

ING. AUTOMOTRIZ

Trabajo integración Curricular previa a la obtención del título de Ingeniero en Automotriz.

AUTORES:

Pablo Andrés Jácome Dávila Carlos Andrés Espinosa Jácome

TUTORES:

Ing. Guanuche Larco Denny Javier Msc. Ibujes Villacis Luis Homero

Análisis de esfuerzos, rediseño y construcción de una manigueta de freno de un vehículo L3.

QUITO – ECUADOR | 2022

CERTIFICACIÓN DE AUTORÍA

Nosotros, Carlos Andres Espinosa Jacome y Pablos Andres Jacome Dávila, declaramos bajo juramento, que el trabajo aquí descrito es de nuestra autoría; que no ha sido presentado anteriormente para ningún grado o calificación profesional y que se ha consultado la bibliografía detallada.

Cedemos nuestros derechos de propiedad intelectual a la Universidad Internacional del Ecuador, para que sea publicado y divulgado en internet, según lo establecido en la Ley de Propiedad Intelectual, su reglamento y demás disposiciones legales.

Carlos Andres Espinosa Jacome

Pablos Andres Jacome Dávila

APROBACIÓN DEL TUTOR

Yo Denny Javier Guanuche Larco certifico que conozco a los autores del presente trabajo siendo la responsable exclusiva tanto de su originalidad y autenticidad, como de su contenido.

Ing. Denny Javier Guanuche Larco

Dedicatoria

Esta tesis está dedicada a mis padres Pablo y Anita, quienes con su esfuerzo y amor me han permitido llegar a cumplir hoy uno de los sueños más anhelados de mi vida, gracias ejemplo por inculcar en mí el de sacrificio responsabilidad. У A mis hermanos Ana Gabriela y Juan Francisco por su cariño y apoyo incondicional, durante todo este proceso, por estar conmigo en todo momento gracias. A toda mi familia porque con sus consejos y palabras de aliento me dieron fuerzas para superar cualquier adversidad que me deparo la vida. Finalmente, quiero dedicar esta tesis a todas mis amigas, por apoyarme cuando más las necesito, por extender su mano en momentos difíciles.

Pablo Andrés Jácome Dávila

Este trabajo investigativo de titulación lo dedico principalmente a mis padres Carlos e Hipatia, por su amor, motivación y sacrificio en todos estos años, gracias a ustedes he logrado llegar hasta aquí. Ha sido un orgullo y un privilegio el ser su hijo. A mis hermanos Gabriela, Macarena y Cristian por estar siempre presentes, acompañándome y por el apoyo moral, que me brindaron a lo largo de esta etapa de mi vida. A todas las personas que me han apoyado y han hecho que el trabajo se realice con éxito en especial a aquellos que nos abrieron las puertas y compartieron sus conocimientos.

Carlos Andrés Espinosa Jácome

Agradecimiento

Redactando en estas líneas un agradecimiento formal, a las personas que estuviste en mi formación académica de principio a fin, en este caso a mi familia, y compañeros de carrera, de manera especial quisiera agradecer a mi tutor y guía el Ing. Denny Guanuche, por su tiempo y dirección en este trabajo investigativo de titulación.

Pablo Andrés Jácome Dávila

Me gustaría agradecer a muchas personas y colegas que me han ayudado en el proceso de investigación y redacción de este estudio. Primero, me gustaría agradecer a mi familia por su ayuda y apoyo, a mi coordinador, Ing. Denny Guanuche, guiándome cuando necesité consejo. А todos mis amigos, conocidos y colegas que me han su ayudado desinteresadamente, les estaré eternamente agradecido por su ayuda y amabilidad.

Carlos Andrés Espinosa Jácome

Análisis de esfuerzos, rediseño y construcción de una manigueta de freno de un vehículo L3.

Analysis of efforts, redesign and construction of a brake lever of a L3 vehicle.

Resumen

El 28.5% de vehículos matriculados en el Ecuador son motocicletas en el 2021, las motocicletas además son herramientas de deportes extremos, en este tipo de deportes al estar expuesto a colisiones una de las partes más frecuentes de ruptura son las maniguetas, por lo que el tema se centró en un análisis de esfuerzos, rediseño y construcción de una manigueta de freno ya que los diseños originales cuentan con un factor de seguridad muy bajo de 1.00. Para la realización de este estudio se utilizó un vehículo L3 de precedencia China. Con la ayuda del método experimental-cuantitativo, se graficó de manera exacta la manigueta en un software CAD/CAE para posteriormente en el software de elementos finitos realizar una simulación de esfuerzos máximos. Se corroboró esta información con ensavos: Charpy y de Compresión. Con los datos obtenidos se rediseñó la pieza y se creó prototipos con diferentes parámetros geométricos: largo total de la pieza, ancho de la zona crítica y ángulo del punto de pivote. Se obtuvo una reducción en la deformación de 0.27 mm y un aumento 0.5 en el factor de seguridad, en comparativa con la pieza original de fábrica D0. A través de maguinaria CNC se construyó la pieza y sometió al rediseño a los ensayos mecánicos previamente realizados, y se obtuvo una mejora en el ensayo de compresión de 215 psi, además se logró un aumento de 0.40 Kg*m en el ensavo de Impacto Charpy.

Palabras Clave: freno, manigueta, software, diagramas, material, esfuerzos.

Abstract

28.5% of vehicles registered in Ecuador are motorcycles in 2021, motorcycles are also extreme sports tools, in this type of sports, when exposed to collisions, one of the most frequent parts of rupture are the handles, so the subject focused on a stress analysis, redesign and construction of a brake lever since the original designs have a very low safety factor of 1.00. To carry out this study, an L3 vehicle of Chinese precedence was used. With the help of the experimental-quantitative method, the crank was accurately plotted in a CAD/CAE software to later perform a maximum stress simulation in the finite element software. This information was corroborated with tests: Charpy and Compression. With the data obtained, the piece was redesigned, and prototypes were created with different geometric parameters: total length of the piece, width of the critical zone and angle of the pivot point. A reduction in deformation of 0.27 mm and an increase of 0.5 in the safety factor were obtained, in comparison with the original factory part D0. Through CNC machinery, the piece was built and subjected to the redesign to the mechanical tests previously carried out, and an improvement was obtained in the compression test of 215 psi, in addition, an increase of 0.40 Kg*m was achieved in the Charpy Impact test.

Keywords: brake, handle, software, diagrams, material, efforts.

Introducción

El 28.5% de vehículos matriculados en el Ecuador son motocicletas en el 2021 INEN (2021), además se estima que en Ecuador el 20.77% de todos los siniestros de tránsito son en motocicleta INEN (2018), dentro del mundo de los deportes automovilísticos un gran porcentaje de amantes de este deporten optan por la rama de las motocicletas, en estos deportes extremos existen varias modalidades de competencia entre las más comunes encontramos el motocross, enduro, trail, rally raid entre otros, según AMV Hispania (2018), todos estos con fines, modalidades y categorías diferentes, pero todos con el uso de un automotor de dos ruedas. Existen diferentes categorías que rigen el nivel de los competidores. La Asociación Nacional de Enduro del Norte, (2022) afirma que novatos o principiantes es una de las categorías que no faltan en estos deportes, en Ecuador la gran mayoría de deportistas de dichas categorías optan por una motocicleta de origen asiática por su nivel de economía tanto de adquisición como de mantenimiento, se utiliza la marca Factory con su modelo J10, ya que es una motocicleta de procedencia asiática de bajo valor de manutención. Al ser adquiridas por deportistas principiantes el factor común que existe en estos como su nombre lo indica es la falta de experiencia en este tipo de deportes y por ende el sometimiento a mayores esfuerzos en partes críticas del automotor por caídas o desplomes de los usuarios, en este caso la parte delantera del vehículo L3 son las más afectas, siendo las maniguetas de freno y embrague, específicamente la manigueta de freno al ser anclada directamente hacia la bomba de freno y al no existir un repuesto con una calidad necesaria para soportar dichos esfuerzos a colisiones, el costo y la frecuencia del recambio de este es muy alta. En estos automotores al requerir de una fuerza de freno bastante precisa en el neumático delantero con una distribución del 63% freno delantero y 37% freno trasero (Quezada, 2017).

Como planteó Santoloya J., (2013) en su propuesta de una manigueta de freno para motocicletas de alta cilindrada, donde indica su diseño a partir de tres premisas fundamentales: la eficiencia de la operatividad del mecanismo, la adecuación y adaptación del usuario hacia este mecanismo y la viabilidad del proceso de desarrollo y la fabricación de este. Una vez encontrado el material basándonos en la "Espectrometría por Chispa", se continuó con el modelado y el análisis estáticos mediante la definición de cargas, material, restricciones y condiciones (Sunday & Metu, 2016).

