UIDE

Powered by
Arizona State University

ING. MECATRÓNICA

Thesis prior to obtaining the degree of Mechatronics Engineer.

AUTHOR: Martín Felipe
Tobar Flores

TUTOR: Ing. Gabriela
 Andaluz, MSc.

ANEXOS

Design and Implementation of an
Electroencephalograph Prototype for the Acquisition and Visualization of Brain Signals which by Means of Neural Networks allows the Detection of an Anomaly.

List of Appendices

A Informatics Diagrams

B Electronic Diagrams

C Mechanical Diagrams

D User Manual

E Datasheets

Appendix A
Informatics Diagrams

NOTES: ALL FILTERS $=10 ;$ ALL KERNELS SIZE $=5$.

UIDE		MECHATRONICS ENGINEERING	DWN.	TOBAR M.	12/29/22	
			DES.	tobar m.	11/01/22	
			RWD.	ANDALUZ G.	01/05/23	
CONVOLUTIONAL NEURAL NETWORK				D01-002		N/A
						N/A

Appendix B

Electronic Diagrams

POWER SUPPLY	
VCC	5 VDC
GND	0 VDC

UIDE		MECHATRONICS ENGINEERING	DWN.	TOBAR M.	12/29/22	
			DES.	TOBAR M.	11/01/22	
			RWD.	ANDALUZ G.	01/05/23	
EEG SYSTEM THAT CAPTURES BRAIN WAVES, DISPLAYS THEM AND DETECTS EPILEPSY ELECTRONIC PLAN				D02-001		N/A
						N/A

Appendix C
Mechanical Diagrams

\[

\]

10	7D	AUXILIARY LATERAL BOX	1	MDF WOOD	N/A		100x	x10 mm
9	6B	CIRCUIT BOX LID	1	PLA		3-007		
8	2 C	CABLES HOOK	1	PLA	N/A			
7	2 C	BATTERY LID	1	PLA		3-006		
6	3 E	LOWER TABLE	1	MDF WOOD		3-005		
5	4D	CHAIR Wheels	1	VARIOUS	N/A			
4	4D	AUXILIARY FRONTAL BOX	1	MDF WOOD	N/A		100x40	x 10 mm
3	4 C	STEEL STRUCTURE	1	STEEL	D03	3-004		
2	3B	CIRCUIT CASE	1	PLA	D03	3-003		
1	2 B	UPPER TABLE	1	MDF WOOD	D03-002			
OS ZONE		DENOMINATION	QTY	MATERIAL	DRAWING		OBSERVATIONS	
UIDE		MECHATRONICS ENGINEERING			OWNN DES. REV.			
EEG SYSTEM THAT CAPTURES BRAIN WAVES, DISPLAYS THEM AND DETECTS EPILEPSY					D03-001			
					$\begin{gathered} \text { SCALE: } \\ 1: 5 \end{gathered}$			
					¢ \dagger			

Notes：
－Thickness is 25 mm
－All perforations are full perforations．

TREATMENT：	NO TREATMENT		UIDE	MECHATRONICS ENGINEERING			
COATING：	NO COATING						
MATERIAL： MELAMINIC MDF		$\begin{gathered} \text { TOL. GRAL: } \\ +-1 \end{gathered}$	$\begin{gathered} \text { SCALE: } \\ 1: 5 \end{gathered}$	DW：	TOBAR M．	13／10／22	
		DES：		TOBAR M．	10／10／22		
		REV：		TIRIRA A．	15／10／22		
UPPER TABLE			D03－002				

- Electrode used: E6010
- Structure made of $20 \times 20 \mathrm{~mm}$ steel square pipes with wall 1.2 mm thickness.
- G: Grinded after weld.

TREATMENT:	NO TREATMENT	UIDE	MECHATRONICS ENGINEERING			
COATING:	NO COATING					
MATERIAL:	TOL. GRAL: +-1	$\begin{gathered} \text { SCALE: } \\ 1: 5 \end{gathered}$	DW:	TOBAR M.	13/10/22	
			DES:	TOBAR M.	10/10/22	
			REV:	TIRIRA A.	15/10/22	
STEEL STRUCTURE		$003-004$				

Notes:

- Thickness: 25 mm
- All perforations are full perforations

TREATMENT:	NO TREATMENT		UIDE	MECHATRONICS ENGINEERING			
COATING:	NO COATING						
MATERIAL:		TOL. GRAL: +-1	$\begin{gathered} \text { SCALE: } \\ 1: 5 \end{gathered}$	DW:	TOBAR M.	13/10/22	
	MELAMINIC MDF			DES:	TOBAR M.	10/10/22	
				REV:	TIRIRA A.	15/10/22	
LOWER TABLE			D03-005				

NOTES:

-Thickness: 2 mm
-All perforations are full perforations.

NOTES:
-Thickness: 2 mm
-All perforations are full perforations.

TREATMENT: COATING:		NO TREATMENT	UIDE	MECHATRONICS ENGINEERING			
		NO COATING					
MATERIAL:	PLA	TOL. GRAL: +-1	SCALE: 1: 2,5	DW:	TOBAR M.	13/10/22	
				DES:	TOBAR M.	10/10/22	
				REV:	TIRIRA A.	15/10/22	
CIRCUIT CASE LID			D03-007				

Appendix D
User Manual

Electroencephalograph Prototype for the Acquisition and Visualization of Brain Signals, Which by Means of Neural Networks Allows the Detection of Epilepsy User Manual

Martín Tobar

January 28, 2023

Contents

1 Introduction 1
2 Safety considerations: 1
3 Technical specifications 2
4 Requirements 3
5 Using the EEG prototype 3
6 Troubleshooting 5
7 Maintenance 5

1 Introduction

Welcome to the user manual for the electroencephalograph (EEG) prototype I have developed. The EEG is a non-invasive medical device that measures the electrical activity of the brain using sensors called electrodes attached to the scalp. The recorded signal is processed and analyzed by a medical specialist, usually a neurologist, to detect any abnormalities or disorders in the brain. This prototype is designed to perform the acquisition, processing, and visualization of brain signals, and to use a neural network algorithm to detect epilepsy based on the patterns obtained. This manual will provide an overview of the features and functions of the EEG prototype, as well as step-by-step instructions on how to use it. I hope that this manual will help you to get the most out of this innovative and useful tool.

