌──

─────────────┐

│ CATEGORÍA: Authentication │

└──

─────────────┘

[PCI-REQ8] Requirement 8: Identify Users and Authenticate Access

───

────────────

Estado: ✓ ÉXITO

Severidad: Critical

Descripción: Identificar usuarios y autenticar acceso a componentes del sistema

Hallazgo:

 No se detectaron problemas obvios de autenticación

Remediación:

 Implementar MFA obligatorio y políticas de contraseñas

 estrictas

147

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Referencia: PCI-DSS v4.0 Requirement 8

┌──

─────────────┐

│ CATEGORÍA: Testing │

└──

─────────────┘

[PCI-REQ11] Requirement 11: Test Security Regularly

───

────────────

Estado: ✓ ÉXITO

Severidad: Medium

Descripción: Probar la seguridad de sistemas y redes regularmente

Hallazgo:

 Se están realizando pruebas de seguridad automatizadas

Remediación:

 Mantener un programa de testing continuo, incluyendo escaneos

148

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 trimestrales y pruebas de penetración anuales

Referencia: PCI-DSS v4.0 Requirement 11

═══

══════════════

RECOMENDACIONES PRIORITARIAS

═══

══════════════

1. Aplicar hardening, remover configuraciones por defecto, y

 proteger archivos sensibles

2. Remediar todas las vulnerabilidades, implementar SDLC seguro, y

 realizar testing regular

3. Realizar una auditoría de seguridad completa con consultores

 especializados

4. Desarrollar un plan de remediación priorizado por criticidad

149

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

═══

══════════════

PASOS SIGUIENTES

═══

══════════════

✗ El sistema NO cumple con PCI-DSS 4.0

Acciones críticas requeridas:

• Detener operaciones si se manejan datos sensibles

• Realizar auditoría de seguridad completa URGENTE

• Contratar consultores especializados en PCI-DSS 4.0

• Desarrollar plan de remediación integral

• Implementar controles de seguridad críticos inmediatamente

• Notificar a stakeholders y autoridades si es requerido

═══

══════════════

INFORMACIÓN DEL ESTÁNDAR

150

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

═══

══════════════

PCI-DSS v4.0 (Payment Card Industry Data Security Standard)

───

────────────

PCI-DSS es un estándar de seguridad de información para

organizaciones que manejan tarjetas de crédito de las principales

marcas (Visa, MasterCard, American Express, Discover, JCB).

IMPORTANTE: El cumplimiento PCI-DSS es OBLIGATORIO para cualquier

entidad que almacene, procese o transmita datos de tarjetas.

Recursos:

• https://www.pcisecuritystandards.org/

• https://docs-prv.pcisecuritystandards.org/PCI-DSS/4.0/

═══

══════════════

151

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

DESCARGO DE RESPONSABILIDAD

═══

══════════════

Este reporte es generado automáticamente por WebSec Scanner y

proporciona una evaluación preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

• Este reporte NO constituye una auditoría formal de compliance

• Se requiere validación por auditores certificados

• Los resultados pueden incluir falsos positivos/negativos

• El compliance completo requiere controles técnicos,

 administrativos y físicos

Para compliance formal, contacte a:

• QSA (Qualified Security Assessor) para PCI-DSS

• DPO (Data Protection Officer) para GDPR

• Auditor certificado en HIPAA para healthcare

152

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

═══

══════════════

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

═══

══════════════

╔══

═══╗

║ Informe del Escáner de Seguridad WebSec ║

╚══

═══╝

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2025-11-25 16:01:52

ENCABEZADOS DE SEGURIDAD

═════════════════════════════════════

HSTS: Sí

153

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACIÓN SSL/TLS

═════════════════════════════════════

Estado: Habilitado

Versión: TLS 1.3

Cifrado: TLS_AES_128_GCM_SHA256

Calificación: A+

Certificado:

 - Asunto: CN=*.cbvision.net.ec

 - Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo

Limited,L=Salford,ST=Greater Manchester,C=GB

 - Válido desde: 2025-02-05

154

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 - Válido hasta: 2026-03-08

 - Expirado: No

 - Autofirmado: No

VULNERABILIDADES DETECTADAS

═════════════════════════════════════

Total: 4 vulnerabilidades encontradas

 - Críticas: 0

 - Altas: 1

 - Medias: 1

 - Bajas: 2

1. [High] Falta el encabezado CSP

 Descripción: No se encontró el encabezado Content Security Policy (CSP)

 Impacto: El sitio es vulnerable a ataques XSS, inyección de código y carga de recursos no

autorizados

 Recomendación: Implementar una política CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self''

2. [Medium] Falta el encabezado X-Frame-Options

155

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 Descripción: No se encontró el encabezado X-Frame-Options

 Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

 Recomendación: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

 Descripción: No se encontró el encabezado X-Content-Type-Options

 Impacto: Los navegadores podrían interpretar archivos de forma incorrecta, facilitando

ataques

 Recomendación: Agregar 'X-Content-Type-Options: nosniff'