Dentro del recambio de piezas y repuestos en vehículos, Bejarano A., (2017) planteó un flujograma de diagnóstico para la reparación de una pieza automotriz o el recambio de esta, que en este caso de estudio y basados en dicho flujograma el recambio de esta manigueta es esencial por su nulo o poco rendimiento que se consigue tras la ruptura de este. En el mercado ecuatoriano se dispone de un solo tipo de manigueta de freno para el modelo de motocicleta plateada, que de igual manera su tolerancia a esfuerzos es mínima.

En el ensayo presentado por Tabares, Gaviria, & Saldarriaga, (2013) afirmaron que el mantenimiento es el proceso más importante al momento de la conservación de sistemas mecánicos en funcionamiento, dentro del sistema de freno la inspección y recambio de líquido de freno y pastillas de freno, pero en la manigueta de freno no existe un mantenimiento que prevenga rupturas por sobreesfuerzos de la pieza. Este trabajo buscó realizar un rediseño bajo la modificación de la geometría de la pieza con la finalidad de brindar una mejora en la tolerancia a esfuerzos cortantes, ya que el problema con la pieza actual es que es demasiado larga y el ángulo del arco de la misma es muy pronunciado, así que en el rediseño se acortó el largo y se redujó el ángulo del arco de la manigueta con

el fin de evitar el recambio prematuro de este dispositivo por causa de colisiones, y así garantizar una mejora del 20%. Con esto se construyó un prototipo y poder evidenciar de manera física las ventajas que las simulaciones nos arrojaron.

Marco Teórico

Freno Hidráulico

"Los frenos de tipo hidráulico son un conjunto de piezas que confirman un sistema que tiene como objetivo la amplificación de fuerza, el cual es aplicado por el conductor a través del pedal de freno para así detener las ruedas del vehículo. Este tiene como característica el uso de un fluido hidráulico incompresible" (Christian, 2012).

Figura 1

Partes del Sistema de Freno

Nota: Esta figura representa las partes del sistema de freno de un vehículo L3. Tomada de (CHAID NEME HERMANOS S.A., 2022).

Manigueta de freno

La manigueta de freno, también conocida como mango o puño, es una parte esencial del sistema de freno de una moto. Es la encargada de trasmitir la fuerza ejercida por el ser humano hacia la bomba de freno para que así a través del fluido hidráulico accione los pistones de freno (Distrimotos Yamaha, 2020).

Figura 2

Manigueta de Freno Vehículo L3

Nota: Esta figura indica una manigueta de freno. Tomada de (Distrimotos Yamaha, 2020)

Software CAD

El software CAD, por sus siglas en inglés Computer-Aided Design, sirven para la creación, modificación, análisis y optimización de objetos físicos, bidimensionales y tridimensionales. Se crearon con el fin de incrementar la productividad, optimizar tiempos y obtener resultados de mejor calidad (Integral Innovation Experts, 2019).

Simulación

El proceso de simulación permite aplicar límites reales a la pieza estudia, en este proceso se puede verificar errores de la pieza, aplicar fuerzas determinadas, observar puntos críticos, entre otros (3DCadPortal, s.f.).

Esfuerzos

Como esfuerzos entendemos a las fuerzas internas dentro de un material o una estructura que evita que se deforme o se rompa. Dentro de estas fuerzas internas llamadas esfuerzos disponemos de cinco principales tales como: tracción, compresión, flexión, torsión y cortante (Conceptos Definiciones , 2022).

Esfuerzos cortantes

Esto se denomina esfuerzo cortante debido a la acción de dos fuerzas paralelas a la superficie y en direcciones opuestas. De esta manera, puede dividir el objeto en dos partes y deslizar las partes una encima de otra (Zapata, 2019).

Como fórmula tenemos:

Ecuación 1 Fórmula de Esfuerzo Cortante

$$\tau = \frac{f}{A}$$

Donde:

 τ : esfuerzo cortante

f: Fuerza paralela al área

A: área de la sección transversal

Ecuación 2

Notación de Fórmula de Esfuerzo Cortante

$$\tau i j = \frac{F j}{A i}$$

Notación de la fórmula:

- El símbolo T se utiliza para representar el esfuerzo cortante.
- Para indicar la fuerza que actúa y la dirección del área de acción, usamos el índice con el símbolo T como Tij. donde i representa la dirección del plano de la superficie aplicada (perpendicular a la superficie) y j representa la dirección de la fuerza aplicada.
- Por lo tanto, tij = esfuerzo cortante que actúa sobre la cara i en la dirección j.
 tji= Esfuerzo cortante en la dirección i que actúa sobre la cara j.

Esfuerzos máximos

Como esfuerzos máximos se obtiene a través de la teoría en el cual el mayor esfuerzo normal principal se logra igualar al esfuerzo equivalente esto producido en una pieza al ser sometido a diferentes esfuerzos multiaxiales. Es por esto por lo que la falla se producirá cuando el esfuerzo máximo absoluto sea mayor o igual al esfuerzo cortante máximo (Hernandez, 2014).

Curva de esfuerzos y deformación

Con esta curva se busca entender las características y el comportamiento de un material en específico, es un sistema de coordenadas el cual relaciona la carga recibida al material con deformación que este genera. La curva de esfuerzo y deformación tiene como características principales que en el tramo inicial es relativamente lineal, hasta la mitad de la resistencia máxima a compresión, una vez que se supera y alcanza esta primera rama, la curva tiende a hacerse horizontal hasta alcanzar su resistencia máxima (Universidad Autonoma de Mexico, s.f.).

Figura 3

Curva de esfuerzos y deformación

Nota: Esta figura presenta de manera grafica lo que es el Modulo de Young. Tomada de (Academia Hooke, 2022)

Fractura de material dúctil

Una fractura dúctil se da tras el suceso de un material sometido a una deformación plástica excesiva, es bastante común en materiales que disponen de una zona de deformación plástica considerable. Se caracteriza por una elongación en el material, reducción de área transversal entre otras apariencias físicas (Inkuba, 2022).

Fractura de material frágil

Una fractura de tipo frágil es la que sucede antes o durante el momento que se da una deformación plástica. Generalmente, este tipo de fractura se presenta en materiales no cristalinos o expuestos temperaturas muy bajas (Inkuba, 2022).

Espectrometría por chispa

La espectrometría por chispa es un ensayo químico con el cual se puede detectar los tipos de metales, semimetales y no metales existentes en una pieza predeterminada. Este ensayo se lo obtiene al encender un plasma creado por una chispa de alta energía la cual es descargada entre la muestra y el contra electrodo dentro de una atmósfera de argón, gracias a la medición de la luz emitida se puede analizar cuantitativamente los elementos químicos (Academia Gasex, 2021).

Ensayo de Impacto (Charpy)

El ensayo de impacto se lo realiza con el péndulo Charpy, péndulo que es utilizado para determinar la tenacidad de un material. Este ensayo se lo realiza generalmente con probetas. El péndulo cae sobre la probeta partiéndola y la tenacidad se ve determinada en la diferencia de altura inicial con la altura final alcanzada por el péndulo (Figueroa, 2018).

Ecuación 3

Fórmula de Energía de Impacto

$$\tau = P(h - h')g = Pl(\cos\beta - \cos\alpha)g$$

Donde:

T= energía empleada en a la rotura.

P= masa del péndulo.

g= gravedad.

h= altura inicial del péndulo.

h'= altura final del péndulo.

l= longitud del péndulo.

 α = ángulo que forma el péndulo con la vertical antes de soltarlo.

β= ángulo que forma el péndulo con la vertical después de soltarlo

Normativa Ensayo Charpy

La norma INEN – ISO 148, es la norma que regulariza los ensayos de impacto con péndulo Charpy, normativa dirigida únicamente a materiales metálicos, ensayo aplicado para determinar la energía absorbida por el material (Servicio Ecuatoriano de Normalizacion , 2015).

Tensión Von Mises para Materiales Dúctiles

Esta tensión está relacionada con el criterio de fallo elástico y propone que un material dúctil sufrirá el fallo elástico cuando la fuerza de tensión rebase el valor de la tensión Von Mises (Boresi , Schmidt , & Sidebottom, 1978).

Metodología

Para la sustentación de este ensayo se usó la metodología cuantitativaexperimental, con la ayuda de un calibrador pie de rey se tomó las medidas de la manigueta del vehículo L3 con el fin de poder plasmarlo en un software de diseño (Inventor), con la obtención dimensiones, diámetros y grados exactos de la pieza, sé la graficó en el software antes mencionado tomado como punto inicial y referencial el pasador de dicha mangueta y la cuña que esta posee.