2 Safety considerations:

- Do not place the EEG prototype near sources of heat or moisture, or expose it to direct sunlight.
- Do not attempt to disassemble or modify the EEG prototype.
- Do not touch any exposed electrical components of the EEG prototype.
- Follow all instructions and warnings provided in the manual when using the EEG prototype.
- If the EEG prototype is not functioning properly, stop the use immediately and contact the manufacturer for assistance.
- Wear protective equipment, such as gloves and goggles, when handling the EEG prototype or its components.
- Keep the EEG prototype out of the reach of children and pets.
- Do not use the EEG prototype if you are pregnant or have any medical conditions that may be affected by exposure to electrical signals.
- If you experience any discomfort or adverse effects while using the EEG prototype, stop the use immediately and consult a medical professional.
- The EEG prototype must be handled and used only by personal that is capable, such as technicians or neurologists.

3 Technical specifications

The important specifications of the project can be seen in Table 1.

Table 1: General specifications of the prototype

TYPE	NON-INVASIVE
VCC	5 VDC
AMPLIFIER SOURCE	$\pm 4.5 \mathrm{VDC}$
GND	0 VDC
HEIGHT	625 mm
WIDTH	600 mm
DEPTH	350 mm
APPROXIMATE WEIGHT	10 kg
AMOUNT OF CHANNELS	10
SAMPLING RATE	250 Hz
SENSOR	ELECTRODE
DATA STORAGE	EDF FORMAT
GAIN	50.4
BRAIN WAVE FREQUENCY RANGE	1 Hz to 45 Hz
ADC RESOLUTION	10 bits
COMMUNICATION SPEED	115200 BAUDS

4 Requirements

- A computer with a USB port.
- A compatible operating system, such as Windows 10, Windows 11, macOS, or Linux.
- Enough storage space to save recorded EEG data and software files. It is estimated that it is needed 1 MB per 3 minutes recording. Therefore, 1 GB will be enough for 51.2 hours of recording.
- A PDF viewer (optional, for viewing exported PDF files).
- 9VDC batteries to replace when the one in use is discharged.

5 Using the EEG prototype

To use the EEG, first check that there is a battery placed and that it is charged. Without the battery the amplifiers will not work and the waves will not be captured. After this, connect the USB cable to a computer. Once it is connected there are two buttons on the EEG. The one on the left will turn on the amplifiers while the one on the right will turn on the remaining elements. There are two buttons because the amplifiers are fed with 9VDC so they can receive $\pm 4.5 \mathrm{DC}$ while the rest of the circuit receives 5 VDC . If the green LED turns on, it means that the amplifiers are on. If the orange LED turns on, it means that the 5 V are going through the remaining circuit. To know if everything is working correctly, one must wait for the blue LED to turn on and then blink. Once it has blinked and stays on, it means that the whole system is ready to work.

The software developed is easy to use and is user-friendly. The application is composed of a main screen which can be seen in Fig. 1 which allows the user to choose between making a new recording, show a past recording or to make the epileptic analysis on a recording. If the user chooses the "MAKE EEG" option, the

Figure 1: Main screen that appears when the software is opened up.
Maker screen will appear and can be seen in Fig. 2 and that allows the user to enter the patient's name, the doctor's name and to select the duration in seconds in intervals of 30 seconds. Once all the data is entered, the user must press start and the system will activate, the text will change to let the user the EEG is in progress and a counter will begin as can be seen in Fig. 3. Also there is a pop-up notification to tell the user the recording is finished.

If the user selects the "PLOT EEG" option, a file dialog will pop-up and let the user choose between EDF files. Once a file is chosen, a window will pop-up and allow the user to choose between plotting the whole recording along with its frequency spectrum, or just an specific brain frequency as alpha, beta, etc. Also there is the option to export the EDF file in PDF format. All these features can be seen in Fig. 4. Finally, if the user selects the "Epilepsy Detection" option, a file dialog will pop-up and let the user choose an EDF file

Figure 2: EEG recorder screen when opened up.

Figure 3: Make screen that appears when the EEG recording is finished.

Figure 4: Screen that allows the user tho choose between different plotting options.
in which the CNN binary classification algorithm will run. Once the EDF file is chosen and the classification is finished, a notification will pop-up and let the user know if this file contains epilepsy patterns or not. These notification can be seen in Fig. 5 Also, there are some options that are available in the interactive plotting. This options can be seen in Fig. 6.

It is important to highlight that electrodes 1,2 and 3 are used for the neural network. Therefore, they must be "FP2", "C4" and "Cz" respectively. Only these channels are used as input for the neural network, therefore

Figure 5: Notifications shown depending if epilepsy was detected or not.

Figure 6: Options available in the software interactive plotter.
the information in the other 7 channels is not important in this aspect, but could be important depending on the user needs. There are many montage standards, but the one suggested is the 10-20 standard.

6 Troubleshooting

As the software program has not being tested openly by public there has not been a huge feedback nor bugs report, therefore there might exist some bugs that might make the program fail but this can be fixed with time when people report the bugs and the author creates a patch/update. So far, it is recommended that if there is any error, first turn off both switches and then disconnect the USB cable from the computer. Once this is done, connect the USB cable back and turn both switches on, this fix will reset the whole system completely which will likely fix any bugs.

7 Maintenance

The only maintenance needed is to change the battery periodically when it is discharged. It is advised that once it is seen that the typical measurements of the EEG is around the range of 0.06 V , check the battery voltage as this means that the battery is discharged. To change the battery, simply remove the small lid from the case with a screwdriver, replace the battery and then put the lid back.

Appendix E
Datasheets

FEATURES

Easy to use

Gain set with one external resistor

(Gain range 1 to $\mathbf{1 0 , 0 0 0)}$
Wide power supply range ($\mathbf{~} \mathbf{2 . 3} \mathbf{~ V}$ to $\pm 18 \mathrm{~V}$)
Higher performance than 3 op amp IA designs
Available in 8-lead DIP and SOIC packaging
Low power, 1.3 mA max supply current
Excellent dc performance (B grade)
$50 \mu \mathrm{~V}$ max, input offset voltage
$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, input offset drift
1.0 nA max, input bias current

100 dB min common-mode rejection ratio ($\mathbf{G}=10$)

Low noise

$9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ @ 1 kHz , input voltage noise
$0.28 \mu \mathrm{~V}$ p-p noise (0.1 Hz to 10 Hz)

Excellent ac specifications

120 kHz bandwidth ($\mathbf{G}=100$)
$15 \mu \mathrm{~s}$ settling time to 0.01%

APPLICATIONS

Weigh scales

ECG and medical instrumentation
Transducer interface
Data acquisition systems
Industrial process controls
Battery-powered and portable equipment

Table 1. Next Generation Upgrades for AD620

Part	Comment
AD8221	Better specs at lower price
AD8222	Dual channel or differential out
AD8226	Low power, wide input range
AD8220	JFET input
AD8228	Best gain accuracy
AD8295	+2 precision op amps or differential out
AD8429	Ultra low noise

Rev. H
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CONNECTION DIAGRAM

Figure 1. 8-Lead PDIP (N), CERDIP (Q), and SOIC (R) Packages

PRODUCT DESCRIPTION

The AD620 is a low cost, high accuracy instrumentation amplifier that requires only one external resistor to set gains of 1 to 10,000 . Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller than discrete designs and offers lower power (only 1.3 mA max supply current), making it a good fit for battery-powered, portable (or remote) applications.