4. [Low] Falta el encabezado Referrer-Policy

 Descripción: No se encontró el encabezado Referrer-Policy

 Impacto: Información sensible en URLs podría filtrarse a sitios de terceros

 Recomendación: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer'

RESUMEN FINAL

═════════════════════════════════════

Puntuación de Seguridad: 63/100

Estado: Configuración de seguridad mejorable

156

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╔══

═══════════════╗

║ REPORTE DE ESCANEO DE API - WebSec Scanner ║

╚══

═══════════════╝

Objetivo: cbvision.net.ec

Duración del escaneo: 1.0775ms

═══

══════════════

RESUMEN EJECUTIVO

═══

══════════════

Total de endpoints encontrados: 0

Endpoints vulnerables: 0

Problemas de CORS: 0

Problemas de autenticación: 0

157

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Vulnerabilidades de seguridad: 0

═══

══════════════

RECOMENDACIONES DE SEGURIDAD

═══

══════════════

No se detectaron vulnerabilidades evidentes.

Recomendaciones generales para mantener la seguridad:

• Realizar auditorías de seguridad periódicas

• Mantener actualizadas todas las dependencias

• Implementar pruebas de seguridad automatizadas

• Seguir las mejores prácticas de OWASP API Security

• Capacitar al equipo en desarrollo seguro de APIs

158

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

═══

══════════════

Reporte generado por WebSec Scanner - API Module

═══

══════════════

╔══

═══╗

║ Reporte de Fuzzing WebSec ║

╚══

═══╝

Objetivo: https://cbvision.net.ec

Fecha: 2025-11-25 16:01:54

ESTADÍSTICAS

═════════════════════════════════════

Total de requests: 153

Requests exitosos: 28

Requests fallidos: 0

159

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Directorios encontrados: 24

Archivos encontrados: 4

Vulnerabilidades detectadas: 0

Duración: 330.24 segundos

Requests/segundo: 0.46

DIRECTORIOS Y ARCHIVOS ENCONTRADOS

═════════════════════════════════════

[403] .git (0.19 KB, 1466ms)

[403] .svn (0.19 KB, 1435ms)

[403] .htaccess (0.19 KB, 829ms)

[403] wp-includes (0.19 KB, 2520ms)

[200] wp-content (0.00 KB, 2684ms)

[403] admin.php (1.96 KB, 652ms)

[200] robots.txt (0.17 KB, 1238ms)

[403] login.php (1.96 KB, 884ms)

[403] config.php (1.96 KB, 721ms)

[403] settings.php (1.96 KB, 778ms)

[403] setup.php (1.96 KB, 531ms)

160

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[403] install.php (1.96 KB, 401ms)

[403] info.php (1.96 KB, 582ms)

[200] sitemap.xml (1.16 KB, 1910ms)

[200] wp-admin (99.22 KB, 3908ms)

[403] phpinfo.php (1.96 KB, 600ms)

[200] index.php (188.94 KB, 1436ms)

[403] test.php (1.96 KB, 651ms)

[403] database.php (1.96 KB, 1708ms)

[403] .git/config (0.19 KB, 548ms)

[403] .gitignore (0.19 KB, 477ms)

[403] .git/HEAD (0.19 KB, 345ms)

[403] .git/config (0.19 KB, 575ms)

[403] .svn/entries (0.19 KB, 558ms)

[403] config.php (1.96 KB, 636ms)

[403] configuration.php (1.96 KB, 555ms)

[403] settings.php (1.96 KB, 1237ms)

[403] wp-config.php (1.96 KB, 1221ms)

161

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

╔══

═══════════════╗

║ REPORTE DETALLADO DE VULNERABILIDADES - WebSec Fuzzer ║

╚══

═══════════════╝

Objetivo: https://cbvision.net.ec

Fecha y hora del escaneo: 2025-11-25 16:01:54

Duración del escaneo: 330.24 segundos

═══

══════════════

RESUMEN EJECUTIVO

═══

══════════════

Total de vulnerabilidades encontradas: 0

Distribución por Severidad:

162

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

 • Críticas: 0

 • Altas: 0

 • Medias: 0

 • Bajas: 0

Distribución por Tipo:

═══

══════════════

URLS COMPROMETIDAS Y DETALLES DE EXPLOTACIÓN

═══

══════════════

═══

══════════════

RECURSOS Y ARCHIVOS EXPUESTOS

═══

══════════════

[RECURSO #1]

163

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

URL: https://cbvision.net.ec/.git

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 1466 ms

Nivel de riesgo: BAJO

[RECURSO #2]

URL: https://cbvision.net.ec/.svn

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 1435 ms

Nivel de riesgo: BAJO

[RECURSO #3]