Una vez plasmado el diseño de la pieza se verificó las dimensiones y la precisión de la pieza en comparativa con la original. Con la pieza ya lista y el informe de mineralogía, que indicó el tipo de material de la manigueta original, se realizó una simulación en el software inventor de esfuerzos máximos a la pieza tras un mallado de este. Posteriormente, se realizó el ensayo de compresión, como se muestra en la figura 4, el cual consistió en la

ocupación de una prensa hidráulica, la cual contaba con un manómetro que muestra la presión del fluido en el sistema al momento de la ruptura de la pieza.

Figura 4

Ensayo de Compresión Manigueta

Nota: Esta figura indica la manera en la cual se realizo el ensayo de compresión con la ayuda de una prensa hidráulica con manómetro.

Con los datos obtenidos se rediseñó la pieza y se diseñó un prototipo con mejores prestaciones basado en puntos críticos arrojados tanto por la simulación como por el ensayo, y en este caso con el material de la pieza original. Para concluir con el estudio y con los planos del rediseño del prototipo se construyó con la ayuda de maquinaria CNC, se la puso a prueba y observamos el nivel de mejora de esta manigueta.

Se realizó tres ensayos de impacto con péndulo Charpy como se muestra en la Figura 5 para determinar la tenacidad de los materiales de las maniguetas originales, este ensayo se lo realizó en la Universidad de las Fuerzas Armadas (ESPE).

Figura 5

Ensayo de Impacto

Nota: La figura indica de qué manera se realizó el ensayo de impacto por Péndulo Charpy. Tomado de (Universidad de las Fuerzas Armadas - ESPE, 2023)

Además, se realizó una encuesta a personas que dispongan de vehículos L3 destinados para deportes extremos para determinar la frecuencia de los cambios prematuros de manigueta de freno por destrucción por impacto en la misma.

Figura 6

Flujograma de Proceso de Rediseño Aplicado

Nota: En la Figura 6 se muestra el flujograma del proceso seguido por los autores para la determinación del rediseño óptimo que cumpla las especificaciones requeridas.

Encuesta

Se realizó una encuesta a 25 deportistas los cuales tienen una mayor frecuencia en la práctica de deporte para corroborar la problemática encontrada con 5 preguntas claves dirigidas a propietarios de dichos vehículos. Donde, el 30% de los usuarios ha roto la manigueta de freno vez, el 40% 2 veces y el 30% 3 veces o más, de las cuales el 10% de las rupturas son en la sección media y el 90% en la sección izquierda.

Tabla 1

Resultados de Encuesta

PREGUNTA		RESPUESTAS		
¿Dispone usted de un vehículo L3 (motocicleta)?	SI		NO	
	969	%	2	1%
¿De qué procedencia es si vehículo L3?	Asiática		Otros	
	729	%	2	8%
Si su vehículo L3 es de procedencia asiática, ¿Cuál es la marca?	Factory		Otros	
	40%		60%	
Si su vehículo L3 es de marca Factory, ¿con qué frecuencia se ha roto la manigueta original de freno?	0 1 vez		2 veces	3 o más veces
	0%	30%	40%	30%
Si su vehículo L3 es de marca Factory, ¿en qué sección ha sufrido daños la manigueta de freno?	Derecho		Medio	Izquierdo
	0%		10%	90%

Nota: Esta tabla indica los resultados obtenidos en la encuesta realizada a deportistas.

Materiales

Para la sustentación de este estudio se utilizó un vehículo L3 portador de un motor 250cc modelo 4 válvulas enfriada por aire, con frenos hidráulico por discos en ambas ruedas con tecnología Wave según Factory Bike, (2023). La manigueta ocupada en los estudios está compuesta en su mayoría de aluminio.

En este caso en la Tabla 1 se observa que el material en el cual se trabaja está catalogado como un material ligeramente dúctil, lo que quiere decir que este sufre una pequeña deformación hasta llegar a su límite plástico y posteriormente romperse.

Tabla 2

Análisis	por E	Spectro	metría	por	Chis	ра

Metales	Manigueta (%)
Silicio (Si)	2.399
Hierro (Fe)	0.355
Cobre (Cu)	0.111
Manganeso (Mn)	0.572
Magnesio (Mg)	0.327
Cromo (Cr)	0.031
Níquel (Ni)	0.012
Zinc (Zn)	0.272
Titanio (Ti)	0.032
Galio (Ga)	0.016
Vanadio (V)	0.013
Antimonio (Sb)	0.019
Aluminio (Al)	95.76

Nota: Esta tabla indica de manera exacta el material por el cual está conformada la manigueta de freno original. Tomado de (Escuela Politecnica Nacional - EPN, 2023).

- Con software CAD Inventor® de AutoDesk el cual nos permite el modelado paramétrico tanto del diseño original como de los rediseños.
- Prensa hidráulica es la encargada del ensayo de compresión gracias la lectura del manómetro que esta posee.
- Con el péndulo se realizó el ensayo de charpy.
- Maquinaria CNC encargada del modelado y fabricación del rediseño.

Ensayos y simulaciones

Se realizaron dos ensayos diferentes, uno de compresión y otro de impacto en péndulo Charpy, en ambos ensayos se destruyeron tres maniguetas del diseño original para obtener un promedio estimado de resultados.

Tabla 3

Muestra	Presión (psi)
Pieza Original n1	300*
Pieza Original n2	290*
Pieza Original n3	250*
Promedio Total	280*

Resultados ensayo de Compresión

Nota: Los valores que se obtienen de este ensayo en la Tabla 3 a los resultados se los resalta con un "*" además se los coloca en psi de presión debido a que es la presión indicada por el manómetro del circuito hidráulico de la prensa utilizada para el ensayo de compresión.

Para el ensayo de impacto Charpy se usó principalmente un péndulo y la probeta a ser ensayada, se ubicó la probeta en la parte inferior del péndulo de tal manera que esta sea impactada por la parte final del mismo, y así, esto depende de la posición inicial, posición final y ángulos iniciales y finales tendremos los valores de la tenacidad mostrados en la Tabla 4.

Tabla 4

Muestra	Tenacidad (Kg*m)
Pieza Original n1	7.10
Pieza Original n2	7.80
Pieza Original n3	7.60
Promedio Total	7.50

Resultados ensayo de Impacto Charpy

Parámetros de Simulación

Para la descripción del material a usar en el software Inventor® se utilizó aluminio 6061, el cual posee estas características físicas ya descritas por el programa CAD.

Posteriormente, en el software CAD se realizaron simulaciones de esfuerzos iguales a los de los ensayos mecánicos previamente realizados con los parámetros mostrados en las Tablas 5, 6 y 7.

Tabla 5

Aluminio 6061

Características físicas del Material			
Densidad de masa	2.7 g/cm^3		
Límite de elasticidad	275 MPa		
Resistencia máxima a tracción	310 MPa		
Módulo de Young	68.9 GPa		
Coeficiente de Poisson	0.33 su		
Módulo cortante	25.9023 GPa		

Nota: Esta tabla presenta las características físicas del material ocupado para el rediseño de la manigueta en el software CAD.

Tabla 6

Características de Mallado

Características del Mallado			
Tamaño medio de elemento (fracción del diámetro del modelo)	0.01		
Tamaño mínimo de elemento (fracción del tamaño medio)	0.2		
Factor de modificación	1.5		
Ángulo máximo de giro	60°		

Nota: Para la simulación de los análisis estructurales se basó en elementos finitos, donde el mallado cumple la función de la creación de nodos de estudio con los siguientes parámetros

Tabla 7

Características de Cargas

Características de las Cargas			
Magnitud	4824 N		
Vector X	-4824 N		
Vector Y	0 N		
Vector Z	0 N		

Nota: Se aplica una carga puntual a la parte final de la manigueta de manera longitudinal en el plano X como se muestra en la Tabla 7, del tal modo que se recrea un impacto por colisión directa con un valor de 4824 N, este valor fue obtenido del ensayo de compresión, al realizar una estimación con la presión entregada al momento de la fractura de la probeta.

Figura 7

Restricciones Fijas Simulación

Nota: Esta figura nos indica en que parte se establecieron las restricciones fijas al momento de simular, para replicar de manera mas realista una colisión real.

Características Geométricas de Diseños

Tabla 8

Características Geométricas de Diseños expuestos a simulación.

	Características Geométricas			
	Largo (mm)	Ancho (mm)	Angulo de Pivote	
Diseño Original	170.00	9.00	6.33°	
Rediseño 1	170.00	12.00	6.33°	
Rediseño 2	150.00	9.00	6.33°	
Rediseño 3	170.00	9.00	2.89°	
Rediseño 4	170.00	12.00	2.89°	

- El Diseño Original conservó las características originales de la pieza.

- En el Rediseño 1 se realizó un aumento del ancho a 12.00 mm.
- En el Rediseño 2 se acortó el largo de la manigueta 150.00 mm
- En el Rediseño 3 se conservó el ancho y largo original, pero se redujo a 2.89° el ángulo de pivote.
- En el Rediseño 4 se aumentó el ancho a 12.00 mm y se redujo el ángulo de pivote a 2.89°.