The AD620, with its high accuracy of 40 ppm maximum nonlinearity, low offset voltage of $50 \mu \mathrm{~V}$ max, and offset drift of $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, is ideal for use in precision data acquisition systems, such as weigh scales and transducer interfaces.
Furthermore, the low noise, low input bias current, and low power of the AD620 make it well suited for medical applications, such as ECG and noninvasive blood pressure monitors.

The low input bias current of 1.0 nA max is made possible with the use of SuperBeta processing in the input stage. The AD620 works well as a preamplifier due to its low input voltage noise of $9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at $1 \mathrm{kHz}, 0.28 \mu \mathrm{~V}$ p-p in the 0.1 Hz to 10 Hz band, and $0.1 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ input current noise. Also, the AD620 is well suited for multiplexed applications with its settling time of $15 \mu \mathrm{~s}$ to 0.01%, and its cost is low enough to enable designs with one in-amp per channel.

Figure 2. Three Op Amp IA Designs vs. AD620

TABLE OF CONTENTS

Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Typical Performance Characteristics 6
Theory of Operation 12
Gain Selection 15
Input and Output Offset Voltage 15
Reference Terminal 15
Input Protection 15
REVISION HISTORY
7/11—Rev. G to Rev. H
Deleted Figure 3 1
Added Table 1 1
Moved Figure 2 1
Added ESD Input Diodes to Simplified Schematic 12
Changes to Input Protection Section 15
Added Figure 41; Renumbered Sequentially 15
Changes to AD620ACHIPS Information Section 18
Updated Ordering Guide 20
12/04—Rev. F to Rev. G
Updated Format Universal
Change to Features 1
Change to Product Description 1
Changes to Specifications 3
Added Metallization Photograph 4
Replaced Figure 4-Figure 6 6
Replaced Figure 15 7
Replaced Figure 33 10
Replaced Figure 34 and Figure 35 10
Replaced Figure 37 10
Changes to Table 3 13
Changes to Figure 41 and Figure 42 14
Changes to Figure 43 15
Change to Figure 44 17
RF Interference 15
Common-Mode Rejection 16
Grounding 16
Ground Returns for Input Bias Currents 17
AD620ACHIPS Information 18
Outline Dimensions 19
Ordering Guide 20
Changes to Input Protection section 15
Deleted Figure 9 15
Changes to RF Interference section 15
Edit to Ground Returns for Input Bias Currents section 17
Added AD620CHIPS to Ordering Guide 19
7/03-Data Sheet Changed from Rev. E to Rev. F
Edit to FEATURES 1
Changes to SPECIFICATIONS 2
Removed AD620CHIPS from ORDERING GUIDE 4
Removed METALLIZATION PHOTOGRAPH 4
Replaced TPCs 1-3 5
Replaced TPC 126
Replaced TPC 30 9
Replaced TPCs 31 and 32 10
Replaced Figure 4 10
Changes to Table I 11
Changes to Figures 6 and 7 12
Changes to Figure 8 13
Edited INPUT PROTECTION section 13
Added new Figure 9 13
Changes to RF INTERFACE section 14
Edit to GROUND RETURNS FOR INPUT BIAS CURRENTS section 15
Updated OUTLINE DIMENSIONS 16

SPECIFICATIONS

Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.
Table 2.

AD620

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation ${ }^{\prime}$	650 mW
Input Voltage (Common-Mode)	$\pm \mathrm{V}_{\mathrm{s}}$
Differential Input Voltage	25 V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range (Q)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range (N, R)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
\quad AD620 (A, B)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad AD620 (S)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range	$300^{\circ} \mathrm{C}$
\quad (Soldering 10 seconds)	

${ }^{1}$ Specification is for device in free air:
8-Lead Plastic Package: $\theta_{\mathrm{JA}}=95^{\circ} \mathrm{C}$
8 -Lead CERDIP Package: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C}$
8 -Lead SOIC Package: $\theta_{\mathrm{JA}}=155^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

(@ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.)

Figure 3. Typical Distribution of Input Offset Voltage

Figure 4. Typical Distribution of Input Bias Current

Figure 5. Typical Distribution of Input Offset Current

Figure 6. Input Bias Current vs. Temperature

Figure 7. Change in Input Offset Voltage vs. Warm-Up Time

Figure 8. Voltage Noise Spectral Density vs. Frequency ($G=1-1000$)

Figure 9. Current Noise Spectral Density vs. Frequency

Figure 10. 0.1 Hz to 10 Hz RTI Voltage Noise ($G=1$)

Figure 11.0.1 Hz to 10 Hz RTI Voltage Noise ($G=1000$)

Figure 12. 0.1 Hz to 10 Hz Current Noise, $5 \mathrm{pA} / \mathrm{Div}$

Figure 13. Total Drift vs. Source Resistance

Figure 14. Typical CMR vs. Frequency, RTI, Zero to $1 \mathrm{k} \Omega$ Source Imbalance

Figure 15. Positive PSR vs. Frequency, $R T I(G=1-1000)$

Figure 16. Negative PSR vs. Frequency, $R T I(G=1-1000)$

Figure 17. Gain vs. Frequency

Figure 18. Large Signal Frequency Response

Figure 19. Input Voltage Range vs. Supply Voltage, $G=1$

Figure 20. Output Voltage Swing vs. Supply Voltage, $G=10$

Figure 21. Output Voltage Swing vs. Load Resistance

Figure 22. Large Signal Pulse Response and Settling Time $G=1(0.5 \mathrm{mV}=0.01 \%)$

Figure 23. Small Signal Response, $G=1, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 24. Large Signal Response and Settling Time, $G=10(0.5 \mathrm{mV}=0.01 \%)$

Figure 25. Small Signal Response, $G=10, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 26. Large Signal Response and Settling Time, $G=100(0.5 \mathrm{mV}=0.01 \%)$

Figure 27. Small Signal Pulse Response, $G=100, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 28. Large Signal Response and Settling Time, $G=1000(0.5 \mathrm{mV}=0.01 \%)$

Figure 29. Small Signal Pulse Response, $G=1000, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 30. Settling Time vs. Step Size ($G=1$)

Figure 31. Settling Time to 0.01% vs. Gain, for a 10 V Step

Figure 32. Gain Nonlinearity, $G=1, R_{L}=10 \mathrm{k} \Omega(10 \mu \mathrm{~V}=1 \mathrm{ppm})$