URL: https://cbvision.net.ec/.htaccess

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

164

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Tamaño: 0.19 KB

Tiempo de respuesta: 829 ms

Nivel de riesgo: BAJO

[RECURSO #4]

URL: https://cbvision.net.ec/wp-includes

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 2520 ms

Nivel de riesgo: BAJO

[RECURSO #5]

URL: https://cbvision.net.ec/wp-content

Código de estado: 200

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 0.00 KB

Tiempo de respuesta: 2684 ms

Nivel de riesgo: MEDIO

165

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[RECURSO #6]

URL: https://cbvision.net.ec/admin.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 652 ms

Nivel de riesgo: BAJO

[RECURSO #7]

URL: https://cbvision.net.ec/robots.txt

Código de estado: 200

Tipo de contenido: text/plain; charset=utf-8

Tamaño: 0.17 KB

Tiempo de respuesta: 1238 ms

Nivel de riesgo: MEDIO

[RECURSO #8]

URL: https://cbvision.net.ec/login.php

166

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 884 ms

Nivel de riesgo: BAJO

[RECURSO #9]

URL: https://cbvision.net.ec/config.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 721 ms

Nivel de riesgo: BAJO

[RECURSO #10]

URL: https://cbvision.net.ec/settings.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

167

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Tiempo de respuesta: 778 ms

Nivel de riesgo: BAJO

[RECURSO #11]

URL: https://cbvision.net.ec/setup.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 531 ms

Nivel de riesgo: BAJO

[RECURSO #12]

URL: https://cbvision.net.ec/install.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 401 ms

Nivel de riesgo: BAJO

168

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[RECURSO #13]

URL: https://cbvision.net.ec/info.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 582 ms

Nivel de riesgo: BAJO

[RECURSO #14]

URL: https://cbvision.net.ec/sitemap.xml

Código de estado: 200

Tipo de contenido: text/xml; charset=UTF-8

Tamaño: 1.16 KB

Tiempo de respuesta: 1910 ms

Nivel de riesgo: MEDIO

[RECURSO #15]

URL: https://cbvision.net.ec/wp-admin

Código de estado: 200

169

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 99.22 KB

Tiempo de respuesta: 3908 ms

Nivel de riesgo: CRÍTICO

[RECURSO #16]

URL: https://cbvision.net.ec/phpinfo.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 600 ms

Nivel de riesgo: BAJO

[RECURSO #17]

URL: https://cbvision.net.ec/index.php

Código de estado: 200

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 188.94 KB

Tiempo de respuesta: 1436 ms

170

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Nivel de riesgo: ALTO

[RECURSO #18]

URL: https://cbvision.net.ec/test.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 651 ms

Nivel de riesgo: BAJO

[RECURSO #19]

URL: https://cbvision.net.ec/database.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 1708 ms

Nivel de riesgo: BAJO

[RECURSO #20]

171

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

URL: https://cbvision.net.ec/.git/config

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 548 ms

Nivel de riesgo: BAJO

[RECURSO #21]

URL: https://cbvision.net.ec/.gitignore

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 477 ms

Nivel de riesgo: BAJO

[RECURSO #22]

URL: https://cbvision.net.ec/.git/HEAD

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

172

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Tamaño: 0.19 KB

Tiempo de respuesta: 345 ms

Nivel de riesgo: BAJO

[RECURSO #23]

URL: https://cbvision.net.ec/.git/config

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 575 ms

Nivel de riesgo: BAJO

[RECURSO #24]

URL: https://cbvision.net.ec/.svn/entries

Código de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1

Tamaño: 0.19 KB

Tiempo de respuesta: 558 ms

Nivel de riesgo: BAJO

173

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

[RECURSO #25]

URL: https://cbvision.net.ec/config.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 636 ms

Nivel de riesgo: BAJO

[RECURSO #26]

URL: https://cbvision.net.ec/configuration.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 555 ms

Nivel de riesgo: BAJO

[RECURSO #27]

URL: https://cbvision.net.ec/settings.php

174

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 1237 ms

Nivel de riesgo: BAJO

[RECURSO #28]

URL: https://cbvision.net.ec/wp-config.php

Código de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamaño: 1.96 KB

Tiempo de respuesta: 1221 ms

Nivel de riesgo: BAJO

═══

══════════════

CONCLUSIONES Y RECOMENDACIONES GENERALES

═══

══════════════

175

TESTING DE API PARA DETECCIÓN DE VULNERABILIDADES

QUITO – ECUADOR | 2025

ESTADO: NO SE DETECTARON VULNERABILIDADES

No se detectaron vulnerabilidades con los payloads utilizados.

Sin embargo, se recomienda:

• Realizar auditorías de seguridad más exhaustivas

• Implementar pruebas de penetración manuales

• Mantener actualizadas todas las dependencias

═══

══════════════

Reporte generado por WebSec Fuzzer - 2025-11-25 16:01:54

═══

══════════════