Resultados de Simulaciones

Tabla 9

Resultados de simulación arrojados por software.

	Resultados Simulaciones			
	Deformación (mm) Factor de Segurio			
Diseño Original	0.60	1.00		
Rediseño 1	0.38	1.31		
Rediseño 2	0.95	1.27		
Rediseño 3	0.40	1.45		
Rediseño 4	0.33	1.49		

Nota: Esta representa los resultados obtenidos de las simulaciones realizadas por el software, estos indican que el Rediseño 4 responde mejor a las cargas aplicadas en la simulación.

Resultados Simulaciones

Tabla 10

Resultados simulaciones de frenado manual.

	Resultados Simulaciones de Frenado			
	Deformación (mm) Factor de Seguridad			
Diseño Original	0.50	3.89		
Rediseño 4	0.51	3.94		

Nota: Resultado de simulaciones de frenado manual, aplicando una fuerza de 367 N, la cual es promedio de la fuerza de mano de un adulto (Taylor, 2020).

Resultados y Discusiones

Dentro de los resultados obtenidos en los cuatro rediseños de la manigueta de freno se considera tres diferentes variables a analizar:

- Longitud de la manigueta, ya que basándonos en los momentos de torsión (torque), y la fuerza es directamente proporcional a la distancia, o en este caso al largo de la manigueta se incrementarían los momentos de torsión en la manigueta.
- La dimensión de ancho en el punto crítico de la pieza, una vez hechas las simulaciones de análisis de esfuerzos en el software y una vez determinado el punto crítico de ruptura, con el ampliar el ancho de la manigueta, se buscó

reforzar y reducir el riesgo de ruptura en esta zona de la manigueta (Johnston, 2017).

 El ángulo que dispone la manigueta de freno referente al punto de pivote hacia la bomba de freno, con la modificación de este, se encontró que cuando los ángulos eran más pronunciados mayor era el desplazamiento de la manigueta y cuando este era menor este desplazamiento se reducía al igual que el riesgo de ruptura.

Con estas tres variables se obtuvieron los siguientes valores, en el diseño D0 (diseño original) un desplazamiento de 0.6 milímetros, y un factor de seguridad mínimo de 1.00 su.

- D1: en el primer rediseño se optó por un ensanchamiento de la pieza en el punto crítico de 3.00 mm, se obtuvo un menor desplazamiento en comparativa con el diseño D0 (diseño original) de 0.22 mm, y un factor de seguridad de 1.31 su.
- D2: en este rediseño se optó por la reducción del largo de la pieza en 20.00 mm (en comparación al diseño original D0), y con la conservación del ancho y del ángulo original, con esto se obtuvo un desplazamiento de 0.95 mm, y un factor de seguridad de 1.27 su.
- D3: en este rediseño se optó por la reducción del ángulo de pivote de la pieza en 3.44° (en comparación al diseño original D0), y con la conservación del ancho y del largo original de la pieza, con esto se obtuvo un desplazamiento de 0.40 mm, y un factor de seguridad de 1.45 su.
- D4: en este rediseño se optó por la reducción del ángulo de pivote de la pieza en 3.44°, además el ancho se aumentó 3.00 mm en el punto crítico (en comparación al diseño original D0), y se conserva el largo original de la pieza, con esto se obtuvo un desplazamiento de 0.33 mm, y un factor de seguridad de 1.49 su.

Con estas variables independientes en el rediseño de la manigueta de freno y con los resultados arrojados por el software Inventor® se observó un mayor rendimiento en el rediseño D4 el cual fusiona el rediseño D1 y D3 cuentan con un menor ángulo y una dimensión mayor en el ancho de la pieza original con el cual tanto la deformación como en el factor de seguridad, al encontrar una mejora del 55% en la deformación y una mejora del 52% en el factor de seguridad.

Ponderación de características de diseños

Se realizó una ponderación como se muestra en la Tabla 15, con base en las características de cada diseño por determinar cuál sería el diseño con mejores cualidades tanto físicas como estéticas. Donde está enfocado principalmente en cinco parámetros claves que determinan el rendimiento de la pieza y su reacción contra impactos.

Tabla 15

INDICADOR	PONDERACIÓN	DISEÑO 0	DISEÑO	DISEÑO 2	DISEÑO 3	DISEÑO 4
		_			_	
Construcción	2	1.5	1.0	1.0	2	1.5
Estética	0.5	0.5	0.4	0.5	0.5	0.4
Ergonomía	2	2	2	2	1.6	1.6
Deformación	1.5	0.6	1.2	0.2	0.9	1.5
Coeficiente de seguridad	4	0.8	2.4	1.6	3.2	4
Total	10	5.4	7	5.3	8.2	9

Ponderación de características de diseños

Ensayos en Prototipo Seleccionado

Una vez electo el prototipo adecuado se realizó el ensayo de compresión y de impacto por péndulo Charpy, donde se obtuvieron los resultados descritos en la Tabla 16.

Tabla 16

Resultados de Ensayos en Prototipo

Tipo de Ensayo	Resultado
Ensayo de Compresión (psi)	495
Ensayo de Impacto Charpy (Kg * m)	7.90

Nota: En el ensayo de compresión se logra una mejoría al superar el promedio de la manigueta original el cual es de 280 psi, en el ensayo de impacto por péndulo Charpy se logra resultados similares al del diseño original que fueron de 7.5 Kg * m.

Conclusiones

Bajo una ponderación de características de los prototipos, el diseño D4 obtuvo la mejor puntuación de 9/10, donde, en esta ponderación, se toma en cuenta la dificultad de construcción, la estética, la ergonomía al usuario, el coeficiente de seguridad y la deformación.

Para constatar los resultados obtenidos en la simulación se sometió al rediseño electo a los ensayos de compresión y al ensayo de impacto por péndulo Charpy, teniendo una mejora en el ensayo de compresión de alrededor del 76.78%, y en el ensayo de péndulo charpy se supera por poco el promedio de la manigueta original logrando una mejora del 5%.

Con esta investigación se mostró el rediseño y la construcción de un prototipo de manigueta de freno para un vehículo L3 con una mejora al reducir en un 55% la deformación y un aumento del 52% en el factor de seguridad, en comparativa con la pieza original de fábrica D0 el cual dispone de un diseño con un desempeño a esfuerzos deficiente. Además, se aumentó el ancho de la pieza en un 33.33% y se redujo su ángulo de apertura de 6.33° a 2.89° y se obtiene el retroceso del punto de pivote de dicho sistema, se consiguió un aumento en la tolerancia a esfuerzos por colisiones. Con esta mejora significativa en la manigueta de freno delantero del vehículo L3 y según el uso que se le da a este, que en su mayoría es un uso deportivo en territorios off road para deportes de alto rendimiento y alto impacto como es el enduro y el motocross, en deportistas principiantes ya que son los que optan por esta motocicleta y los que a más accidentes y colisiones se someten, se reducirá significativamente el recambio prematuro de este dispositivo por causa de colisiones y falla en la resistencia de la manigueta de freno.

Referencias bibliográficas

- 3DCadPortal. (s.f.). *EL PROPÓSITO DE LA SIMULACIÓN EN UN SISTEMA CAD/CAM*. Obtenido de https://www.3dcadportal.com/el-proposito-de-la-simulacion-en-un-sistema-cadcam.html#:~:text=El%20sistema%20de%20simulaci%C3%B3n%20le,%2C%20y%20los%20p orta%2Dboquillas
- Academia Gasex. (24 de 07 de 2021). *Gasex.cl.* Obtenido de https://gasex.cl/argon/que-es-laespectroscopia-de-emision-atomica-de-chispa-y-arco/
- Academia Hooke. (2022). Academia Hooke. Obtenido de Diagrama Esfuerzo Deformación Unitaria: https://academiahooke.com/diagrama-esfuerzo-deformacion-unitaria/
- AMV Hispania. (08 de 06 de 2018). *Modalidades, Tipos y Categorías de Motociclismo*. Obtenido de https://noticias.amv.es/noticias-motor/modalidades-de-motociclismo/
- Antara N., M. K. (15 de 08 de 2016). *Application of Sand Casting to Recycle Aluminum Alloy for Motorcycle Brake Handle.* Obtenido de https://www.scientific.net/KEM.705.357
- Asociación Nacional de Enduro del Norte. (2022). Reglamento Oficial Enduro 2022.
- Bejarano A., C. J. (26 de 07 de 2017). *Caracterización de los criterios técnicos de valoración para la reparación y sustitución de piezas de motocicletas.* Obtenido de http://repository.uamerica.edu.co/handle/20.500.11839/6380
- Boresi , A., Schmidt , R., & Sidebottom, O. (1978). Advanced Mechanics of Materials, Fifth Edition.
- CHAID NEME HERMANOS S.A. (2022). *autopartes*. Obtenido de Sistemas del Vehículo: http://www.revistaautopartes.co/sistemas-delvehiculo/ver/?tx_ttnews%5Btt_news%5D=99&cHash=54031b0be97753e76120cf8335002 60f
- Chiriboga, C., & Obando, E. (2018). *Desarrollo de un código de programación en lenguaje Python* para generación de gráficas de Ashby aplicadas a la selección de materiales. Quito.
- Christian , E. (2012). *Scribd*. Obtenido de Frenos hidraulicos : https://es.scribd.com/doc/95006762/Frenos-Hidraulicos
- Conceptos Definiciones . (2022). *Conceptos Definiciones* . Obtenido de Tipos de Esfuerzo: https://conceptodefinicion.de/tipos-de-esfuerzo/
- Distrimotos Yamaha . (2020). *Distrimotos Yamaha* . Obtenido de Manigueta Freno Yamaha YBR 125 ESD: https://distrimotosyamaha.com/product/manigueta-freno-yamaha-ybr-125-esd/

Escuela Politecnica Nacional - EPN. (2023).