Microchip

PIC18F2455/2550/4455/4550 Data Sheet

28/40/44-Pin, High-Performance, Enhanced Flash, USB Microcontrollers with nanoWatt Technology

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

 ISO/TS 16949:2002
Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeELoQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and Zena are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

[^1]
28/40/44-Pin, High-Performance, Enhanced Flash, USB Microcontrollers with nanoWatt Technology

Universal Serial Bus Features:

- USB V2.0 Compliant
- Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- Supports up to 32 Endpoints (16 bidirectional)
- 1-Kbyte Dual Access RAM for USB
- On-Chip USB Transceiver with On-Chip Voltage Regulator
- Interface for Off-Chip USB Transceiver
- Streaming Parallel Port (SPP) for USB streaming transfers (40/44-pin devices only)

Power-Managed Modes:

- Run: CPU on, peripherals on
- Idle: CPU off, peripherals on
- Sleep: CPU off, peripherals off
- Idle mode currents down to $5.8 \mu \mathrm{~A}$ typical
- Sleep mode currents down to $0.1 \mu \mathrm{~A}$ typical
- Timer1 Oscillator: $1.1 \mu \mathrm{~A}$ typical, $32 \mathrm{kHz}, 2 \mathrm{~V}$
- Watchdog Timer: $2.1 \mu \mathrm{~A}$ typical
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Four Crystal modes, including High Precision PLL for USB
- Two External Clock modes, up to 48 MHz
- Internal Oscillator Block:
- 8 user-selectable frequencies, from 31 kHz to 8 MHz
- User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Dual Oscillator options allow microcontroller and USB module to run at different clock speeds
- Fail-Safe Clock Monitor:
- Allows for safe shutdown if any clock stops

Peripheral Highlights:

- High-Current Sink/Source: $25 \mathrm{~mA} / 25 \mathrm{~mA}$
- Three External Interrupts
- Four Timer modules (Timer0 to Timer3)
- Up to 2 Capture/Compare/PWM (CCP) modules:
- Capture is 16-bit, max. resolution 5.2 ns (Tcy/16)
- Compare is 16-bit, max. resolution 83.3 ns (TCY)
- PWM output: PWM resolution is 1 to 10 -bit
- Enhanced Capture/Compare/PWM (ECCP) module:
- Multiple output modes
- Selectable polarity
- Programmable dead time
- Auto-shutdown and auto-restart
- Enhanced USART module: - LIN bus support
- Master Synchronous Serial Port (MSSP) module supporting 3 -wire SPI (all 4 modes) and $\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}$ Master and Slave modes
- 10-bit, up to 13-channel Analog-to-Digital Converter module (A/D) with Programmable Acquisition Time
- Dual Analog Comparators with Input Multiplexing

Special Microcontroller Features:

- C Compiler Optimized Architecture with optional Extended Instruction Set
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory typical
- Flash/Data EEPROM Retention: >40 years
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8×8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 41 ms to 131s
- Programmable Code Protection
- Single-Supply 5V In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) via two pins
- In-Circuit Debug (ICD) via two pins
- Optional dedicated ICD/ICSP port (44-pin devices only)
- Wide Operating Voltage Range (2.0 V to 5.5 V)

Device	Program Memory		Data Memory		I/O	$\begin{array}{\|c\|} \text { 10-Bit } \\ \text { A/D (ch) } \end{array}$	CCP/ECCP (PWM)	SPP	MSSP				Timers 8/16-Bit
	Flash (bytes)	\# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)					SPI	Master $\mathrm{I}^{2} \mathrm{C}^{\text {тм }}$			
PIC18F2455	24K	12288	2048	256	24	10	2/0	No	Y	Y	1	2	1/3
PIC18F2550	32K	16384	2048	256	24	10	2/0	No	Y	Y	1	2	1/3
PIC18F4455	24K	12288	2048	256	35	13	1/1	Yes	Y	Y	1	2	1/3
PIC18F4550	32K	16384	2048	256	35	13	1/1	Yes	Y	Y	1	2	1/3

PIC18F2455/2550/4455/4550

Pin Diagrams

28-Pin PDIP, SOIC

40-Pin PDIP

Note 1: RB3 is the alternate pin for CCP2 multiplexing

Pin Diagrams (Continued)

Note 1: RB3 is the alternate pin for CCP2 multiplexing.
2: Special ICPORTS features available in select circumstances. See Section 25.9 "Special ICPORT Features (Designated Packages Only)" for more information.

PIC18F2455/2550/4455/4550

Table of Contents

1.0 Device Overview 7
2.0 Oscillator Configurations 23
3.0 Power-Managed Modes 35
4.0 Reset 43
5.0 Memory Organization 57
6.0 Flash Program Memory 79
7.0 Data EEPROM Memory 89
8.08×8 Hardware Multiplier 95
9.0 Interrupts 97
10.0 I/O Ports 111
11.0 Timer0 Module 125
12.0 Timer1 Module 129
13.0 Timer2 Module 135
14.0 Timer3 Module 137
15.0 Capture/Compare/PWM (CCP) Modules 141
16.0 Enhanced Capture/Compare/PWM (ECCP) Module 149
17.0 Universal Serial Bus (USB) 163
18.0 Streaming Parallel Port 187
19.0 Master Synchronous Serial Port (MSSP) Module 193
20.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) 237
21.0 10-Bit Analog-to-Digital Converter (A/D) Module 259
22.0 Comparator Module 269
23.0 Comparator Voltage Reference Module 275
24.0 High/Low-Voltage Detect (HLVD). 279
25.0 Special Features of the CPU 285
26.0 Instruction Set Summary 307
27.0 Development Support 357
28.0 Electrical Characteristics 361
29.0 DC and AC Characteristics Graphs and Tables 399
30.0 Packaging Information. 401
Appendix A: Revision History 409
Appendix B: Device Differences 409
Appendix C: Conversion Considerations 410
Appendix D: Migration From Baseline to Enhanced Devices 410
Appendix E: Migration From Mid-Range to Enhanced Devices 411
Appendix F: Migration From High-End to Enhanced Devices 411
Index 413
The Microchip Web Site 425
Customer Change Notification Service 425
Customer Support 425
Reader Response 426
PIC18F2455/2550/4455/4550 Product Identification System 427

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F2455
- PIC18LF2455
- PIC18F2550
- PIC18LF2550
- PIC18F4455
- PIC18LF4455
- PIC18F4550
- PIC18LF4550

This family of devices offers the advantages of all PIC18 microcontrollers - namely, high computational performance at an economical price - with the addition of high endurance, Enhanced Flash program memory. In addition to these features, the PIC18F2455/2550/4455/4550 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F2455/2550/4455/4550 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- On-the-Fly Mode Switching: The power-managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 28.0
"Electrical Characteristics" for values.

1.1.2 UNIVERSAL SERIAL BUS (USB)

Devices in the PIC18F2455/2550/4455/4550 family incorporate a fully featured Universal Serial Bus communications module that is compliant with the USB Specification Revision 2.0. The module supports both low-speed and full-speed communication for all supported data transfer types. It also incorporates its own on-chip transceiver and 3.3V regulator and supports the use of external transceivers and voltage regulators.

1.1.3 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F2455/2550/4455/4550 family offer twelve different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes using crystals or ceramic resonators.
- Four External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O).
- An internal oscillator block which provides an 8 MHz clock ($\pm 2 \%$ accuracy) and an INTRC source (approximately 31 kHz , stable over temperature and VDD), as well as a range of 6 user-selectable clock frequencies, between 125 kHz to 4 MHz , for a total of 8 clock frequencies. This option frees an oscillator pin for use as an additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and External Oscillator modes, which allows a wide range of clock speeds from 4 MHz to 48 MHz .
- Asynchronous dual clock operation, allowing the USB module to run from a high-frequency oscillator while the rest of the microcontroller is clocked from an internal low-power oscillator.
Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:
- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued low-speed operation or a safe application shutdown.
- Two-Speed Start-up: This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

20.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.
The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems.
The EUSART can be configured in the following modes:

- Asynchronous (full-duplex) with:
- Auto-wake-up on Break signal
- Auto-baud calibration
- 12-bit Break character transmission
- Synchronous - Master (half-duplex) with selectable clock polarity
- Synchronous - Slave (half-duplex) with selectable clock polarity

The pins of the Enhanced USART are multiplexed with PORTC. In order to configure RC6/TX/CK and RC7/RX/DT/SDO as an EUSART:

- bit SPEN (RCSTA<7>) must be set (= 1)
- bit TRISC $<7>$ must be set (= 1)
- bit TRISC<6> must be set (= 1)

Note: The EUSART control will automatically reconfigure the pin from input to output as needed.
The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 20-1, Register 20-2 and Register 20-3, respectively.

REGISTER 20-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-1 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSRC | TX9 | TXEN $^{(\mathbf{1)}}$ | SYNC | SENDB | BRGH | TRMT | TX9D |
| bit 7 | | | | | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemente	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown

bit 7	CSRC: Clock Source Select bit
	Asynchronous mode:
	Don't care.
	Synchronous mode:
	1 = Master mode (clock generated internally from BRG)
	$0=$ Slave mode (clock from external source)
bit 6	TX9: 9-Bit Transmit Enable bit
	1 = Selects 9-bit transmission
	$0=$ Selects 8-bit transmission
bit 5	TXEN: Transmit Enable bit ${ }^{(1)}$
	1 = Transmit enabled
	0 = Transmit disabled
bit 4	SYNC: EUSART Mode Select bit
	1 = Synchronous mode
	0 = Asynchronous mode
bit 3	SENDB: Send Break Character bit
	Asynchronous mode:
	1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed
	Synchronous mode:
	Don't care.
bit 2	BRGH: High Baud Rate Select bit
	Asynchronous mode:
	1 = High speed
	0 = Low speed
	Synchronous mode:
	Unused in this mode.
bit 1	TRMT: Transmit Shift Register Status bit
	$1 \text { = TSR empty }$ $0=T S R \text { full }$
bit 0	TX9D: 9th bit of Transmit Data
	Can be address/data bit or a parity bit.

Note 1: SREN/CREN overrides TXEN in Sync mode with the exception that SREN has no effect in Synchronous Slave mode.

REGISTER 20-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | R-x |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEN | RX9 | SREN | CREN | ADDEN | FERR | OERR | RX9D |
| bit 7 | | | | | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7 SPEN: Serial Port Enable bit
1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)
$0=$ Serial port disabled (held in Reset)
bit $6 \quad$ RX9: 9-Bit Receive Enable bit
1 = Selects 9-bit reception
$0=$ Selects 8-bit reception
bit 5 SREN: Single Receive Enable bit
Asynchronous mode:
Don't care.
Synchronous mode - Master:
1 = Enables single receive
$0=$ Disables single receive
This bit is cleared after reception is complete.
Synchronous mode - Slave:
Don't care.
bit 4 CREN: Continuous Receive Enable bit
Asynchronous mode:
1 = Enables receiver
0 = Disables receiver
Synchronous mode:
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
$0=$ Disables continuous receive
bit 3 ADDEN: Address Detect Enable bit
Asynchronous mode 9-bit ($\mathrm{RX9}=1$):
1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set
$0=$ Disables address detection, all bytes are received and ninth bit can be used as parity bit
Asynchronous mode 9-bit (RX9 = 0):
Don't care.
bit 2 FERR: Framing Error bit
1 = Framing error (can be updated by reading RCREG register and receiving next valid byte)
$0=$ No framing error
bit 1 OERR: Overrun Error bit
1 = Overrun error (can be cleared by clearing bit CREN)
0 = No overrun error
bit $0 \quad$ RX9D: 9th bit of Received Data
This can be address/data bit or a parity bit and must be calculated by user firmware.

PIC18F2455/2550/4455/4550

REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	-	WUE	ABDEN
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '	
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared	$x=$ Bit is unknown

bit 7 ABDOVF: Auto-Baud Acquisition Rollover Status bit
$1=$ A BRG rollover has occurred during Auto-Baud Rate Detect mode (must be cleared in software)
$0=$ No BRG rollover has occurred
bit 6 RCIDL: Receive Operation Idle Status bit
1 = Receive operation is Idle
$0=$ Receive operation is active
bit 5 RXDTP: Received Data Polarity Select bit
Asynchronous mode:
$1=R X$ data is inverted
$0=R X$ data received is not inverted
Synchronous modes:
1 = CK clocks are inverted
$0=$ CK clocks are not inverted
bit 4 TXCKP: Clock and Data Polarity Select bit
Asynchronous mode:
1 = TX data is inverted
$0=$ TX data is not inverted
Synchronous modes:
1 = CK clocks are inverted
$0=$ CK clocks are not inverted
BRG16: 16-Bit Baud Rate Register Enable bit
1 = 16-bit Baud Rate Generator - SPBRGH and SPBRG
$0=8$-bit Baud Rate Generator - SPBRG only (Compatible mode), SPBRGH value ignored
bit 2 Unimplemented: Read as ' 0 '
bit 1 WUE: Wake-up Enable bit
Asynchronous mode:
1 = EUSART will continue to sample the RX pin - interrupt generated on falling edge; bit cleared in hardware on following rising edge
$0=$ RX pin not monitored or rising edge detected
Synchronous mode:
Unused in this mode.
bit $0 \quad$ ABDEN: Auto-Baud Detect Enable bit
Asynchronous mode:
1 = Enable baud rate measurement on the next character. Requires reception of a Sync field (55h); cleared in hardware upon completion.
$0=$ Baud rate measurement disabled or completed
Synchronous mode:
Unused in this mode.