Factory Bike. (2023). Factory Bike. Obtenido de J10: https://factorybike.com.ec/off-road/j10/

- Figueroa, W. (25 de 09 de 2018). *Prezi*. Obtenido de Instituto Universitario de Tecnologia Antonio Jose de Sucre: https://prezi.com/p/zgqb69bwnakw/el-ensayo-charpy/
- Hernandez, M. (11 de 03 de 2014). *Teoria de Esfuerzos Maximos*. Obtenido de Scribd: https://www.scribd.com/document/211803600/Teoria-de-Esfuerzos-Maximos

INEN. (2018).

INEN. (2021).

- Inkuba. (2022). *Perfiles de aluminio.net*. Obtenido de Tipos de fracturas en materiales metálicos: https://perfilesdealuminio.net/articulo/tipos-de-fracturas-en-materiales-metalicos/98
- Integral Innovation Experts. (20 de 08 de 2019). *Integral Innovation Experts.* Obtenido de https://integralplm.com/blog/2019/08/20/que-es-cad/

Johnston, B. (2017). Mecánica de Materiales.

- Molero , L. (2009). Los frenos en el automovil. Obtenido de http://creandoconciencia.org.ar/enciclopedia/conduccion-racional/comportamientodinamico/FRENOS-DEL-AUTOMOVIL.pdf
- Quezada, J. (2017). *"DISEÑO Y CONSTRUCCIÓN DE UN FRENÓMETRO PARA DETERMINAR LA EFICIENCIA DEL FRENADO EN MOTOCICLETAS SEGÚN LA NORMA TÉCNICA ECUATORIANA NTE INEN 2558".* Obtenido de ESPOCH.
- Santoloya J., S. R. (2013). *Design of a Hydraulic Front Brake Handle for Large Displacement Motorcycles.* Obtenido de https://www.sciencedirect.com/science/article/pii/S1877705813014914
- Servicio Ecuatoriano de Normalizacion . (2015). Obtenido de https://www.normalizacion.gob.ec/
- Sunday, A., & Metu, C. (2016). The Study of Motorcycle Hub Materials and Analysis Under Critical Load Environments.
- Tabares, L., Gaviria, J., & Saldarriaga, J. (2013). *RESTAURACION, PLAN DE MANTENIMIENTO Y MEJORA DEL SISTEMA DE FRENOS DE LA MOTOCICLETA AKT 110 SMART*. Medellin.
- Taylor, A. (2020). Qué tan fuerte es tu apretón de manos y qué dice sobre tu estado de salud.
- Universidad Autonoma de Mexico. (s.f.). *Propiedades de los materiales en secciones de concreto reforzad*. Obtenido de http://www.ptolomeo.unam.mx:8080/jspui/bitstream/132.248.52.100/455/4/A4.pdf

Universidad de las Fuerzas Armadas - ESPE. (2023).

Zapata, F. (04 de 07 de 2019). Lifeder. Obtenido de https://www.lifeder.com/esfuerzo-cortante/

Anexos

Encuesta Pregunta N1

¿Dispone usted de un vehículo tipo L3 (motocicleta)?

Donde 24 encuestados, siendo el 96% de la población respondieron afirmativamente a la posesión de un vehículo L3 (motocicleta) y 1 encuestado, siendo el 4% de la población respondieron negativamente a la posesión de un vehículo L3 (motocicleta).

Pregunta N2

¿De qué procedencia es su vehículo L3?

25 respuestas

Donde 18 encuestados, siendo el 72% de la población poseen un vehículo de precedencia asiática.

Donde 1 encuestado, siendo el 4% de la población poseen un vehículo de otra precedencia.

Donde 2 encuestados, siendo el 8% de la población no aplica.

Donde 1 encuestado, siendo el 4% de la población poseen un vehículo de precedencia europea.

Donde 3 encuestados, siendo el 12% de la población poseen un vehículo de precedencia americana.

Pregunta N3

Si su vehículo L3 es de procedencia asiática, ¿cuál es la marca?

25 respuestas

Donde 10 encuestados, siendo el 40% de la población poseen un vehículo de marca Factoy.

Donde 3 encuestados, siendo el 12% de la población poseen un vehículo de marca Axxo.

Donde 1 encuestado, siendo el 4% de la población poseen un vehículo de marca T ride.

Donde 1 encuestado, siendo el 4% de la población poseen un vehículo de marca Mz Bike.

Donde 3 encuestados, siendo el 12% de la población poseen un vehículo de otra marca.

Donde 7 encuestados, siendo el 28% de la población no aplica.

Pregunta N4

Si su vehículo L3 es de marca Factory, ¿con que frecuencia se ha roto la manigueta original de freno?

25 respuestas

Donde 1 encuestado, siendo el 4% de la población ha roto 0 veces la manigueta. Donde 3 encuestados, siendo el 12% de la población ha roto 1 veces la manigueta. Donde 4 encuestados, siendo el 16% de la población ha roto 2 veces la manigueta. Donde 3 encuestados, siendo el 13% de la población ha roto 3 o más veces la manigueta. Donde 14 encuestados, siendo el 56% de la población no plica.

Pregunta N5

Si su vehículo L3 es de marca Factory, ¿en qué sección ha sufrido daños la manigueta de freno?

Donde 0 encuestados, siendo el 0% de la población se ha roto en la sección 1. Donde 1 encuestado, siendo el 4% de la población se ha roto en la sección 2.

Donde 9 encuestados, siendo el 36% de la población se ha roto en la sección 3.

Donde 15 encuestados, siendo el 60% de la población no aplica.

Simulaciones Diseño D0 (diseño original)

Informe de análisis de tensión

Fecha de creación:	13/01/2023, 16:43
Autor del estudio:	Cristian Espinosa
Resumen:	

Información de proyecto (iProperties)

Resumen

Autor Cristian Espinosa

Proyecto

N ^o de pieza	Simulacion 0
Diseñador	Cristian Espinosa
Coste	0,00€
Fecha de creación	20/12/2022

Estado

Propiedades físicas

Masa	0,051575 kg
Área	8409,27 mm^2
Volumen	19101,9 mm^3
Centro de gravedad	x=772,851 mm y=366,126 mm z=6,03489 mm

Nota: los valores físicos pueden ser diferentes de los valores físicos utilizados por CEF indicados a continuación.