20.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8 -bit, or 16 -bit, generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8 -bit mode. Setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.
The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 (BAUDCON $<3>$) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 20-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).
Given the desired baud rate and Fosc, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 20-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 20-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 20-2. It may be advantageous
to use the high baud rate $(\mathrm{BRGH}=1)$, or the 16 -bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.
Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

20.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

20.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the $R X$ pin.

TABLE 20-1: BAUD RATE FORMULAS

Configuration Bits			BRG/EUSART Mode	Baud Rate Formula
SYNC	BRG16	BRGH		
0	0	0	8-bit/Asynchronous	Fosc/[64 ($\mathrm{n}+1$)
0	0	1	8-bit/Asynchronous	\%osch 16 (+1$)]$
0	1	0	16-bit/Asynchronous	osc/[16 ($n+1$]
0	1	1	16-bit/Asynchronous	
1	0	x	8-bit/Synchronous	Fosc/[4 ($\mathrm{n}+1$)]
1	1	x	16-bit/Synchronous	

Legend: $\mathrm{x}=$ Don't care, $\mathrm{n}=$ value of SPBRGH:SPBRG register pair

PIC18F2455/2550/4455/4550

EXAMPLE 20-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz , desired baud rate of 9600 , Asynchronous mode, 8-bit BRG:
Desired Baud Rate $=$ Fosc/(64 ([SPBRGH:SPBRG] + 1))
Solving for SPBRGH:SPBRG:

$$
\begin{aligned}
\mathrm{X} & =((\text { FOSC/Desired Baud Rate }) / 64)-1 \\
& =((16000000 / 9600) / 64)-1 \\
& =[25.042]=25 \\
\text { Calculated Baud Rate } & =16000000 /(64(25+1)) \\
& =9615 \\
\text { Error } & =(\text { Calculated Baud Rate }- \text { Desired Baud Rate }) / \text { Desired Baud Rate } \\
& =(9615-9600) / 9600=0.16 \%
\end{aligned}
$$

TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	53
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	53
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	-	WUE	ABDEN	53
SPBRGH	EUSART Baud Rate Generator Register High Byte			53					
SPBRG	EUSART Baud Rate Generator Register Low Byte	53							

Legend: - = unimplemented, read as ' 0 '. Shaded cells are not used by the BRG.

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=0, \mathrm{BRG16}=0$											
	Fosc $=40.000 \mathrm{MHz}$			Fosc $=20.000 \mathrm{MHz}$			Fosc $=10.000 \mathrm{MHz}$			Fosc $=8.000 \mathrm{MHz}$		
	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-	-	-	-
1.2	-	-	-	1.221	1.73	255	1.202	0.16	129	1201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	-	-	-
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	-	-	-
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	-	-	-

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=0, \mathrm{BRG16}=0$								
	Fosc $=4.000 \mathrm{MHz}$			Fosc $=2.000 \mathrm{MHz}$			Fosc $=1.000 \mathrm{MHz}$		
	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)
0.3	0.300	0.16	207	300	-0.16	103	300	-0.16	51
1.2	1.202	0.16	51	1201	-0.16	25	1201	-0.16	12
2.4	2.404	0.16	25	2403	-0.16	12	-	-	-
9.6	8.929	-6.99	6	-	-	-	-	-	-
19.2	20.833	8.51	2	-	-	-	-	-	-
57.6	62.500	8.51	0	-	-	-	-	-	-
115.2	62.500	-45.75	0	-	-	-	-	-	-

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=1, \mathrm{BRG16}=0$											
	Fosc $=40.000 \mathrm{MHz}$			Fosc $=20.000 \mathrm{MHz}$			Fosc $=10.000 \mathrm{MHz}$			Fosc $=8.000 \mathrm{MHz}$		
	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.73	255	2403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	-	-	-

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=1, \mathrm{BRG16}=0$								
	Fosc $=4.000 \mathrm{MHz}$			Fosc $=2.000 \mathrm{MHz}$			Fosc $=1.000 \mathrm{MHz}$		
	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)
0.3	-	-	-	-	-	-	300	-0.16	207
1.2	1.202	0.16	207	1201	-0.16	103	1201	-0.16	51
2.4	2.404	0.16	103	2403	-0.16	51	2403	-0.16	25
9.6	9.615	0.16	25	9615	-0.16	12	-	-	-
19.2	19.231	0.16	12	-	-	-	-	-	-
57.6	62.500	8.51	3	-	-	-	-	-	-
115.2	125.000	8.51	1	-	-	-	-	-	-

PIC18F2455/2550/4455/4550

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=0, \mathrm{BRG16}=1$											
	Fosc $=40.000 \mathrm{MHz}$			Fosc $=\mathbf{2 0 . 0 0 0} \mathbf{M H z}$			Fosc $=10.000 \mathrm{MHz}$			Fosc $=8.000 \mathrm{MHz}$		
	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	-	-	-

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=0, \mathrm{BRG16}=1$								
	Fosc $=4.000 \mathrm{MHz}$			Fosc $=2.000 \mathrm{MHz}$			Fosc $=1.000 \mathrm{MHz}$		
	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)	Actual Rate (K)	$\%$ Error	SPBRG value (decimal)	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)
0.3	0.300	0.04	832	300	-0.16	415	300	-0.16	207
1.2	1.202	0.16	207	1201	-0.16	103	1201	-0.16	51
2.4	2.404	0.16	103	2403	-0.16	51	2403	-0.16	25
9.6	9.615	0.16	25	9615	-0.16	12	-	-	-
19.2	19.231	0.16	12	-	-	-	-	-	-
57.6	62.500	8.51	3	-	-	-	-	-	-
115.2	125.000	8.51	1	-	-	-	-	-	-

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=1, \mathrm{BRG16}=1$ or SYNC $=1, \mathrm{BRG16}=1$											
	Fosc $=40.000 \mathrm{MHz}$			Fosc $=20.000 \mathrm{MHz}$			Fosc $=10.000 \mathrm{MHz}$			Fosc $=8.000 \mathrm{MHz}$		
	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117647	-2.12	16

BAUD RATE (K)	SYNC $=0, \mathrm{BRGH}=1, \mathrm{BRG16}=1$ or SYNC $=1, \mathrm{BRG16}=1$								
	Fosc $=4.000 \mathrm{MHz}$			Fosc $=2.000 \mathrm{MHz}$			Fosc $=1.000 \mathrm{MHz}$		
	Actual Rate (K)	$\begin{gathered} \text { \% } \\ \text { Error } \end{gathered}$	SPBRG value (decimal)	Actual Rate (K)	\% Error	SPBRG value (decimal)	Actual Rate (K)	$\%$ Error	SPBRG value (decimal)
0.3	0.300	0.01	3332	300	-0.04	1665	300	-0.04	832
1.2	1.200	0.04	832	1201	-0.16	415	1201	-0.16	207
2.4	2.404	0.16	415	2403	-0.16	207	2403	-0.16	103
9.6	9.615	0.16	103	9615	-0.16	51	9615	-0.16	25
19.2	19.231	0.16	51	19230	-0.16	25	19230	-0.16	12
57.6	58.824	2.12	16	55555	3.55	8	-	-	-
115.2	111.111	-3.55	8	-	-	-	-	-	-

20.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.
The automatic baud rate measurement sequence (Figure 20-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.
In the Auto-Baud Rate Detect (ABD) mode, the clock to the $B R G$ is reversed. Rather than the BRG clocking the incoming $R X$ signal, the $R X$ signal is timing the $B R G$. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.
Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value 55h (ASCII "U", which is also the LIN bus Sync character) in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up, using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin, or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH:SPBRG register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.
If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 20-2).
While calibrating the baud rate period, the BRG registers are clocked at $1 / 8$ th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. Independent of the BRG16 bit setting, both the SPBRG and SPBRGH will be used as a 16-bit counter. This allows the user to verify that no carry occurred for 8 -bit modes by checking for 00 h in the SPBRGH register. Refer to Table 20-4 for counter clock rates to the BRG.
While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. The contents of RCREG should be discarded.

Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte following the Break character.
2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.

TABLE 20-4: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH are both used as a 16 -bit counter, independent of the BRG16 setting.

20.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during $A B D$. This means that whenever the ABDEN bit is set, TXREG cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

21.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 10 inputs for the 28 -pin devices and 13 for the 40/44-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.
The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCONO)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCONO register, shown in Register 21-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 21-2, configures the functions of the port pins. The ADCON2 register, shown in Register 21-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 21-1: ADCONO: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	CHS3	CHS2	CHS1	CHSO	GO/ $\overline{\mathrm{DONE}}$	ADON

Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 7-6	Unimplemented: Read as ' 0 '
bit 5-2	CHS3:CHS0: Analog Channel Select bits
	$0000=$ Channel 0 (ANO)
	0001 = Channel 1 (AN1)
	$0010=$ Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 Channel 4 (AN4)
	$0101=$ Channel 5 (AN5) ${ }^{(1,2)}$
	$0110=$ Channel 6 (AN6) ${ }^{\mathbf{(1 , 2)}}$
	$0111=$ Channel 7 (AN7) ${ }^{(1,2)}$
	$1000=$ Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	$1100=$ Channel 12 (AN12)
	$1101=$ Unimplemented ${ }^{(2)}$
	$1110=$ Unimplemented ${ }^{(2)}$
	$1111=$ Unimplemented ${ }^{(2)}$
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	$0=A / D$ Idle
bit 0	ADON: A/D On bit
	$1=A / D$ converter module is enabled
	$0=A / D$ converter module is disabled

Note 1: These channels are not implemented on 28-pin devices.
2: Performing a conversion on unimplemented channels will return a floating input measurement.

PIC18F2455/2550/4455/4550

REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 ${ }^{(1)}$ | R/W ${ }^{(1)}$ | R/W ${ }^{(1)}$ | R/W ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | VCFG0 | VCFG0 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-6 Unimplemented: Read as ' 0 '
bit $5 \quad$ VCFGO: Voltage Reference Configuration bit (VREF- source)
1 = VREF- (AN2)
$0=$ Vss
bit 4
VCFG0: Voltage Reference Configuration bit (VREF+ source)
$1=\mathrm{VREF}+(\mathrm{AN} 3)$
$0=$ VDD
bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

$\begin{array}{\|l} \text { PCFG3: } \\ \text { PCFGO } \end{array}$	$\stackrel{N}{\underset{<}{<}}$	$\underset{\mathbb{Z}}{\underset{Z}{2}}$	$\frac{0}{2}$	$\stackrel{0}{2}$	\sum_{\ll}^{∞}	$\frac{\widehat{N}}{\underset{K}{Z}}$	$\frac{\widehat{N}}{\frac{1}{2}}$	$\frac{\widehat{N}}{\frac{1}{2}}$	$\underset{\varangle}{\underset{<}{2}}$	$\underset{<}{2}$	$\underset{\mathbb{K}}{\underset{\sim}{2}}$	$\underset{《}{\underset{\alpha}{2}}$	$\stackrel{8}{2}$
$0000^{(1)}$	A	A	A	A	A	A	A	A	A	A	A	A	A
0001	A	A	A	A	A	A	A	A	A	A	A	A	A
0010	A	A	A	A	A	A	A	A	A	A	A	A	A
0011	D	A	A	A	A	A	A	A	A	A	A	A	A
0100	D	D	A	A	A	A	A	A	A	A	A	A	A
0101	D	D	D	A	A	A	A	A	A	A	A	A	A
0110	D	D	D	D	A	A	A	A	A	A	A	A	A
0111 ${ }^{(1)}$	D	D	D	D	D	A	A	A	A	A	A	A	A
1000	D	D	D	D	D	D	A	A	A	A	A	A	A
1001	D	D	D	D	D	D	D	A	A	A	A	A	A
1010	D	D	D	D	D	D	D	D	A	A	A	A	A
1011	D	D	D	D	D	D	D	D	D	A	A	A	A
1100	D	D	D	D	D	D	D	D	D	D	A	A	A
1101	D	D	D	D	D	D	D	D	D	D	D	A	A
1110	D	D	D	D	D	D	D	D	D	D	D	D	A
1111	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input
D = Digital I/O

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN $=1$, PCFG<3:0> $=0000$; when PBADEN $=0$, PCFG<3:0> $=0111$.
2: AN5 through AN7 are available only on 40/44-pin devices.

REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2

| R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADFM | - | ACQT2 | ACQT1 | ACQT0 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7 ADFM: A/D Result Format Select bit
1 = Right justified
$0=$ Left justified
bit $6 \quad$ Unimplemented: Read as ' 0 '
bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits

$$
111=20 \text { TAD }
$$

$$
110=16 \text { TAD }
$$

$$
101=12 \text { TAD }
$$

$$
100=8 \text { TAD }
$$

$$
011=6 \text { TAD }
$$

$$
010=4 \text { TAD }
$$

$$
001=2 \text { TAD }
$$

$$
000=0 \text { TAD }^{(1)}
$$

bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits
111 = FRC (clock derived from A/D RC oscillator) ${ }^{(1)}$
$110=$ FOSC/64
$101=$ Fosc/16
$100=\mathrm{Fosc} / 4$
$011=$ FRC (clock derived from A/D RC oscillator) ${ }^{(1)}$
$010=$ FOSC/32
$001=\mathrm{Fosc} / 8$
$000=$ Fosc/2
Note 1: If the A/D FRc clock source is selected, a delay of one Tcy (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

PIC18F2455/2550/4455/4550

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/Vref+ and RA2/AN2/VREF-/CVREF pins.
The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.
The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.
Each port pin associated with the A/D converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCONO register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 21-1.