Análisis estático:1

Objetivo general y configuración:

Objetivo del diseño	Punto único
Tipo de estudio	Análisis estático
Fecha de la última modificación	20/12/2022, 17:02
Detectar y eliminar modos de cuerpo rígido	No
Separar tensiones en superficies de contacto	No
Análisis de cargas de movimiento	No

Configuración de malla:

Tamaño medio de elemento (fracción del diámetro del modelo)	0,01
Tamaño mínimo de elemento (fracción del tamaño medio)	0,2
Factor de modificación	1,5
Ángulo máximo de giro	60 gr
Crear elementos de malla curva	No
Usar medida basada en pieza para la malla del ensamblaje	Sí

Material(es)

Nombre	Aluminio 6061	
General	Densidad de masa	2,7 g/cm^3
	Límite de elasticidad	275 MPa
	Resistencia máxima a tracción	310 MPa
Tensión	Módulo de Young	68,9 GPa
	Coeficiente de Poisson	0,33 su
	Módulo cortante	25,9023 GPa

Nombre(s) de pieza Diseno 0.ipt

Condiciones de funcionamiento

Fuerza:1

Tipo de carga	Fuerza
Magnitud	4824,000 N
Vector X	-4824,000 N
Vector Y	0,000 N
Vector Z	0,000 N

Cara(s) seleccionada(s)

Tipo de restricción Restricción fija

Cara(s) seleccionada(s)

Resultados

Fuerza y pares de reacción en restricciones

Nombre de la restricción	Fuerza de reacción		Pares de reacción	
	Magnitud	Componente (X, Y, Z)	Magnitud	Componente (X, Y, Z)
Restricción fija:1	4824 N	4824 N	9,20424 N m	0 N m
		0 N		3,37544 N m

	0 N	8,56296 N m

Resumen de resultados

Nombre	Mínimo	Máximo	
Volumen	19101,9 mm^3		
Masa	0,051575 kg		
Tensión de Von Mises	0,00543658 MPa	279,683 MPa	
Primera tensión principal	-63,7629 MPa	140,404 MPa	
Tercera tensión principal	-280,421 MPa	20,7517 MPa	
Desplazamiento	0 mm	0,600446 mm	
Coeficiente de seguridad	0,983257 su	15 su	
Tensión XX	-279,978 MPa	139,117 MPa	
Tensión XY	-65,0812 MPa	52,019 MPa	
Tensión XZ	-24,7199 MPa	26,4503 MPa	
Tensión YY	-66,9504 MPa	63,2151 MPa	
Tensión YZ	-17,6486 MPa	19,253 MPa	
Tensión ZZ	-90,4109 MPa	27,977 MPa	
Desplazamiento X	-0,370681 mm	0,00900598 mm	
Desplazamiento Y	-0,301133 mm	0,472372 mm	
Desplazamiento Z	-0,00800775 mm	0,00401123 mm	
Deformación equivalente	0,0000000703796 su	0,00365839 su	
Primera deformación principal	0,0000000492962 su	0,0020372 su	
Tercera deformación principal	-0,00406284 su	0,00000570395 su	
Deformación XX	-0,00405428 su	0,00201196 su	
Deformación XY	-0,00125629 su	0,00100414 su	

Deformación XZ	-0,000477177 su	0,000510579 su
Deformación YY	-0,00064988 su	0,00133584 su
Deformación YZ	-0,000340677 su	0,000371648 su
Deformación ZZ	-0,000671492 su	0,00133445 su

Figuras

Tensión de Von Mises

Diseño D1

Informe de análisis de tensión

Archivo analizado:	Simulacion 1.iam
Versión de Autodesk Inventor:	2021 (Build 250183000, 183)
Fecha de creación:	13/01/2023, 16:47
Autor del estudio:	Cristian Espinosa
Resumen:	

Información de proyecto (iProperties)

Resumen

Autor Cristian Espinosa

Proyecto

N ^o de pieza	Simulacion 1
Diseñador	Cristian Espinosa
Coste	0,00€
Fecha de creación	20/12/2022

Estado

Estado del diseño Trabajo en curso

Propiedades físicas

Masa	0,0608276 kg
Área	9074,65 mm^2
Volumen	22528,7 mm^3
Centro de gravedad	x=776,955 mm y=361,409 mm z=5,56686 mm

Nota: los valores físicos pueden ser diferentes de los valores físicos utilizados por CEF indicados a continuación.

Análisis estático:1

Objetivo general y configuración:

Objetivo del diseño	Punto único
Tipo de estudio	Análisis estático
Fecha de la última modificación	20/12/2022, 17:02
Detectar y eliminar modos de cuerpo rígido	No
Separar tensiones en superficies de contacto	No
Análisis de cargas de movimiento	No

Configuración de malla:

Tamaño medio de elemento (fracción del diámetro del modelo)	0,01
Tamaño mínimo de elemento (fracción del tamaño medio)	0,2
Factor de modificación	1,5
Ángulo máximo de giro	60 gr
Crear elementos de malla curva	No
Usar medida basada en pieza para la malla del ensamblaje	Sí

Material(es)

Nombre	Aluminio 6061		
General	Densidad de masa	2,7 g/cm^3	
	Límite de elasticidad	275 MPa	
	Resistencia máxima a tracción	310 MPa	
Tensión	Módulo de Young	68,9 GPa	
	Coeficiente de Poisson	0,33 su	
	Módulo cortante	25,9023 GPa	

Nombre(s) de pieza diseno 1.ipt

Condiciones de funcionamiento

Fuerza:1

Tipo de carga	Fuerza
Magnitud	4824,000 N
Vector X	-4824,000 N
Vector Y	0,000 N
Vector Z	0,000 N

Cara(s) seleccionada(s)

Tipo de restricción Restricción fija

Resultados

Fuerza y pares de reacción en restricciones

Nombre de la restricción	Fuerza de reacción		Pares de reacción	
	Magnitud	Componente (X, Y, Z)	Magnitud	Componente (X, Y, Z)
Restricción fija:1	4824 N	4824 N	29,1542 N m	0 N m
		0 N		18,4505 N m

0 N	١	22,5731 N m

Resumen de resultados

Nombre	Mínimo	Máximo	
Volumen	22528,7 mm^3		
Masa	0,0608276 kg		
Tensión de Von Mises	0,0217468 MPa	209,717 MPa	
Primera tensión principal	-79,6058 MPa	105,507 MPa	
Tercera tensión principal	-250,001 MPa	18,6679 MPa	
Desplazamiento	0 mm	0,38412 mm	
Coeficiente de seguridad	1,31129 su	15 su	
Tensión XX	-246,469 MPa	104,556 MPa	
Tensión XY	-71,3033 MPa	44,0337 MPa	
Tensión XZ	-33,7452 MPa	34,8674 MPa	
Tensión YY	-84,1591 MPa	69,7968 MPa	
Tensión YZ	-19,4752 MPa	16,7667 MPa	
Tensión ZZ	-109,107 MPa	26,9833 MPa	
Desplazamiento X	-0,289198 mm	0,00597398 mm	
Desplazamiento Y	-0,284335 mm	0,252771 mm	
Desplazamiento Z	-0,00908773 mm	0,00300476 mm	
Deformación equivalente	0,000000280461 su	0,00274355 su	
Primera deformación principal	0,000000172035 su	0,00153098 su	
Tercera deformación principal	-0,00304763 su	-0,000000207564 su	
Deformación XX	-0,00304139 su	0,00151344 su	
Deformación XY	-0,00137639 su	0,000849998 su	

terret and the second se		
Deformación XZ	-0,000651395 su	0,000673058 su
Deformación YY	-0,000488858 su	0,00106042 su
Deformación YZ	-0,000375937 su	0,000323653 su
Deformación ZZ	-0,000504824 su	0,000998525 su

Figuras

Tensión de Von Mises

Diseño 2

Informe de análisis de tensión

Archivo analizado:	Simulacion 2.iam
Versión de Autodesk Inventor:	2021 (Build 250183000, 183)
Fecha de creación:	13/01/2023, 16:51
Autor del estudio:	Cristian Espinosa
Resumen:	

Información de proyecto (iProperties)

Resumen

Autor Cristian Espinosa

Proyecto

N ^o de pieza	Simulacion 2
Diseñador	Cristian Espinosa
Coste	0,00€
Fecha de creación	20/12/2022

Estado

Estado del diseño Trabajo en curso

Propiedades físicas

Masa	0,0480563 kg
Área	7759,54 mm^2
Volumen	17798,6 mm^3
Centro de gravedad	x=765,65 mm y=363,455 mm z=6,01914 mm

Nota: los valores físicos pueden ser diferentes de los valores físicos utilizados por CEF indicados a continuación.

Análisis estático:1

Objetivo general y configuración:

Objetivo del diseño	Punto único
Tipo de estudio	Análisis estático
Fecha de la última modificación	20/12/2022, 17:09
Detectar y eliminar modos de cuerpo rígido	No
Separar tensiones en superficies de contacto	No
Análisis de cargas de movimiento	No

Configuración de malla:

Tamaño medio de elemento (fracción del diámetro del modelo)	0,01
Tamaño mínimo de elemento (fracción del tamaño medio)	0,2
Factor de modificación	1,5
Ángulo máximo de giro	60 gr
Crear elementos de malla curva	No
Usar medida basada en pieza para la malla del ensamblaje	Sí

Material(es)

Nombre	Aluminio 6061		
General	Densidad de masa	2,7 g/cm^3	
	Límite de elasticidad	275 MPa	
	Resistencia máxima a tracción	310 MPa	
Tensión	Módulo de Young	68,9 GPa	
	Coeficiente de Poisson	0,33 su	
	Módulo cortante	25,9023 GPa	

Nombre(s) de pieza Diseno 2.ipt

Condiciones de funcionamiento

Fuerza:1

Tipo de carga	Fuerza
Magnitud	4824,000 N
Vector X	-4824,000 N
Vector Y	0,000 N
Vector Z	0,000 N

Cara(s) seleccionada(s)