FIGURE 21-1: A/D BLOCK DIAGRAM

Note 1: Channels AN5 through AN7 are not available on 28-pin devices.
2: I/O pins have diode protection to VDD and Vss.

The value in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.
After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 21.1 "A/D Acquisition Requirements". After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.
The following steps should be followed to perform an A/D conversion:

1. Configure the A/D module:

- Configure analog pins, voltage reference and digital I/O (ADCON1)
- Select A/D input channel (ADCONO)
- Select A/D acquisition time (ADCON2)
- Select A/D conversion clock (ADCON2)
- Turn on A/D module (ADCONO)

2. Configure A / D interrupt (if desired):

- Clear ADIF bit
- Set ADIE bit
- Set GIE bit

3. Wait the required acquisition time (if required).
4. Start conversion:

- Set GO/DONE bit (ADCONO register)

5. Wait for A/D conversion to complete, by either:

- Polling for the GO/ $\overline{\mathrm{DONE}}$ bit to be cleared

OR

- Waiting for the A / D interrupt

6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
7. For next conversion, go to step 1 or step 2, as required. The A / D conversion time per bit is defined as TAD. A minimum wait of 3 TAD is required before the next acquisition starts.

FIGURE 21-2: A/D TRANSFER FUNCTION

FIGURE 21-3: ANALOG INPUT MODEL

PIC18F2455/2550/4455/4550

21.1 A/D Acquisition Requirements

For the A / D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 21-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is $2.5 \mathrm{k} \Omega$. After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 21-1 may be used. This equation assumes that $1 / 2 \mathrm{LSb}$ error is used (1024 steps for the A/D). The $1 / 2 \mathrm{LSb}$ error is the maximum error allowed for the A/D to meet its specified resolution.

Example 21-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

ChoLD	$=25 \mathrm{pF}$
Rs	$=2.5 \mathrm{k} \Omega$
Conversion Error	$\leq 1 / 2 \mathrm{LSb}$
VDD	$=5 \mathrm{~V} \rightarrow$ RSS $=2 \mathrm{k} \Omega$
Temperature	$=85^{\circ} \mathrm{C}$ (system max.)

EQUATION 21-1: ACQUISITION TIME
TACQ $=$ Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
$=$ TAMP $+\mathrm{TC}+\mathrm{TcOFF}$

EQUATION 21-2: A/D MINIMUM CHARGING TIME


```
or
TC = -(CHOLD)(RIC + RSS + RS) ln(1/2048)
```

EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	$=$ TAMP $+\mathrm{TC}+$ TCOFF
TAMP	$=0.2 \mu \mathrm{~s}$
TCOFF	$=$
	$\left(\operatorname{Temp}-25^{\circ} \mathrm{C}\right)\left(0.02 \mu \mathrm{~s} /{ }^{\circ} \mathrm{C}\right)$
	$\left(85^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\left(0.02 \mu \mathrm{~s} /{ }^{\circ} \mathrm{C}\right)$
	$1.2 \mu \mathrm{~s}$

Temperature coefficient is only required for temperatures $>25^{\circ} \mathrm{C}$. Below $25^{\circ} \mathrm{C}$, $\mathrm{TCOFF}=0 \mathrm{~ms}$.

```
Tc = -(ChOLD)(RIC + Rss + Rs) ln(1/2048) \mus
    -(25 pF) (1 k\Omega + 2 k\Omega + 2.5 k\Omega) ln(0.0004883) \mus
    1.05 \mus
TACQ = 0.2 \mu\textrm{s}+1.05 \mu\textrm{s}+1.2 \mu\textrm{s}
    2.45 \mu\textrm{s}
```


21.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT2:ACQT0 bits (ADCON2<5:3>) which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.
Manual acquisition is selected when ACQT2:ACQT0 $=000$. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT2:ACQT0 bits and is compatible with devices that do not offer programmable acquisition times.
In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

21.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 28-29 for more information).
Table 21-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 21-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock Source (TAD)		Maximum Device Frequency	
Operation	ADCS2:ADCS0	PIC18FXXXX	PIC18LFXXXX ${ }^{(4)}$
2 Tosc	000	2.86 MHz	1.43 MHz
4 Tosc	100	5.71 MHz	2.86 MHz
8 Tosc	001	11.43 MHz	5.72 MHz
16 Tosc	101	22.86 MHz	11.43 MHz
32 Tosc	010	45.71 MHz	22.86 MHz
64 Tosc	110	48.0 MHz	45.71 MHz
RC $^{(\mathbf{3})}$	$x 11$	$1.00 \mathrm{MHz}^{(\mathbf{1)}}$	1.00 MHz

Note 1: The RC source has a typical TAD time of 4 ms .
2: The RC source has a typical TAD time of 6 ms .
3: For device frequencies above 1 MHz , the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification.
4: Low-power devices only.

Disposable / Reusable Dry EEG Electrode [TDE-200]

Share Tweet \bigcap Pin it

This disposable/reusable Dry EEG Electrode can also be used for other parameters such as EMG, ECG or EOG. It is used with the TDE-207XX Lead Wire.

Diameter at the bottom is $13 / 32^{\prime \prime}$. Top diameter is $1 / 4^{\prime \prime}$.
There is a narrower notch just below the top, for the electrode cable to snap into. That notch is $7 / 32$ " in diameter. Select the quantity from the drop down box.

This disposable/reusable Dry EEG Electrode can also be used for other parameters such as EMG, ECG or EOG. It is used with the TDE-207XX Lead Wire.

Diameter at the bottom is $13 / 32$ ". Top diameter is $1 / 4^{\prime \prime}$.
There is a narrower notch just below the top, for the electrode cable to snap into. That notch is $7 / 32$ " in diameter.

Select the quantity from the drop down box.

[^0]: ${ }^{1}$ See Analog Devices military data sheet for 883 B tested specifications.
 ${ }^{2}$ Does not include effects of external resistor R_{G}.
 ${ }^{3}$ One input grounded. G = 1 .
 ${ }^{4}$ This is defined as the same supply range that is used to specify PSR.

[^1]: Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro ${ }^{\circledR}$-bit MCUs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