Restricción fija:1 Tipo de restricción Restricción fija

Resultados

Fuerza y pares de reacción en restricciones

Nombre de la	Fuerza de	le reacción Pares de reacción		acción
restricción	Magnitud	Componente (X, Y, Z)	Magnitud	Componente (X, Y, Z)
Restricción fija:1	4824 N	4824 N	43,4508 N ^{0 N m}	0 N m
		0 N	m	18,4497 N m

	0 N	39,3392 N m

Resumen de resultados

Nombre	Mínimo	Máximo
Volumen	17798,6 mm^3	
Masa	0,0480563 kg	
Tensión de Von Mises	0,0093505 MPa	215,067 MPa
Primera tensión principal	-78,3242 MPa	107,184 MPa
Tercera tensión principal	-270,957 MPa	28,903 MPa
Desplazamiento	0 mm	0,945584 mm
Coeficiente de seguridad	1,27867 su	15 su
Tensión XX	-264,866 MPa	106,772 MPa
Tensión XY	-68,1678 MPa	52,8975 MPa
Tensión XZ	-33,9442 MPa	35,8318 MPa
Tensión YY	-83,0155 MPa	94,7999 MPa
Tensión YZ	-19,7868 MPa	19,166 MPa
Tensión ZZ	-114,701 MPa	31,2394 MPa
Desplazamiento X	-0,217983 mm	0,0331258 mm
Desplazamiento Y	-0,921892 mm	0,00829644 mm
Desplazamiento Z	-0,00469589 mm	0,00435278 mm
Deformación equivalente	0,00000012136 su	0,00281497 su
Primera deformación principal	0,0000000597561 su	0,0015522 su
Tercera deformación principal	-0,00313096 su	0,0000359785 su
Deformación XX	-0,00312755 su	0,00154425 su
Deformación XY	-0,00131587 su	0,0010211 su

Deformación XZ	-0,000655236 su	0,000691673 su
Deformación YY	-0,000507702 su	0,00120557 su
Deformación YZ	-0,000381951 su	0,000369968 su
Deformación ZZ	-0,000508604 su	0,00101279 su

Figuras

Tensión de Von Mises

Diseño 3

Informe de análisis de tensión

Archivo analizado:	Simulacion 3.iam
Versión de Autodesk Inventor:	2021 (Build 250183000, 183)
Fecha de creación:	13/01/2023, 16:53
Autor del estudio:	Cristian Espinosa
Resumen:	

Información de proyecto (iProperties)

Resumen

Autor Cristian Espinosa

Proyecto

N ^o de pieza	Simulacion 3
Diseñador	Cristian Espinosa
Coste	0,00€
Fecha de creación	20/12/2022

Estado

Estado del diseño Trabajo en curso

Propiedades físicas

Masa	0,0498369 kg
Área	8236,97 mm^2
Volumen	18458,1 mm^3
Centro de gravedad	x=778,728 mm y=369,493 mm z=6,02739 mm

Nota: los valores físicos pueden ser diferentes de los valores físicos utilizados por CEF indicados a continuación.

Análisis estático:1

Objetivo general y configuración:

Objetivo del diseño	Punto único
Tipo de estudio	Análisis estático
Fecha de la última modificación	13/01/2023, 16:52
Detectar y eliminar modos de cuerpo rígido	No
Separar tensiones en superficies de contacto	No
Análisis de cargas de movimiento	No

Configuración de malla:

Tamaño medio de elemento (fracción del diámetro del modelo)	0,01
Tamaño mínimo de elemento (fracción del tamaño medio)	0,2
Factor de modificación	1,5
Ángulo máximo de giro	60 gr
Crear elementos de malla curva	No
Usar medida basada en pieza para la malla del ensamblaje	Sí

Material(es)

Nombre	Aluminio 6061		
	Densidad de masa	2,7 g/cm^3	
General	Límite de elasticidad	275 MPa	
	Resistencia máxima a tracción	310 MPa	
	Módulo de Young	68,9 GPa	
Tensión	Coeficiente de Poisson	0,33 su	
	Módulo cortante	25,9023 GPa	

Nombre(s) de pieza Diseno 3.ipt

Condiciones de funcionamiento

Fuerza:1

Tipo de carga	Fuerza
Magnitud	4824,000 N
Vector X	-4824,000 N
Vector Y	0,000 N
Vector Z	0,000 N

Cara(s) seleccionada(s)

Restricción fija:1 Tipo de restricción Restricción fija

Resultados

Fuerza y pares de reacción en restricciones

Nombre de la restricción	Fuerza de reacción		Pares de reacción	
	Magnitud	Componente (X, Y, Z)	Magnitud	Componente (X, Y, Z)
Restricción fija:1 4824 N	4824 N	4824 N	19,4959 N m	0 N m
		0 N		18,4501 N m

	0 N	-6,29953 N m

Resumen de resultados

Nombre	Mínimo	Máximo
Volumen	18458,1 mm^3	
Masa	0,0498369 kg	
Tensión de Von Mises	0,0305398 MPa	189,501 MPa
Primera tensión principal	-96,2428 MPa	123,07 MPa
Tercera tensión principal	-263,351 MPa	51,7369 MPa
Desplazamiento	0 mm	0,403691 mm
Coeficiente de seguridad	1,45118 su	15 su
Tensión XX	-251,174 MPa	53,951 MPa
Tensión XY	-86,6286 MPa	42,2399 MPa
Tensión XZ	-28,6984 MPa	43,1572 MPa
Tensión YY	-101,249 MPa	120,856 MPa
Tensión YZ	-17,2725 MPa	18,0715 MPa
Tensión ZZ	-116,083 MPa	57,6863 MPa
Desplazamiento X	-0,15234 mm	0,00207592 mm
Desplazamiento Y	-0,00771952 mm	0,373742 mm
Desplazamiento Z	-0,00946324 mm	0,00602828 mm
Deformación equivalente	0,000000415049 su	0,00249994 su
Primera deformación principal	0,000000206511 su	0,00126213 su
Tercera deformación principal	-0,00284278 su	-0,000000380022 su
Deformación XX	-0,0028237 su	0,000654584 su
Deformación XY	-0,00167222 su	0,00081537 su

Deformación XZ	-0,000553974 su	0,000833079 su
Deformación YY	-0,000825047 su	0,00121939 su
Deformación YZ	-0,000333418 su	0,00034884 su
Deformación ZZ	-0,000268323 su	0,000844735 su

Figuras

Tensión de Von Mises

Diseño 4

Informe de análisis de tensión

Archivo analizado:	Simulacion 4.iam
Versión de Autodesk Inventor:	2021 (Build 250183000, 183)
Fecha de creación:	13/01/2023, 16:54
Autor del estudio:	Cristian Espinosa
Resumen:	

Información de proyecto (iProperties)

Resumen

Autor Cristian Espinosa

Proyecto

N ^o de pieza	Simulacion 4
Diseñador	Cristian Espinosa
Coste	0,00€
Fecha de creación	20/12/2022

Estado

Estado del diseño Trabajo en curso

Propiedades físicas

Masa	0,0584962 kg
Área	8900,47 mm^2
Volumen	21665,3 mm^3
Centro de gravedad	x=782,754 mm y=370,56 mm z=5,55881 mm

Nota: los valores físicos pueden ser diferentes de los valores físicos utilizados por CEF indicados a continuación.

Análisis estático:1

Objetivo general y configuración:

Objetivo del diseño	Punto único
Tipo de estudio	Análisis estático
Fecha de la última modificación	20/12/2022, 17:26
Detectar y eliminar modos de cuerpo rígido	No
Separar tensiones en superficies de contacto	No
Análisis de cargas de movimiento	No

Configuración de malla:

Tamaño medio de elemento (fracción del diámetro del modelo)	0,01
Tamaño mínimo de elemento (fracción del tamaño medio)	0,2
Factor de modificación	1,5
Ángulo máximo de giro	60 gr
Crear elementos de malla curva	No
Usar medida basada en pieza para la malla del ensamblaje	Sí

Material(es)

Nombre	Aluminio 6061	
General	Densidad de masa	2,7 g/cm^3
	Límite de elasticidad	275 MPa
	Resistencia máxima a tracción	310 MPa
	Módulo de Young	68,9 GPa
Tensión	Coeficiente de Poisson	0,33 su
	Módulo cortante	25,9023 GPa

Nombre(s) de pieza Diseno 4.ipt

Condiciones de funcionamiento

Fuerza:1

Tipo de carga	Fuerza
Magnitud	4824,000 N
Vector X	-4824,000 N
Vector Y	0,000 N
Vector Z	0,000 N

Cara(s) seleccionada(s)

Tipo de restricción Restricción fija
Cara(s) seleccionada(s)

Resultados

Fuerza y pares de reacción en restricciones

Nombre de la restricción	Fuerza de	reacción	Pares de reacción			
	Magnitud	Componente (X, Y, Z)	Magnitud	Componente (X, Y, Z)		
Restricción fija:1	4824 N	4824 N	19,4971 N	0 N m		
		0 N	m	18,4508 N m		

	0 N	-6,30116 N m

Resumen de resultados

Nombre	Mínimo	Máximo		
Volumen	21665,3 mm^3			
Masa	0,0584962 kg			
Tensión de Von Mises	0,0352797 MPa	184,103 MPa		
Primera tensión principal	-91,0863 MPa	121,368 MPa		
Tercera tensión principal	-250,348 MPa	52,2092 MPa		
Desplazamiento	0 mm	0,336262 mm		
Coeficiente de seguridad	1,49373 su	15 su		
Tensión XX	-244,986 MPa	54,8178 MPa		
Tensión XY	-90,6602 MPa	42,2861 MPa		
Tensión XZ	-31,5814 MPa	43,7594 MPa		
Tensión YY	-99,8505 MPa	118,759 MPa		
Tensión YZ	-21,8697 MPa	18,1526 MPa		
Tensión ZZ	-112,027 MPa	57,2803 MPa		
Desplazamiento X	-0,124075 mm	0,00208711 mm		
Desplazamiento Y	-0,00765324 mm	0,312361 mm		
Desplazamiento Z	-0,0110089 mm	0,00597404 mm		
Deformación equivalente	0,000000454662 su	0,00244097 su		
Primera deformación principal	0,000000318156 su	0,0012371 su		
Tercera deformación principal	-0,00276687 su	-0,000000449915 su		
Deformación XX	-0,0027644 su	0,000654647 su		
Deformación XY	-0,00175004 su	0,000816263 su		

terret and the second se		
Deformación XZ	-0,000609627 su	0,000844703 su
Deformación YY	-0,000808986 su	0,00118674 su
Deformación YZ	-0,000422159 su	0,000350405 su
Deformación ZZ	-0,000269324 su	0,000759057 su

Figuras

Tensión de Von Mises

Ensayos Ensayo de Compresión

Ensayo por Péndulo Charpy

ACP MATRIALS S.L.

FICHA TÉCNICA

Aluminio AW1050

	Composición química														
ELEMENTOR	-	-				•	21	۰		n	•			-	21
Real Property lies	4,01	-	-	-		-	-			-0,05		- 1		4	1
Propiedades técnicas															
NORMA E.N. AW1050															
Norma U.N.E. L-3051 / 38.114															
Densidad						gion3					2	70			
Estado del tra	tamler	da							0		н	-14		H-18	
PROPIEDAD	ES GE	NERA	LES												
Carga de rotu	ra					Nimmi	2		5-95		100	-140		150	
Limite elástico	•					Nmm	2		20			05		140	
Módulo elástic	80					Nmm	2	6	9000		69	000		69000	
Alargamiento	a 5,65	%							42		24	10		6	
Dureza						Brinel			21			15		43	
PROPIEDAD	es ris	ICAS													
Punto de fusió	bn				°C		645-660			645-660			645-68	0	
Conductividad	d térmé	-			W(K'm)		229			229			229		
Coefic diata	tión ter	minal	Ineal		m(m'K)		23,5			23,5		23,5			
Conductividad	d eléctr	ica.				SIACE	5	59,5		59,5			59,5		
CAPACIDAD	TECN	orqe	ICA												
Ambiente ind.	Initial								8			8		в	
Ambiente Plur	al 👘								MB			185		MB	
Ambiente mar	rino							8			8		в		
En agus de m	w							в				в		8	
MECANIZAC	IÓN														
Fragmentació	n virst	8							м		0	м		я	
Brillo superfic	ini .								п			п		MB	
SOLDADURA	۱.														
A la llama									MB			18		MB	
Al arco bajo gas argón					MB				185		MB				
Por resistencia eléctrica					MB			MB			MB				
Braseado MB MB MB															
ANODIZADO	1														
De protección									MB			18		MB	
Decorativo									в			в		в	
Duro									MB			18		MB	

Caracteristicas principales

Resistencia mecánica baja. Alta resistencia a la corrosión. Conductividad térmica y eléctrica elevadas. Fácil conformación, buena soldabilidad.

Uso habitual

Industria química, farmacéutica y de alimentación; utensilios y aparatos domésticos, recipientes; electrotécnica; señales, escalas graduadas; embalajes (tubos, cajas, cápsulas); láminas delgadas; techos.

Leyenda:

- MB Muy Bueno

- B Bueno
 C Correcto
 R Regular
 M Malo
 (1) Valores tipicos

CODIFICACION INTERNACIONAL DE LAS ALEACIONES DE ALUMINIO

1xxx Aluminics cuys riqueza es > 99% 2xxx Aleaciones al cobre. 3xxx Aleaciones al manganeso. 4xxx Aleaciones al silicio. Saxa Aleaciones al magnesio. 6xxx Aleaciones al magnesio-silicio. 7xxx Aleaciones al zinc. **Baxa** Otras aleaciones.

La primera citra indica el componente principal de adición y el grupo al que pertenece la aleación.

Nota: Aunque nos hernos esforzado por asegurar la exactitud de los datos provistos, ACP Materials S.L., no garantiza niacepta ninguna responsabilidad por laexactitud de los miamos.

Tel.: +34 96 140 05 56

Pax: +34 95 141 70 65 Mail: info@acpmaterials.es

ACP MATERIALS S.L. Pol. Ind. del Mediterraneo C/Jaime I, Naves 10-11-14 40500 MASSALFASAR - VALENCIA - ESPAÑA

Prototipos

Diseño Manigueta D0 - Autor

• Diseño 1, en este diseño se aumentó el ancho, se aumentó 3mm de ancho del diseño original, de 9mm (original) paso a 12mm.

Tabla 9

Especificaciones Rediseño D1 - Autor

Largo(mm)	Ancho(mm)	Angulo	Desplazamiento(mm)	Factor de seguridad	Masa(kg)	Volumen(mm ³)
170	12	6,33	0,38	1,31129	0,0608276	22528,7

Rediseño Manigueta D1 - Autor

• Diseño 2, este diseño conserva el ancho original de 9mm, solo que se redujo en 20 mm el largo total de la pieza.

Tabla 10

Especificaciones Rediseño D2 - Autor

Largo(mm)	Ancho(mm)	Angulo	Desplazamiento(mm)	Factor de seguridad	Masa(kg)	Volumen(mm^3)
150	9	6,33	0,95	1,27867	0,0480563	17798,6

Figura 10

Rediseño Manigueta D2 - Autor

• Diseño 3, este diseño conserva el largo y anchos originales, pero en su geometría cuenta con una reducción en el ángulo de pivote, de 6.33 grados (original) se lo redujo a 2.89 grados.

Tabla 11

Especificaciones Rediseño D3 - Autor

Largo(mm)	Ancho(mm)	Angulo	Desplazamiento(mm)	Factor de seguridad	Masa(kg)	Volumen(mm^3)
170	9	2,89	0,4	1,45118	0,0498369	18458,1

Figura 11 Rediseño Maniqueta D3

Rediseño Manigueta D3 - Autor

• Diseño 4, este diseño conserva el largo original, pero se aumentó 3mm el ancho, de 9mm (original) paso a 12 además cuenta con una reducción en el ángulo de pivote, de 6.33 grados (original) se lo redujo a 2.89 grados.

Tabla 12

Especificaciones Rediseño D4 - Autor

Largo(mm)	Ancho(mm)	Angulo	Desplazamiento(mm)	Factor de seguridad	Masa(kg)	Volumen(mm ³)
170	12	2,89	0,33	1,49373	0,0584962	21665,3

Figura 12 Rediseño Manigueta D4 - Autor

Simulación de Frenado Manual

Se somete a una simulación de frenado manual, esto con el fin de conocer la reacción del diseño original en comparativa a al diseño electo al momento de que el conductor ejerce fuerza a la manigueta para frenar el vehículo L3, estas simulaciones arrojaron los siguientes resultados:

Diseño 0 (Original)

Tabla 13

Largo(mm)	Ancho(mm)	Angulo	Desplazamiento(mm)	Factor de seguridad	Masa(kg)	Volumen(mm^3)
170	9	6,33	0,5083	3.89	0,051575	19101,9

Especificaciones Diseño D0 - Autor

Figura 13

Diseño Manigueta D0 - Autor

Diseño 4

Tabla 14

Especificaciones Diseño D4 - Autor

Largo(mm)	Ancho(mm)	Angulo	Desplazamiento(mm)	Factor de seguridad	Masa(kg)	Volumen(mm^3)
170	12	2,89	0,5102	3.94	0,0584962	21665,3

Figura 14

Diseño Manigueta D4 - Autor

Deformación YZ

Deformación ZZ

